Responsive image
博碩士論文 etd-0631114-015806 詳細資訊
Title page for etd-0631114-015806
論文名稱
Title
台灣海峽周邊地區大氣汞時空分佈及污染來源解析
Tempospatial Distribution and Source Identification of Atmospheric Mercury surrounding the Taiwan Strait
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-06
繳交日期
Date of Submission
2014-08-14
關鍵字
Keywords
時空分佈、大氣汞型態、台灣海峽周邊地區、傳輸路徑、污染源解析
source identification, transportation routes, tempospatial distribution, speciated atmospheric mercury, Taiwan Strait
統計
Statistics
本論文已被瀏覽 5751 次,被下載 59
The thesis/dissertation has been browsed 5751 times, has been downloaded 59 times.
中文摘要
台灣海峽兩岸均為人口密集且工業發達的區域,大量含汞污染物排放至台灣海峽大氣中,再加上盛行於每年秋、冬季之工業排放與春季的亞洲大陸沙塵暴與生質燃燒,也帶來大量含汞空氣污染物,並經由傳輸或沉降於台灣海峽陸域與海域中,成為台灣海峽周邊地區空氣品質不佳的重要原因之ㄧ。
有鑑於此,本研究使用行政院環境檢驗所公告之「空氣中汞檢測及分析標準方法」(NIEA A304.10C)及美國環保總署公告之IO-5方法,針對台灣海峽周邊地區六處採樣站同步進行環境大氣中總氣態汞(TGM)與顆粒態汞(Hgp)的量測與分析,藉以瞭解台灣海峽周邊地區大氣汞時空分佈之情形。另外,本研究亦規畫採樣船舶(海研三號),針對台灣海峽海域進行TGM與Hgp之採樣,並利用RGM擴散管於台灣海峽東部地區進行反應性氣態汞(RGM)之量測,探討台灣海峽海域與台灣海峽東部地區RGM空間分佈之情形。此外,本研究使用NOAA-HYSPLIT Model逆軌跡模式與全球火點分佈圖(Global Fire Map)來推估污染氣團來源與燃燒源,並且與各空氣污染物進行相關性分析與探討。
由大氣汞(含TGM與Hgp)量測結果及等濃度分佈顯示,台灣海峽周邊地區季節性大氣汞濃度高低依序為:春季>冬季>秋季>夏季,而TGM與Hgp平均值分別為4.56±0.35 ng/m3與0.17±0.02 ng/m3,濃度範圍則分別介於3.22~5.84 ng/m3與0.06~0.25 ng/m3之間,最高TGM與Hgp濃度均位於廈門翔安地區。大氣汞氣固相分佈則以TGM為主,TGM及Hgp分別介於95.70~98.34%和1.66~4.35%。此外,由氣固相百分比來判斷本次污染源可能以都會區排放為主,少部分地區則以工業區所排放之含汞污染物居多。就台灣海峽東部地區RGM量測結果顯示,RGM濃度在TAM中所佔比例分別為1.37%(新北)、1.79%(台中)及1.67%(高雄);此外,RGM濃度高低依序為:高雄鼓山>台中沙鹿>新北三貂角,顯示出高雄鼓山地區RGM濃度均較其他地區略高;而在台灣海峽海域方面,大氣汞之污染源以大陸沿海與華北地區長程傳輸為主。
由逆軌跡模式及氣象監測資料顯示,夏季採樣期間污染氣團主要來自南方及菲律賓海域,該區域在全球火點分佈圖中顯示出並無大型燃燒源排放,因而使大氣汞濃度較其他季節來得低;在秋、冬季節期間,大陸華北地區與沿海地區工業排放興盛,氣團挾帶著含汞污染物經季風傳輸至台灣海峽地區。在春季期間,污染氣團先傳輸至大陸華北沿海地區出海後再轉向台灣海峽地區,此時大陸高壓氣流較為強勁,迫使氣團直接朝東南方向傳輸,出海並傳輸至台灣海峽地區。
在東沙群島採樣期間盛行風向為東風或東北東風,其氣團主要來自東方海域,通過台灣島與呂宋島之間的巴士海峽而傳輸至東沙群島,在此海域附近並無區域燃燒或污染源排放活動,因而造成東沙群島TGM濃度較台灣海峽周邊地區低了許多。另與世界各主要城市大氣汞濃度比較而言,台灣海峽周邊地區大氣汞濃度普遍低於中國大陸的城市,但卻較日本、韓國及歐美城市為高。
Abstract
The Taiwan Strait is a densely populated and industrially developed area, where a large number of mercury is emitted to its atmosphere. Asian dust storms, biomass burning, and northeastern Monsoons frequently occurred in the spring and winter. It could lead to a large number of atmospheric mercury and anthropogenic air pollutants across the Taiwan Strait from long-range transportation, which could cause poor ambient air quality of the Taiwan Strait.
This study aimed to measure the speciation and concentration of atmospheric mercury, and further investigated their tempospatial distribution. The concentrations of total gaseous mercury (TGM) and particulate mercury (Hgp) were measured at six sampling sites surrounding the Taiwan Strait. A standard method for sampling and analyzing mercury in air (NIEA Method A304.10C) announced by the National Institute of Environmental Analysis (NIEA), mostly adopted from USEPA Method IO-5, was applied for the measurement of TGM and Hgp. This study also sampled TGM and Hgp in a sampling vessel (R/V Ocean Researcher III) navigated in the Taiwan Strait, and developed a KCl-coated annular denuder to sample reactive gaseous mercury (RGM) in the east side of the Taiwan Strait, and further investigated the tempospatial distribution of atmospheric mercury concentration. In addition, this study applied a NOAA-HYSPLIT Model and a Global Fire Map to figure out the transportation routes of polluted air mass by a backward trajectory, a fire spot map, and the correlation analysis of mercury concentration with meteorological parameters and criteria air pollutants.
The results showed that the concentration of TGM and Hgp measured at six sites surrounding the Taiwan Strait were 4.56±0.35 ng/m3 and 0.17±0.02 ng/m3 with the range of 3.22-5.84 ng/m3 and 0.06-0.25 ng/m3, respectively, and were ordered as : spring >winter > fall > summer. Moreover, the highest TGM and Hgp concentration was observed at the Xiamen Xiang-Ann site. Atmospheric mercury apportioned as 95.70~ 98.34% TGM and 1.66~4.35% Hgp. The emission of Hgp came mainly from metropolitan areas and only small part of them emitted from industrial areas. Total atmospheric mercury apportioned as 1.34~1.79% RGM. RGM concentration were ordered as : Kaohsiung Gushan > Taichung Sha-Lu > New Taipei City Sandiaojiao. The results indicated that the RGM concentration at Kaohsiung Gushan was higher than other sites. While measured in the sampling vessel, the atmospheric mercury in the Taiwan Strait was mainly transported from the North China and mainland´s coastal areas.
Results obtained from backward trajectory simulation and meteorological data showed that, in summer, the air masses transported toward the Taiwan Strait was mainly come from the South China Sea. The concentration of TGM and Hgp in summer appeared to be relatively lower than those in other seasons. However, the atmospheric mercury levels surrounding the Taiwan Strait increased in fall, winter, and spring, while the air masses were transported from the Northeast Asia by northeastern Monsoons.
During the Dongsha Islands sampling periods, the prevailing winds were blown from either the east or the northeast in spring. The backward trajectory simulation results showed that the air masses toward the Dongsha Islands were mostly transported from the East China Sea through the Bashi Channel between the Taiwan and the Luzon Islands. Very few combustion or pollution discharge activities in these regions, resulting in much lower TGM concentration at the Dongsha Islands than that surrounding the Taiwan Strait. Compared to other cities in the world, the concentration of atmospheric mercury surrounding the Taiwan Strait was generally lower than the cities of mainland China, but higher than Japan, Korea, European, and American cities.
目次 Table of Contents
目 錄 頁次
論文審定書………………………………………………………….. i
謝誌………………………………………………………………….. ii
中文摘要…………………………………………………………….. iii
英文摘要…………………………………………………………….. v
目錄………………………………………………………………….. viii
表目錄……………………………………………………………….. xi
圖目錄……………………………………………………………….. xiii
第一章 前言……………………………………………………….. 1
1-1 研究緣起…………………………………………………… 1
1-2 研究目的…………………………………………………… 2
1-3 研究範圍與架構………………………………………….... 2
第二章 文獻回顧………………………………………………….. 5
2-1 汞的背景介紹.……………….…………………………….. 5
2-1-1 汞的基本特性…………………………………………. 5
2-1-2 大氣汞的型態及組成特徵……………………………. . 6
2-1-3 大氣汞的來源及循環…………………………………. 7
2-2 汞的健康風險………………………………………………. 10
2-2-1 汞的危害標準………………………………………….. 10
2-2-2 汞的毒性與危害性…………………………………….. 11
2-3 大氣汞量測方法……………………………………………. 13
2-3-1大氣汞量測技術演進…………………………………... 13
2-3-2不同型態大氣汞採樣及分析方法……………………...15
2-3-3反應性氣態汞量測方法的演進………………………... 16
2-4 常見汞連續監測儀之比較………………………………….18
2-5 逆軌跡模式之原理與應用…………………………………. 20
2-5-1逆軌跡模式之原理……………………………………...20
2-5-2逆軌跡模式之應用……………………………………...21
2-6 國內外大氣汞相關研究……………………………………. 22
第三章 研究方法………………………………………………….. 30
3-1 大氣汞採樣規劃……………………………………………. 30
3-1-1 採樣地點規劃………………………………………….. 30
3-1-2 採樣時間規劃………………………………………….. 30
3-2 大氣汞量測方法與步驟……………………………………. 32
3-2-1 TGM量測步驟………………………...……………….. 32
3-2-2 Hgp量測步驟………..…………………………………. 34
3-2-3 RGM量測步驟..………..……………………………… 36
3-3 大氣汞分析方法與步驟……………………………………. 39
3-3-1 TGM分析方法與步驟…………………………………. 40
3-3-2 Hgp分析方法與步驟…………………………………... 42
3-3-3 RGM分析方法與步驟………………………………… 42
3-4 大氣汞採樣及分析之品保與品管(QA/QC)……………….. 43
3-5 冷蒸氣原子螢光光譜儀…………………………………….45
3-6 汞連續監測儀……………………………………………….48
3-7 污染源解析方法…………………………………………….49
3-7-1 逆軌跡模式……………………………………………..49
3-7-2 等濃度空間分佈………………………………………..50
第四章 結果與討論……………………………………………….. 51
4-1 RGM採樣分析方法驗證與測試……………………………51
4-1-1 RGM擴散管空白測試…………………………………51
4-1-2 RGM擴散管穿透率實驗………………………………52
4-1-3 RGM採樣器平行比對試驗……………………………53
4-2 TGM與Hgp驗證與測試…………………………………….54
4-2-1 金汞齊吸附管空白測試...……………………………... 54
4-2-2 金汞齊吸附管穿透率實驗……………………………..55
4-2-3 Hgp乾式高溫脫附法及濕式消化法比較實驗………... 56
4-3台灣海峽地區大氣汞時空分佈……………………………... 57
4-3-1 台灣海峽周邊地區TGM與Hgp之時空分佈…………...57
4-3-2 台灣海峽周邊地區TGM與Hgp之空間分佈…………...68
4-3-3 台灣海峽東岸地區大氣汞之空間分佈………………..72
4-3-4 台灣海峽海上TGM與Hgp量測分析…………………... 73
4-4 台灣海峽周邊地區大氣汞污染源解析…………………….74
4-4-1 污染氣團傳輸路徑分析………………………………..75
4-4-2 全球火點監測分析……………………………………..82
4-4-3 大氣汞濃度、氣象參數及空氣污染物之相關性………83
4-5 東沙群島大氣汞濃度變化趨勢與探討…………………….85
4-6 台灣海峽地區大氣汞濃度與世界各主要城市比較………. 89
第五章 結論與建議………………………………………………… 92
5-1 結論………………………………………………………... 92
5-2 建議………………………………………………………... 94
參考文獻……………………………………………………………. 96
附錄A 大氣汞量測數據…………………………………………… 109
附錄B 東沙群島大氣汞監測小時數據…………………………... 112
表目錄
頁次
表 2-1 汞之物理及化學特性………………………………………5
表 2-2 大氣汞之採樣及分析方法總覽……………………………15
表 2-3 空氣中RGM檢測方法比較表……………………………..19
表 2-4 常見之環境空氣中汞污染物連續監測儀彙整表…………19
表 2-5 全球主要工業製程的汞排放量……………………………25
表 3-1 台灣海峽周邊地區大氣汞採樣站環境描述彙整表………31
表 3-2 TGM 檢量線製備及差異百分比…………………………...47
表 3-3 RGM 檢量線製備及差異百分比…………………………...47
表 3-4 Hgp 檢量線製備及差異百分比……………………………..47
表 4-1 RGM 擴散管空白測試結果彙整表………………………...52
表 4-2 RGM 擴散管穿透率測試結果彙整表……………………...53
表 4-3 RGM 擴散管平行比對測試結果彙整表…………………...54
表 4-4 金汞齊吸附管空白測試結果彙整表………………………55
表 4-5 金汞齊吸附管穿透率測試結果彙整表……………………55
表 4-6 濕式消化法與高溫脫附法比對測試結果彙整表…………57
表 4-7 馬祖南竿採樣站氣象資料彙整表…………………………60
表 4-8 廈門翔安採樣站氣象資料彙整表…………………………60
表 4-9 澎湖小門採樣站氣象資料彙整表…………………………60
表 4-10 高雄鼓山採樣站氣象資料彙整表………………………..61
表 4-11 台中沙鹿採樣站氣象資料彙整表………………………..61
表 4-12 新北三貂角採樣站氣象資料彙整表……………………..61
表 4-13 台灣海峽周邊地區氣象參數彙整表……………………..65
表 4-14 台灣海峽周邊地區TGM與Hgp 濃度季節變化彙整表….67
表 4-15 台灣海峽東部地區大氣汞濃度彙整表…………………..73
表 4-16 台灣海峽海域大氣汞濃度彙整表………………………..74
表 4-17 大氣汞濃度、氣象參數與各污染物相關性彙整表………84
表 4-18 台灣地區TGM 濃度比較表………………………………89
表 4-19 台灣海峽與世界各主要城市大氣汞濃度比較表………..91
表 A-1 夏、秋季TGM 與Hgp 採樣分析紀錄…………………….110
表 A-2 冬、春季TGM 與Hgp 採樣分析紀錄……………………111
表 B-1 東沙群島二月大氣汞監測數據……………………………113
表 B-2 東沙群島三月大氣汞監測數據……………………………114
表 B-3 東沙群島四月大氣汞監測數據……………………………116
圖目錄
頁次
圖 1-1 研究架構及流程圖…………………………………………4
圖 2-1 2005 年全球人為污染之汞排放量…………………………8
圖 2-2 電腦模擬繪製的全球地表大氣汞濃度分佈………………9
圖 2-3 全球汞循環示意圖…………………………………………9
圖 2-4 台灣與韓國大陸沙塵暴期間氣團逆軌跡預測圖…………24
圖 2-5 中國大陸境內廢棄物焚化廠分佈…………………………24
圖 2-6 鹿林山測站2007 年3 月與7 月之5 日後推逆軌跡……….25
圖 2-7 大氣汞濃度在底特律逐時變化趨勢………………………26
圖 3-1 台灣海峽周邊地區大氣汞採樣站位置圖…………………31
圖 3-2 大氣汞(含TGM 及Hgp)量測裝置示意圖與實體圖………32
圖 3-3 金汞齊吸附管實體圖………………………………………34
圖 3-4 Hgp 採樣用之開放式濾紙匣實體圖……………………….36
圖 3-5 RGM擴散管實體圖………………………………………...37
圖 3-6 鍍KCl 擴散管熱脫附動作………………………………….38
圖 3-7 汞標準氣體產生氣與專用氣針……………………………41
圖 3-8 元素汞標準品檢量線(TGM 濃度適用) …………………...46
圖 3-9 元素汞標準品檢量線(RGM 濃度適用) …………………..46
圖 3-10 元素汞標準品檢量線(Hgp 濃度適用) ……………………46
圖 3-11 冷蒸氣原子螢光光譜儀(CVAFS)實體圖………………...48
圖 3-12 Tekran 2537B 總氣態汞連續監測儀實體圖………………49
圖 3-13 NOAA 逆軌跡模式實體圖………………………………...50
圖 4-1 大氣汞採樣系統示意圖……………………………………52
圖 4-2 RGM擴散管穿透率測試結果比較圖……………………...53
圖 4-3 RGM擴散管平行比對結果比較圖………………………...54
圖 4-4 金汞齊吸附管穿透率測試結果比較圖……………………56
圖 4-5 濕式消化法與高溫脫附法實驗示意圖……………………57
圖 4-6 馬祖南竿TGM與Hgp 濃度之季節變化趨勢……………...61
圖 4-7 廈門翔安TGM與Hgp 濃度之季節變化趨勢……………...62
圖 4-8 澎湖小門TGM與Hgp 濃度之季節變化趨勢……………...62
圖 4-9 高雄鼓山TGM與Hgp 濃度之季節變化趨勢……………...62
圖 4-10 台中沙鹿TGM與Hgp 濃度之季節變化趨勢…………….63
圖 4-11 新北三貂角TGM與Hgp濃度之季節變化趨勢…………..63
圖 4-12 台灣海峽周邊地區不同季節TGM 與Hgp 濃度空間分佈
趨勢………………………………………………………..66
圖 4-13 台灣海峽周邊地區TGM與Hgp 濃度百分比…………….68
圖 4-14 台灣海峽夏季期間TGM與Hgp 等濃度圖……………….69
圖 4-15 台灣海峽秋季期間TGM與Hgp 等濃度圖……………….69
圖 4-16 台灣海峽冬季期間TGM與Hgp 等濃度圖……………….70
圖 4-17 台灣海峽春季期間TGM與Hgp 等濃度圖……………….70
圖 4-18 台灣海峽周邊地區不同季節大氣汞污染玫瑰圖………..71
圖 4-19 冬季海上航跡圖…………………………………………..74
圖 4-20 春季海上航跡圖…………………………………………..74
圖 4-21 馬祖夏季氣團逆軌跡圖…………………………………..76
圖 4-22 廈門夏季氣團逆軌跡圖…………………………………..76
圖 4-23 澎湖夏季氣團逆軌跡圖…………………………………..77
圖 4-24 高雄夏季氣團逆軌跡圖…………………………………..77
圖 4-25 台中夏季氣團逆軌跡圖…………………………………..77
圖 4-26 新北夏季氣團逆軌跡圖…………………………………..77
圖 4-27 馬祖秋季氣團逆軌跡圖…………………………………..78
圖 4-28 廈門秋季氣團逆軌跡圖…………………………………..78
圖 4-29 澎湖秋季氣團逆軌跡圖…………………………………..78
圖 4-30 高雄秋季氣團逆軌跡圖…………………………………..78
圖 4-31 台中秋季氣團逆軌跡圖…………………………………..79
圖 4-32 新北秋季氣團逆軌跡圖…………………………………..79
圖 4-33 馬祖冬季氣團逆軌跡圖…………………………………..79
圖 4-34 廈門冬季氣團逆軌跡圖…………………………………..79
圖 4-35 澎湖冬季氣團逆軌跡圖…………………………………..80
圖 4-36 高雄冬季氣團逆軌跡圖…………………………………..80
圖 4-37 台中冬季氣團逆軌跡圖…………………………………..80
圖 4-38 新北冬季氣團逆軌跡圖…………………………………..80
圖 4-39 馬祖春季氣團逆軌跡圖…………………………………..81
圖 4-40 廈門春季氣團逆軌跡圖…………………………………..81
圖 4-41 澎湖春季氣團逆軌跡圖…………………………………..81
圖 4-42 高雄春季氣團逆軌跡圖…………………………………..81
圖 4-43 台中春季氣團逆軌跡圖…………………………………..82
圖 4-44 新北春季氣團逆軌跡圖…………………………………..82
圖 4-45 亞洲地區採樣期間火點分佈圖…………………………..83
圖 4-46 東沙群島春季期間大氣汞濃度變化趨勢………………..86
圖 4-47 東沙二月氣團逆軌跡圖…………………………………..87
圖 4-48 東沙三月氣團逆軌跡圖…………………………………..87
圖 4-49 東沙四月氣團逆軌跡圖…………………………………..88
圖 4-50 2008-2014 年東沙群島大氣汞濃度………………………88
參考文獻 References
ATSDR, “Toxicological Profile for Mercury,” U.S. Department of Health and Human Services, 1999.
Bergquist, B,A. and Blum, J.D. “Mass-dependent and independent fractionation of Hg isotopes by photoreduction in aquatic systems,” Sci., 318, 417-420, 2007.
Bloom, N., “Determination of volatile mercury species at the pictogram level by low-temperature gas chromatography with cold-vapor atomic fluorescence detection,” Anal. Chim. Acta, 208, 151-161, 1988.
Blum, J.D. and Bergquist, B.A., “Reporting of variations in the natural isotopic composition of mercury, ” Anal. Bioanal. Chem., 388(2), 353-359, 2007.
Chan, C.C.Y. and Sadana, R.S., “Automated determination of mercury at ultra level in waters by gold amalgam preconcentration and cold vapour atomic fluorescence spectrometry,” Anal. Chim. Acta., 282, 109-115, 1993.
Chen, L., Liu, M., Xu, Z., Fan, R., Tao, J., Chen, D., Zhang, D., Xie, D., and Sun, J., “Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta-A highly industrialised region in South China influenced by seasonal monsoons,” Atmos. Environ., 77, 757-766, 2013.
Cheng, H.F. and Hu, Y.N., “Mercury in municipal solid waste in China and its control: a review,” Environ. Sci. Technol., 46, 593-605, 2012.
Cheng, I., Zhang, L., Mao, H., Blanchard, P., Tordon, R., and Dalziel, J., “Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site,” Atmos. Environ., 82, 193-205, 2014.
Chi, K.H., Hsu, S.C., Wang, S.H., and Chang, M.B., “Increase of ambient PCDD/F and PCB concentrations in northern Taiwan during Asian duststorm episode,” Sci. Total Environ., 401(1), 100-108, 2008.
Choi, H.D., Holsen, T.M., and Hopke, P.K., “Atmospheric mercury (Hg) in the adirondacks: concentrations and sources,” Environ. Sci. Technol., 42(15), 5644-5653, 2008.
Cizdziel, J.V., Tolbert, C., and Brown, G., “Direct analysis of environmental and biological samples for total mercury with comparison of sequential atomic absorption and fluorescence measurements from a single combustion event,” Spectrochimica Acta Part B: Atomic Spectroscopy, 65, 176-180, 2010.
Clarkso, T.W., “The toxicology of mercury,” Crit. Rev. Clin. Lab. Sci., 34, 369-403, 1997.
Dastoor, A.P. and Larocque. Y., “Global circulation of atmospheric mercury: a modeling study,” Atmos. Environ., 38, 147-161, 2004.
Díez, S., Montuori, P., Pagano, A., Sarnacchiaro, P., Bayona, J.M., and Triassi, M., “Hair mercury levels in an urban population from southern Italy: fish consumption as a determinant of exposure,” Environ. Int., 34, 162-167, 2008 .
Ebdon, L. and Wilkinson, J.R., “Determination of sub-nanogram amounts of mercury by cold-vapour atomic fluorescence spectrometry with an improved gas-sheathed atom cell,” Anal. Chim. Acta., 128, 45-55, 1981.
Ebinghaus, R., Kock, H.H., Coggins, A.M., Spain, T.G. Jennings, S.G., and Temme, C., “Long-term measurements of atmospheric mercury at Mace Head, Irish West Coast between 1995 and 2001,” Atmos. Environ., 36, 5267-5276, 2002.
Ebinghaus, R., Jennings, S., Schroeder, W.H., Berg, T., Donaghy, T., Guentzel, J., Kenny, C., Kock, H.H., Kvietkus, K., Landing, W., Muthleck, T., Munthe, J., Prestbo, E.M., Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallschlager, D., and Xiao, Z., “International field intercomparison measurements of atmospheric mercury species at Macehead, Ireland,” Atmos. Environ., 33, 3063-3073, 1999.
Fang, F., Wang, Q., and Li, J., “Urban environment mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate,” Sci. Total Environ., 330, 159-170, 2004.
Fang, G.C., Jhang, Y.M., Lin, Y.H., and Lin, S., “Total mercury and particulate-bound mercury Hg(p) concentration and content in ambient air in central Taiwan,” Environ. Forensic., 13(3), 203-208, 2012.
Fang, G.C., Zhang, L., and Huang, C.S., “Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury,” Atmos. Environ., 61, 371-377, 2012.
Fantozzi, L., Manca, G., Ammoscato, I., Pirrone, N., and Sprovieri, F., “The cycling and sea – air exchange of mercury in the waters of the Eastern Mediterranean during the 2010 MED – OCEANOR cruise campaign,” Sci. Total Environ., 448(15), 151-162, 2013.
Feng, X.B., Sommar, J.G., and Gardfeldt, K., “Improved detection of gaseous divalent mercury in ambient air using KCl coated denuders,” Anal. Bioanal. Chem., 366, 423-428, 2000.
Feng, X.B., Sommar, J.G., Lindqvist, O. and Hong, Y.T., “Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China, ” Water Air Soil Poll., 139, 311-324, 2002.
Feng, X., Shang, L., Wang, S., Tang, S., and Zheng, W., “Temporal variation of total gaseous mercury in the air of Guiyang, China,” J. Geophys. Res., 109, D03303, 2004.
Ferrara, R., Seritti, A., Barghiani, C. and Petrosino, A., “Improved instrument for mercury determination by atomic fluorescence spectrometry with a high-frequency electrodeless discharge lamp,” Anal. Chim. Acta., 117, 391-395, 1980.
Fitzgerald, W.F. and Gill, G.A., “Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis,” Anal. Chem., 15, 1714, 1979.
Friedli, H.R., Radke, L.F., Prescott, R., Li, P., Woo, J.H., and Carmichael, G.R., “Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: Measurements, distributions, sources, and implications.” J. Geophys. Res., 109, D19S25, 2004.
Fu, X., Feng, X., Zhu W., Zheng W., and Wang S., “Total particulate and reactive gaseous mercury in ambient air in the eastern slope of Mt. Gongga area,” Appl. Geochem., 23(3), 408-418, 2008.
Fu, X., Feng, X., Zhang, G., Xu, W., Li, X., Yao, H., Liang, P., Li, J., Sommar, J., Yin, R., and Liu, N., “Mercury in the marine boundary layer and seawater of the South China Sea: concentrations, sea/air flux, and implication for land outflow,” J. Geophys. Res., 115, D06303, 2010.
Fu, X., Feng, X., Qiu, G., Shang, L., and Zhang, H., “Speciated atmospheric mercury and its potential source in Guiyang, China.” Atmos. Environ., 45, 4205-4212, 2011.
Fu, X.W., Feng, X., Liang, P., Deliger, Zhang, H. Ji, J., and Liu. P., “Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China,” Atmos. Chem. Phys., 12, 1951-1964, 2012.
Gabriel, M.C., Willamson, D.G., Brooks, S., and Lindberg, S., “Atmospheric speciation of mercury in two contrasting Southeastern US airsheds.” Atmos. Environ., 39, 4947-4958, 2005.
Gustin, M. and Jaffe, D., “Reducing the uncertainty in measurement and understanding of mercury in the atmosphere,” Environ. Sci. Technol., 44(7), 2222-2227, 2010.
Hatch, W.R. and Ott, W.L., “Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry,” Anal. Chem., 40, 2085-7, 1968.
Han, Y.J., Kim, J.E., Kim, P.R., Kim, W.J., Yi, S.M., Seo, Y.S., and Kim, S.H., “General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high-concentration events,” Atmos. Environ., 94, 754-764, 2014.
Hladikova, V., Petrik, J., Jursa, S., Ursinyova, M., and Kocan, A., “Atmospheric mercury levels in the Slovak Republic,” Chemosphere, 45, 801-806, 2001.
Hylander, L.D. and Meili, M., “500 years of mercury product: global annual inventory by region until 2000 and associated emissions,” Sci. Total Environ., 304, 13-27, 2003.
Holmes, C.D., Jacob, D.J., Mason, R.P., and Jaffe, D.A., “Sources and deposition of reactive gaseous mercury in the marine atmosphere,” Atmos. Environ., 43(14), 2278-2285, 2009.
Jaffe, D., Prestbo, E., Swartzendruber, P., Penzias, P.W., Kato, S., Takami, A., Hatakeyama, S., and Kajii, Y., “Export of atmospheric mercury from Asia,” Atmos. Environ., 39, 3029-3038, 2005.
Jen, Y.S., Yuan, C.S., Lin, Y.C., and Lee, C.G., “Tempospatial partition of gaseous elemental mercury (GEM) and particulate mercury (PM) at background and heavily polluted urban sites in Kaohsiung City,” A&WMA International Specialty Conference, Xi'an, China, May 10-14, 2010.
Jen, Y.S., Yuan, C.S., Lin, Y.C., Lee, C., Hung, C.H., Tsai, C.M., Tsai, H.H., and Ie, I.R., “Partition and tempospatial variation of gaseous and particulate mercury at a unique mercury-contaminated remediation site,” J. Air Waste Manage. Assoc., 61, 1115-1123, 2011.
Jen, Y.S., Yuan, C.S., Hung, C.H., Ie, I.R., and Tsai, C.M., “Tempospatial variation and partition of atmospheric mercury during wet and dry seasons at sensitivity sites within a heavily polluted industrial city,” Aerosol Air Qual. Res., 13, 13-23, 2013.
Jen, Y.S., Chen, W.H., Hung, C.H., Yuan, C.S., and Ie, I.R., “Field Measurement of Total Gaseous Mercury and Its Correlation with Meteorological Parameters and Criteria Air Pollutants at a Coastal Site of the Penghu Islands,” Aerosol Air Qual. Res., 14, 364-375, 2014.
Jiang, Y., Cizdziel, J.V., and Lu, D., “Temporal patterns of atmospheric mercury species in northern Mississippi during 2011–2012: Influence of sudden population swings,” Chemosphere, 93, 1694-1700, 2013.
Karatza, D., Lancia, A., Musmarra, D., Pepe, F., and Volpicelli, G., “Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon,” Combust. Sci. Technol., 112, 163-174, 1996.
Kim, P.R., Han, Y.J., Holsen, T.M., and Yi, S.M., “Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea,” Atmos. Environ., 43, 3267-3274, 2009.
Kim, J.H., Park., J.M., Lee, S.B., Pudasainee, D., and Seo, Y.C., “Anthropogenic mercury emission inventory with emission factors and total emission in Korea,” Atmos. Environ., 44, 2714-2721, 2010.
Kim, P.R., Han, Y.J., Holsen, T.M., and Yi, S.M., “Atmospheric particulate mercury: Concentrations and size distributions,” Atmos. Environ., 61, 94-102, 2012.
Kim, K.H., Yoon, H.O., Brown, R.J.C., Jeon, E.C., Sohn, J.R., Jung, K., Park, C.G., and Kim, I.S., “Simultaneous monitoring of total gaseous mercury at four urban monitoring stations in Seoul, Korea,” Atmos. Res., 132-133, 199-208, 2013.
Kock, H.H., Bieber, E., Ebinghaus, R., Spain, T.G., and Thees, B., “Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany,” Atmos. Environ., 39, 7549-7556, 2005.
Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M., and Muramatsu, T. “Lessons from minamata mercury pollution, Japan-after a continuous 22 years of observation,” Wat. Sci. Technol., 38, 187-193, 1998.
Kuo, T.H., Chang, C.F., Urba, A., and Keivtkus, K. “Atmospheric gaseous mercury in Northern Taiwan,” Sci. Total Environ., 368, 10-18, 2006.
Laurier, F.J.G., Mason, R.P., Whalin, L., and Kato, S. “Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry,” J. Geophys. Res., 108(D17), 4529-4541, 2003.
Lindberg, S.E., Brooks, S., Lin, C.J., Scott, K., Meyers, T., Chambers, L., Landis, M., and Stevens R., “Formation of reactive gaseous mercury in the Arctic: Evidence of oxidation of Hg0 to gas-phase Hg-II compounds after arctic sunrise,” Water Air Soil Poll., 1, 295-302, 2001.
Li, S.J., Park, H., Choi, S.D., Lee, J.M., and Chang, Y.S., “Assessment of Variations in Atmospheric PCDD/Fs by Asian Dust in Southeastern Korea,” Atmos. Environ., 41, 5876-5886, 2007.
Li, J., Sommar, J., Wangberg, I., Lindqvist, O., and Wei, S., “Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005,” Atmos. Environ., 42, 8382-8388, 2008.
Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J., and Morgan, T.M., “Temporal variability of mercury speciation in urban air,” Atmos. Environ., 41, 1911-1923, 2007.
Liu, F., Cheng, H., Yang, K., Zhao, C., Liu, Y., Peng, M., and Li, K., “Characteristics and influencing factors of mercury exchange flux between soil and air in Guangzhou City,” J. Geochem Explor., 139, 115-121, 2014.
Lo, J.M. and Wal, C.M., “Mercury loss from water during storage: Mechanisms and prevention,” Anal. Chem., 47, 1869-1870,1975.
Lyman, S.N. and Gustin, M.S., “Determinants of atmospheric mercury concentration in Reno, Nevads, U.S.A,” Sci. Total Environ., 408, 431-438, 2009.
Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J., and Morgan, J.T., “Urban-rural differences in atmospheric mercury speciation,” Atmos. Environ., 44, 2013-2023, 2010.
Lyman, S.N., Gustin, M.S., and Prestbo, E.M., “A passive sampler for ambient gaseous oxidized mercury concentrations,” Atmos. Environ., 44, 246-252, 2010.
Mason, R.P. and Sheu, G.R., “Role of the ocean in the global mercury cycle,” Global Biogeochem. Cy., 16, 1093-1107, 2002.
Morita, H., Tanaka H., and Shimomura, S., “Atomic fluorescence spectrometry of mercury: Principles and developments,” Spectrochimica Acta., 50B, 69-84, 1995.
Moore, C.W., Obrist, D., and Luria, M., “Atmospheric mercury depletion events at the Dead Sea: Spatial and temporal aspects,” Atmos. Environ., 69, 231-239, 2013.
Munthe, J., Angberg, I. W., Pirrone, N., Ivefeldt, Å., Ferrara, R., Ebinghaus, R., Feng, X., Gårdfeldt, K., Lanzillotta, G. K. E., Lindberg, S.E., Lu, J., Mamane, Y., Prestbo, E., Schmolke, S., Schroeder, W. H., Sommer, J., Sprovieri, F., Stevens, R.K., Stratton, W., Tuncel, G., and Urba, A., “Intercomparison of methods for sampling and analysis of atmospheric mercury species,” Atmos. Environ., 35, 3007–3017. 2001.
Muscat, V.I. and Vickers T. J., “Determination of nanogram quantities of mercury by the reduction-aeration method and atomic fluorescence spectrophotometry,” Anal. Chim. Acta., 57, 23-30, 1971.
Narukawa, M., Sakata, M., Marumoto, K., and Asakura, K., “Air-sea exchange of mercury in Tokyo Bay,” J. Oceanogr., 62, 249-257, 2006.
Patrick, L., “Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity,” Altern. Med. Rev., 7(6), 456-471, 2002.
Pacyna, E.G., Pacyna, J.m., Sundseth, J., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and Maxson, P., “Global emission of mercury to the atmospheric from anthropogenic sources projections to 2020,” Atmos. Environ., 44, 2487-2499, 2010.
Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., and Benson, S.A., “Status review of mercury control options for coal-fired power plants,” Fuel Proc. Technol., 82, 89-165, 2003.
Pirrone, N., Keeler, G.J., and Nriagu, J.O., “Regional differences in worldwide emissions of mercury to the atmospheric,” Atmos. Environ., 30, 2981-2987, 1996.
Poissant, L., Pilote, M., Beauvais, C., Constant, P., and Zhang, H.H., “A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in southern Québec, Canada,” Atmos. Environ., 39, 1275-1287, 2005.
Rolfhus, K.R., Sakamoto, H.E., Cleckner, L.B., Stoor, R.W., Babiarz, C.L., Back, R.C., Manolopouls, H., and Hurley, J.P., “Distribution and fluxes of total and methyl mercury in Lake Superior,” Environ. Sci. Technol., 37(5), 865-72, 2003.
Rong, X., Waite, D., Huang, G.H., Tong, L., and Kybet, B., “Materials selection for a dry atmospheric mercury deposits sampler,” Chemosphere., 45, 1045-1051, 2001.
Schroeder, W.G. and Munthe, J., “Atmospheric mercury – An overview,” Atmos. Environ., 32, 809-822, 1998.
Selin, N.E., Jacob, D.J., Park, R.J., Yantosca, R.M., Strode, S., Jaegle, L., and Jaffe, D., “Chemical cycling and deposition of atmospheric mercury: Global constraints from observations,” J. Geophysical Research., 112, D02308, doi: 10. 1029/2006JD007450, 2007.
Sherman, L.S. Blum, J.D, Keeler, G.J. Demers, J.D., and Dvonch, J.T., “Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes,” Environ. Sci. Technol., 46, 382-390, 2011.
Sheu, G.R. and Mason, R.P., “An examination of methods for the measurements of reactive gaseous mercury in the atmosphere,” Environ. Sci. Technol., 35(6), 1209-1216, 2001.
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Yang-Ou, C.F, and Wang, S.H., “Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan,” Atmos. Environ., 44, 2393-2400, 2010.
Sheu, G.R., Lin, N.H., Lee, C.T., Wang, J.L., Chuang, M.T., Wang, S.H., Chi, K.H., and Yang-Ou, C.F., “Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha Experiment,” Atmos. Environ., 78, 174-183, 2013.
Sonke, J.E., “A global model of mass independent mercury stable isotope fractionation,” Geochim Cosmochim Acta., 75, 4577–4590, 2011.
Sprovieri, E., Pirrone, N., Ebinghaus, R., Kock, H., and Dommergue, A., “A review of worldwide atmospheric mercury measurements,” Atmos. Chem. Phys., 10, 8245-8265, 2010.
Temmerman, E., Vandecasteele, C., Vermeir, G., Leyman, R., and Dams, R., “Sensitive determination of gaseous mercury in air by cold vapour atomic fluorescence spectrometry after amalgamation,” Anal. Chim. Acta., 236, 371-376, 1990.
Yang, Y., Chen, H., and Wang, D., “Spatial and temporal distribution of gaseous elemental mercury in Chongqing, China,” Environ. Monit. Assess., 156, 479-489, 2009.
Yin, R., Feng, X., and Shi, W., “Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review,” Appl Geochem., 25, 1467-1477, 2010.
Yoshida, Z. and Motojima, K., “Rapid determination of mercury in air with gold-coated quartz wool as collector,” Anal. Chim. Acta., 106, 405-410, 1979.
Yu, L.P. and Yan, X.P., “Factors affecting the stability of inorganic and methylmercury during sample storage,” Trends in Anal. Chem., 22, 245-253, 2003.
Zhang, W., Tong, Y., Hu, D., Ou, L., and Wang, X., “Characterization of atmospheric mercury concentration along an urban – rural gradient using a newly developed passive sampler,” Atmos. Environ., 47, 26-32, 2012.
Zielonka, U., Hlawiczka, S., Fudala, J., Wangberg, I., and Munthe, J., “Seasonal mercury concentrations measured in rural air in Southern Poland: Contribution from local and regional coal combustion,” Atmos. Environ., 39, 7580-7586, 2005.
馮新斌、Jonas Sommar、Oliver Lindqvist、朱泳煊,“大氣活性氣態汞採樣和分析方法”,分析化學研究簡報,2003。
李佳樺,“東亞大氣汞之長程輸送研究:雲水中汞之定量分析與指紋之建立”,國立中央大學化學研究所碩士論文,2004。
孫天敏,“民眾頭髮中總汞濃度、攝取魚貝量及風險認知之研究”,臺北醫學大學公共衛生研究所碩士論文,2004。
袁中新、海春興、趙明、劉乙琦、林志逢,“長距離傳送過程中沙塵指紋特徵辨識探討”,第二十二屆空氣污染控制技術研討會,2005。
林建志,“台灣平地與高山大氣汞監測與比較”,國立中央大學化學研究所碩士論文,2006。
劉俊宏,“高屏沿海地區臭氧垂直剖面特性之調查研究”,輔英科技大學環境工程研究所碩士論文,2006。
李仲根、馮新斌、鄭偉、商立海、付學吾,“大氣中不同形態汞的採樣和分析方法”,中國環境監測,2007。
劉全盛,“南海北部海域大氣汞的時序變化”,台灣大學海洋研究所碩士論文,2007。
張泰華,“亞洲國家(中國,日本,韓國,台灣)大氣汞濃度於2000-2008年之研究”,弘光科技大學環境與安全衛生工程系碩士論文,2007。
張木彬、許桂榮、王家麟、林唐煌、張艮輝、周崇光,“大氣戴奧辛及有害空氣污染物經由長程傳輸機制對國內環境之衝擊評估研究”,環保署/國科會空污防制科研合作計畫,2008。
張芸蓁,“台北地區大氣汞濃度時序變化研究”,明志科技大學生化工程研究所碩士論文,2008。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討” ,國立中山大學環境工程研究所碩士論文,2009。
袁中新,“99年度高雄市汞污染源周界及敏感點大氣汞污染監測計畫書”,高雄市環境保護局計畫報告,2010。
歐陽長風,“台灣氣態污染物背景值變化特徵與大氣傳輸機制之關係”,國立中央大學化學研究所博士論文,2010。
顏晟容,“台灣地區汞之物質流分析及其衝擊評估”,國立台北科技大學環境工程與管理研究所碩士論文,2011。
夏新、吴志强、康长安、彭刚华、胡正生、王向明、马芳,“測定汞的原子螢光法和冷原子吸收法比對研究” 中國測試(CHINA MEASUREMENT & TEST),2012。
劉燕,“廈泉金地區大氣汞的時空分佈研究” 廈門大學生態與環境科學系碩士論文,2012。
蔡政謀,“台灣寺廟拜香及金紙焚燒排放含汞污染物之室內外環境日夜變化及排放係數量測”,國立中山大學環境工程研究所碩士論文,2013。
任翼秀,“工業都市及海島地區大氣汞時空分佈、氣固相分佈及長程傳輸之影響”, 國立中山大學環境工程研究所博士論文,2013。
NOAA空氣資源實驗室網頁: http://ready.arl.noaa.gov/HYSPLIT.php
NASA FIRMS Web Fire Mapper: https://firms.modaps.eosdis.nasa.gov/firemap/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code