Responsive image
博碩士論文 etd-0631114-021652 詳細資訊
Title page for etd-0631114-021652
論文名稱
Title
促發炎物質IL6促進SMAD4缺乏的胰臟癌細胞增生跟轉移的能力
Inflammatory cytokine IL6 promotes in vitro cell proliferation and cell migration in SMAD4 null pancreatic cancer cells.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-23
繳交日期
Date of Submission
2014-07-31
關鍵字
Keywords
白細胞介素-6、EMT現象、胰臟癌、Nestin、TGF-β1/Smad4
EMT, TGF-β1/Smad4, Nestin, Interleukin-6, PDAC
統計
Statistics
本論文已被瀏覽 5655 次,被下載 0
The thesis/dissertation has been browsed 5655 times, has been downloaded 0 times.
中文摘要
早期胰腺癌的症狀難以被檢測到,以致於病患發現罹患胰臟癌時,通常已經是癌症的晚期了。另外,研究指出患者的胰腺導管腺癌(PDAC)的預後極差,五年內的存活率低於百分之五。研究發現晚期或腫瘤已轉移的癌症患者的血液中,具有較高的白細胞介素-6(Interleukin-6)蛋白表現量。Interleukin-6(IL-6)是一種多功能的細胞因子,在宿主的免疫系統中扮演重要的角色。這些效果是由多種訊息路徑(signaling pathway)所介導的,通常經由活化transcription 3 (STAT3)去影響基因的轉錄。因此,我們想知道IL-6是否在胰腺癌缺失SMAD4時,對EMT的誘導是否有調節的作用。我們的研究發現IL-6在Smad4缺失的情況下會增加TGF-β蛋白的表現量。而實驗室先前的研究發現,在胰臟癌中,Nestin是被TGF-β1/Smad4訊息路徑所調控,並且對癌症細胞的EMT現象中扮演重要的角色。我們使用IL-6的siRNA轉染胰臟癌細胞,發現Nestin和各種EMT相關蛋白質SMA、E-cadherin和vimentin的蛋白表現量同時被抑制。因此,IL-6對Nestin所調控的EMT現象具有顯著的影響力。在Western blot和Wound healing assay中,缺失SMAD4的胰臟癌細胞在處理IL-6生長激素後使得EMT相關的蛋白質表現量增加並且促進細胞的遷移能力(cell migration)。並且Western blot的結果表明,過度表達或敲除Smad4基因會顯著的影響IL-6在胰腺癌細胞株中的表現量。總而言之,我們的研究指出,IL-6在缺失SMAD4的胰臟癌細胞中可經由磷酸化STAT3並且通過TGF-β的訊息傳導途徑,達到促進EMT的效果。另外,在MTT assay中顯示,缺失SMAD4的胰臟癌細胞處理IL-6後增加了細胞的生長增殖能力。然而,轉染了IL-6 siRNA的胰臟癌細胞,在Smad4缺失的情況下會使得癌症細胞的增殖能力受到抑制。
關鍵字 胰臟癌 白細胞介素-6 Nestin TGF-β1/Smad4 EMT現象
Abstract
Early cancers of the pancreas often cause no symptoms leading to pancreatic cancer often can't be detected until the cancer already reach to advanced stage. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is extremely poor and 5 year survival rate only 4%. Many studies indicated that advanced or metastatic pancreatic cancer patientscan be detected higher levels of Interleukin-6 (IL-6) in their blood. IL-6 is a multifunctional cytokine which plays a central role in host defense due to its wide range of immune and biologic activities in different types of cells including tumor cells. These effects of IL-6 can be transduced by multiple signaling pathways, in particular signal transducer and activator of transcription 3 (STAT3). Hence we want to figure out whether IL-6 plays an important role in mediating EMT in Smad4-null pancreatic cancers. We assessed the overall effect of IL-6 on TGF-β1 signaling in human PDAC cells and found that Smad4 null PDAC cells could increase the TGF-β protein expression level after IL-6 treatment in vitro. In our laboratory’s previous study, Nestin was involved in TGF-β1/Smad4 signaling pathway to induce EMT in PDAC. Transfection of IL-6 siRNA markedly decreased Nestin mRNA and protein levels compared to control cells, which lead to reduce various EMT-related marker SMA, E-cadherin and vimentin expression. Thereby, the treatment of IL-6 may regulate Nestin protein expression in Smad4 null PDAC cells. In Western blot and Wound healing analysis, we alos observed that IL-6 could induce EMT and promoted cell migration in Smad4-deficient PDAC cells. Moreover, Western blots revealed that overexpression or knockdown of SMAD4 had an impact on the regulation of IL- 6 expression in pancreatic cancer cell lines. Our research suggest that IL-6 could induce P-Stat3 to promote EMT may through TGF-β signaling pathway with ablation of SMAD4 gene in pancreatic cancer. Furthermore, MTT assays showed IL-6 increased the ability of cell proliferation in Smad4-deficient PDAC cells. Silimar results were obtained when we, transfected with IL-6 siRNA to silence IL-6 protein expression to led to reduce the ability of cell growth in Smad4-deficient PDAC cells.
Keywords: PDAC, Interleukin-6, Nestin ,TGF-β1/Smad4 ,EMT
目次 Table of Contents
Verification letter from the Oral Examination Committee ------------------- i
Abstract in Chinese ------------------------------------------------- ii
Abstract in English -------------------------------------------------- iii
Introduction ------------------------------------------------------------ 1
Materials and Methods --------------------------------------------- 5
Results ---------------------------------------------------------------- 12
Discussion ------------------------------------------------------------ 18
Figures and Tables -------------------------------------------------- 21
References ------------------------------------------------------------ 45
Appendix ------------------------------------------------------------ 50
參考文獻 References
1. Grzesiak JJ, Vargas F, Bouvet M. Divalent cations modulate alpha2beta1 integrin-mediated malignancy in a novel 3-dimensional in vitro model of pancreatic cancer. Pancreas. 2010;39(6):904-12. Epub 2010/02/26.
2. Curley SA, Palalon F, Lu X, Koshkina NV. Noninvasive radiofrequency treatment effect on mitochondria in pancreatic cancer cells. Cancer. 2014. Epub 2014/07/06.
3. Xu YF, Lu Y, Cheng H, Shi S, Xu J, Long J, et al. Abnormal distribution of peripheral lymphocyte subsets induced by PDAC modulates overall survival. Pancreatology. 2014;14(4):295-301. Epub 2014/07/27.
4. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55(1):10-30. Epub 2005/01/22.
5. Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med. 1992;326(7):455-65. Epub 1992/02/13.
6. Sarkar FH, Banerjee S, Li Y. Pancreatic cancer: pathogenesis, prevention and treatment. Toxicol Appl Pharmacol. 2007;224(3):326-36. Epub 2006/12/19.
7. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801-6. Epub 2008/09/06.
8. Inoue H, Furukawa T, Sunamura M, Takeda K, Matsuno S, Horii A. Exclusion of SMAD4 mutation as an early genetic change in human pancreatic ductal tumorigenesis. Genes Chromosomes Cancer. 2001;31(3):295-9. Epub 2001/06/08.
9. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai). 2009;41(4):263-72. Epub 2009/04/09.
10. Villapol S, Logan TT, Symes AJ. Role of TGF-β Signaling in Neurogenic Regions After Brain Injury2013 2013-03-27.
11. Morrison CD, Parvani JG, Schiemann WP. The relevance of the TGF-beta Paradox to EMT-MET programs. Cancer Lett. 2013;341(1):30-40. Epub 2013/03/12.
12. Vittal R, Fan L, Greenspan DS, Mickler EA, Gopalakrishnan B, Gu H, et al. IL-17 induces type V collagen overexpression and EMT via TGF-beta-dependent pathways in obliterative bronchiolitis. Am J Physiol Lung Cell Mol Physiol. 2013;304(6):L401-14. Epub 2012/12/25.
13. Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25(1):76-84. Epub 2012/12/01.
14. Chen YW, Hsiao PJ, Weng CC, Kuo KK, Kuo TL, Wu DC, et al. SMAD4 Loss triggers the phenotypic changes of pancreatic ductal adenocarcinoma cells. Bmc Cancer. 2014;14.
15. Li S, Wang N, Brodt P. Metastatic cells can escape the proapoptotic effects of TNF-alpha through increased autocrine IL-6/STAT3 signaling. Cancer Res. 2012;72(4):865-75. Epub 2011/12/24.
16. Taub R. Hepatoprotection via the IL-6/Stat3 pathway. The Journal of Clinical Investigation. 2003;112(7):978-80.
17. Tsukamoto H, Nishikata R, Senju S, Nishimura Y. Myeloid-derived suppressor cells attenuate TH1 development through IL-6 production to promote tumor progression. Cancer Immunol Res. 2013;1(1):64-76. Epub 2014/04/30.
18. Cuadros T, Trilla E, Sarro E, Vila MR, Vilardell J, de Torres I, et al. HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res. 2014;74(5):1416-28. Epub 2014/01/07.
19. Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38(7):904-10. Epub 2012/06/02.
20. Berek JS, Chung C, Kaldi K, Watson JM, Knox RM, Martinez-Maza O. Serum interleukin-6 levels correlate with disease status in patients with epithelial ovarian cancer. Am J Obstet Gynecol. 1991;164(4):1038-42; discussion 42-3. Epub 1991/04/01.
21. Kurzrock R, Redman J, Cabanillas F, Jones D, Rothberg J, Talpaz M. Serum interleukin 6 levels are elevated in lymphoma patients and correlate with survival in advanced Hodgkin's disease and with B symptoms. Cancer Res. 1993;53(9):2118-22. Epub 1993/05/01.
22. Barton BE. Interleukin-6 and new strategies for the treatment of cancer, hyperproliferative diseases and paraneoplastic syndromes. Expert Opin Ther Targets. 2005;9(4):737-52. Epub 2005/08/09.
23. Smolen JS, Maini RN. Interleukin-6: a new therapeutic target. Arthritis Res Ther. 2006;8 Suppl 2:S5. Epub 2006/08/11.
24. Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, et al. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res.71(3):998-1008. Epub 2011/01/20.
25. Cheng KH, Ponte JF, Thiagalingam S. Elucidation of epigenetic inactivation of SMAD8 in cancer using targeted expressed gene display. Cancer Res. 2004;64(5):1639-46. Epub 2004/03/05.
26. Su HT, Weng Cc Fau - Hsiao P-J, Hsiao Pj Fau - Chen L-H, Chen Lh Fau - Kuo T-L, Kuo Tl Fau - Chen Y-W, Chen Yw Fau - Kuo K-K, et al. Stem cell marker nestin is critical for TGF-beta1-mediated tumor progression in pancreatic cancer. (1557-3125 (Electronic)).
27. Block KM, Hanke NT, Maine EA, Baker AF. IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas. 2012;41(5):773-81. Epub 2012/01/26.
28. Yamada D, Kobayashi S, Wada H, Kawamoto K, Marubashi S, Eguchi H, et al. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer. Eur J Cancer. 2013;49(7):1725-40. Epub 2013/01/10.
29. Walia B, Wang L, Merlin D, Sitaraman SV. TGF-beta down-regulates IL-6 signaling in intestinal epithelial cells: critical role of SMAD-2. FASEB J. 2003;17(14):2130-2. Epub 2003/09/23.
30. Feurino LW, Zhang Y, Bharadwaj U, Zhang R, Li F, Fisher WE, et al. IL-6 stimulates Th2 type cytokine secretion and upregulates VEGF and NRP-1 expression in pancreatic cancer cells. Cancer Biol Ther. 2007;6(7):1096-100. Epub 2007/06/15.
31. Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer. 2003;103(5):642-6. Epub 2002/12/21.
32. Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Kloppel G, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19(4):456-69. Epub 2011/04/13.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.163.221.133
論文開放下載的時間是 校外不公開

Your IP address is 54.163.221.133
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code