Responsive image
博碩士論文 etd-0631114-113020 詳細資訊
Title page for etd-0631114-113020
論文名稱
Title
結合奈米週期性結構於有機元件之研究
Investigation of periodic nanostructures combined with organic devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-21
繳交日期
Date of Submission
2014-07-31
關鍵字
Keywords
表面電漿子、旋轉塗佈、奈米球、電子束蒸鍍、有機發光二極體
OLED, E-beam, nanoball, spin coating, surface plasmon
統計
Statistics
本論文已被瀏覽 5729 次,被下載 0
The thesis/dissertation has been browsed 5729 times, has been downloaded 0 times.
中文摘要
本研究分為兩個部分,第一個部分為在有奈米結構的基板上懸塗上有機溶液CHcl3:Alq3並觀察有機溶液與奈米結構的關係。第二個部分為利用奈米結構的方式製作元件OLED與沒有奈米結構的OLED相互作比較。
第一個部分,首先先在基板上鋪上直徑為350nm的奈米球,從有球的面分別使用電子束蒸鍍蒸鍍上銀膜 (0、30、70nm),以利在表面製作出有奈米結構的金屬結構,再以不同的濃度分別為 (0.0、0.2、2.0wt%) 的CHcl3:Alq3有機溶液,最後以光譜儀量測穿透、吸收、反射,並探討奈米結構與有機溶液的關係。
第二個部分為利用第一部分在奈米結構上產生表面電漿子的現象應用在OLED上。OLED的結構是Al/ PVK:Rubrene/ PEDOT:PSS/ ITO/ glass/ nanoball,其中探討的分別是PVK:Rubrene摻雜濃度的不同與在奈米球上鍍的金屬銀為5nm、15nm、30nm,並觀察在有奈米結構的OLED與沒有奈米結構的OLED有何關係。最後則發現在有奈米結構的OLED上,可以利用較小的電壓產生較亮的OLED,則可以符合減少能源與提升效率的效果。
Abstract
In this study, we separate two part to discuss our research. First, we use the method called spin coating to spin the organic material on the nanosubstrate. We observe the relation between the organic and the nanostructure. In the second part, we analyze OLED with nanostructure and without nanostructure.
In the first part, we spin the nanoball size of diameter 350nm on the substrate glass. We deposit the different thickness silver film 0nm, 30nm and 70nm on the nanostructure respectively. And then, we spin the organic material CHcl3:Alq3 with different concentration (0.0, 0.2, 2.0 wt%). Lastly, we measure the transmission, absorption and reflection and compare the relation between nanostructure and organic material.
In the second part, we apply the phenomenon found in the first part on the OLED. The structure of OLED is made on glass by the material Al, PVK:Rubrene, PEDOT:PSS, ITO and nanoball. The most efficient result that made by the material (PVK:Rubrene) with different concentrate was discussed. Next, we deposit the silver film on the nanostructure with different thickness (5nm, 15nm, 30nm). The relations between OLED with and without nanostructure were investigated here. Finally, we would demonstrate that the phenomenon on the nanostructure here consumes less power and becomes more efficient OLED.
目次 Table of Contents
摘 要 ii
Abstract iii
目 錄 iv
圖 目 錄 vii
表 目 錄 x
第一章 緒論 1
1-1 研究動機 1
2-1 有機發光二極體的基本原理 3
2-1-1 有機發光二極體基本架構 3
2-1-2 螢光與磷光系統 5
2-1-3 有機發光二極體發光物質光色調控原理 6
2-1-4 1931CIEx,y 色座標原理 7
2-2 表面電漿子基本原理 8
2-3 旋轉塗佈法基本原理 15
2-4 電子束蒸鍍原理 16
2-5 量測分析方法 17
2-5-1 掃描式電子顯微鏡 17
2-5-2 光譜儀 18
第三章 實驗流程 19
3-1 實驗步驟 19
3-2 各層材料與參數 21
3-2-1 基板 21
3-2-2 鈦: 21
3-2-3 銀: 21
3-2-4 CHCl3:Alq3: 22
3-2-5 PVK:Rubrene: 22
3-2-6 PEDOT:PSS: 22
3-2-7 Indium Tin Oxide: 22
第四章 實驗結果與討論 23
4-1 Ag(70 nm)/ Nanospheres/ Glass的結果與特性分析 23
4-2 Ag(30 nm)/ Nanospheres/ Glass的結果與特性分析 27
4-3 Nanospheres/ Glass的實驗結果與特性分析 32
4-4 Organic/Ag/Nanospheres/Glass表面電漿子之表現 36
第五章 表面電漿應用於有機發光二極體之特性探討 39
5-1 有機發光二極體元件之結構及其特性 39
5.2 有機發光二極體結合表面電漿子之特性 40
5.3 不同Rubrene濃度對發效率之影響 41
5.4 奈米週期性有機發光二極體之結構及其特性 42
第六章 結論 45
Reference 46
參考文獻 References
[1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, pp. 151-154, Sep. 1998.
[2] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, “High-efficiency red electrophosphorescence devices,” Appl. Phys. Lett. 78, 1622, Mar. 2001.
[3] S. Okada, K. Okinaka, H. Iwawaki, M. Furugori, M. Hashimoto, T. Mukaide, J. Kamatani, S. Igawa, A. Tsuboyama, T. Takiguchi, and K. Ueno, “Substituent effects of iridium complexes for highly efficient red OLEDs,” Dalton. Trans. 1583-1590, Mar. 2005.
[4] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Three-stack, three-color quantum-well infrared photodetector for mid-, long-, and very long-wavelength infrared detection,” Appl. Phys. Lett. 79, vol. 79, no. 18, pp. 2982, Oct. 2001.
[5] S. Lamansky, P. Djurovich, D. Murphy, F. abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, and M. E. Thompson, “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem. vol. 40, no.7 pp. 1704-1711, Mar. 2001.
[6] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang,Z. W. Liu and Z. H. Lu, “Unlocking the full potential of organic light-emitting diodes on flexible plastic,” Nature Photonics 5, vol. 5, pp. 753-757, Dec. 2011.
[7] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nature Photonics 6, vol. 6, pp. 105-110, Jan. 2012.
[8] S. Y. Ku, Department of Chemistry college of Science National Taiwan University Doctoral Dissertation, pp. 41-78, Oct. 2008.
[9] H. E. Gottlieb, V. Kotlyar, A. Nudelman, “NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities,” J. Org. Chem, vol. 62, no. 21, pp. 7512-7515, Jun. 1997.
[10] G. Socrates, “Infrared and Raman Characteristic Group Frequencies: Tables and Charts,” John Wiley & Sons Ltd, Feb. 2004.
[11] T. Kavc, G. Langer, P. Polt, K. Reichmann, W. Kern, “Formation of Images and Surface Relief Gratings in Photosensitive Polymers Containing SCN Groups,” Macromol. Chem. Phys. vol. 203, no. 8, pp. 1099-1105, May. 2002.
[12] W. Schoefberger, N. Zaami, K. A. Mahler, G. Langer, G. Jakopic A. Pogantsch, W. Kern, F. Stelzer, “Photoinduced Changes of the Refractive Index in Substituted Fluorenyl-p-phenylene Copolymers,” Macromol. Chem. Phys. Vol. 204, pp. 779-786, 2003.
[13] C. Sahin, C. Tozlu, K. Ocakoglu, C. Zafer, C. Varlikli, S. Icli, “Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC,” Inorganica Chimica Acta. pp. 671-676, 2008.
[14] W. Liu, J. M. Guenet, M. M. Green, “Chiral effect on a self-assembling bicopper complex,” Chirality, Vol. 16, no. 9, pp. 661-664, Jul. 2004.
[15] H. Hofmeier , A. El-ghayoury, A. P. H. J. Schenning, U. S Schubert, “Synthesis and optical properties of (a)chiral terpyridine-ruthenium complexes,” Terahedron, Vol. 60, no. 29, pp. 6121-6128, Jul. 2004.
[16] G. A. Crosby, R. J. Watts, “Spectroscopic characterization of complexes of ruthenium(II) and iridium(III) with 4,4-diphenyl-2,2-bipyridine and 4,7-diphenyl-1,10-phenanthroline,” Journal of the American Chemical Society, Vol.93, pp3184-3188, Jun. 1971.
[17] C. Karapire, C. Timur, S. Icli, “A comparative study of the photophysical properties of perylenediimides in liquid phase, PVC and sol-gel host matrices,” Dyes and Pigments, Vol. 56, no. 2 pp. 135-143, Feb. 2003.
[18] Gryczynski I, Kusba J, Lakowicz J. “Effects of light quenching on the emission spectra and intensity decays of fluorophore mixtures,” Journal of Fluorescence, Vol. 7, no. 3, pp. 167-183 Set. 1997.
[19] W. K. C. Ben, W. W. Y. Vivian, “Sensitive single-layered oxygen-sensing systems: polypyridyl Ruthnium(II) complexes covalently attached or deposited as Langmuir-Blodgett monolayer on glass surfaces,” Langmuir, Vol. 22, no. 17, pp. 7437-7443, Jul. 2006.
[20] P. Payra, P. K. Dutta, “Development of a dissolved oxygen sensor using tris(bipyridyl) ruthenium(II) complexes entrapped in highly siliceous zeolites,” Microporous and Mesoporous Materials, Vol. 64, pp. 109-118, Jun. 2003.
[21] C. C. Yap, M. Yahaya, M. M. Salleh, “The effect of driving voltage on the electroluminescent property of a blend of poly(9-vinylcarbazole) and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole,” Current Applied Physics, Vol. 9, no. 5, pp. 1038-1041, Set. 2009.
[22] D. J. Desilets, P. T. Kissinger, F. E. Lytle, “Improved method for determination of Stern-Volmer quenching constants,” Analytical Chemistry, Vol. 59, no. 8, pp. 1244-1246, Nov. 1987.
[23] B. S. Kim, S. H. Kim, Y. S. Kim, S. H. Kim, Y. A. Son, “Synthesis and characterization of quinoline-based dye sensor”. Molecular Crystals and Liquid Crystals, Vol. 504, pp. 173-180, Jun. 2009.
[24] Y. C. Chao, S. Y. Huang, C. Y. Chen, Y. F. Chang, H. F. Meng, F. W. Yen, I. F. Lin, H. W. Zan, S. F. Homg, “Highly efficient solution- processed red organic light-emitting diodes with long-side-chained triplet emitter,” Synthetic Metals, Vol. 161, no. 1-2, pp. 148-152, Jan. 2011.
[25] Y. Sekiquchi, S. Habuchi, M. Vacha, “Nanoscale heterogeneity and light-emission dynamics in solution-processed phosphorescent organic light-emitting devices,” Physical Chemistry Chemical Physics, Vol. 11, pp. 8684-8688, Jul. 2009.
[26] Y. You, S. H. Kim, H. K. Jung, S. Y. Park, “Blue electrophosphorescence from iridium complex covalently bonded to the poly(9-dodecyl-3-vinylcarbazole): suppressed phase segregation and enhanced energy transfer,” Macromolecules, Vol. 39, pp. 349-356, Dec. 2005.
[27] C. L. Ho, W. Y. Wong, G. J. Zhou, B. Yao, Z. Xie, L. Wang, “Solution-processible multicomponent cyclometalated iridium phosphors for high-effficiency orange-emitting OLEDs and their potential use as white light sources,” Advanced Functional Materials, Vol. 17, no. 15, pp. 2925-2936, Oct. 2005.
[28] I. Oner, C. Sahin, C. Varlikli. “Electroluminescence from two new ruthenium(II) complexes as phosphorescent dopant: Positive effect of swallow-tail bipyridyl ligand,” SciVerse Science Direct, Vol. 95, no. 1, pp. 23-32, Oct. 2012.
[29] C. shen, I. G. Hill, A. Kahn, “Role of Electrode Contamination in Electron Injection at Mg:Ag/Alq3 Interfaces,” Advanced Materials, Vol. 11, no. 18, pp. 1523-1527, Dec. 1999.
[30] M. Matsumura, T. Furukawa, “Efficient electroluminescence from a rubrene sub-monolayer inserted between electron- and hole-transport layers,” Japanese Journal of Applied Physics, vol. 40, no. 5, pp. 3211–3214, May. 2001.
[31] 陳金鑫,吳中幟,陳錦地,白光OLED照明,五南圖書出版股份有限公司,2009。
[32] http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cie.html#c4
[33] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics Reports, Vol. 408, no. 3-4, pp. 131-314, Mar. 2005.
[34] M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Selected Topics Quantum Electron, Vol. 8, no. 4. pp. 839-862. Jul. 2002.
[35] M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Selected Topics Quantum Electron, Vol. 8, no.4 july. 2002.
[36] S. Kawata, M. Ohtsu, and M. Irie ed. “Nano-Optics” Springer, 2002.
[37] P. N. Prasad, “Nanophotonics” Wiley, Hoboken, NJ, 2004.
[38] Y. T. Chang, T. H. Chuang, M. W. Tsai, L. C. Chen, and S. C. Lee, “Transmission through randomly arranged microcells of subwavelength holes on an aluminum film,” J. Appl. Phys. Vol. 90 no. 21, May. 2007.
[39] 吳民耀,劉威志,表面電漿子理論與模擬,物理雙月刊(廿八卷二期),2006年4月
[40] 陳金鑫,吳中幟,陳錦地,白光OLED照明,五南圖書出版股份有限公司(2009)
[41] Y. T. Wu, Y. T. Chang, Y. W. Jiang, P. E. Chang, Y. H. Ye, D. C. Tzuang, H. H. Chen, H. F. Huang, S. C. Lee, “Extraordinary Transmission Through Ag–Si Structure Perforated With Rhombus Lattice Hole Arrays,” IEEE Photonics technology letters, Vol. 22 no. 20, pp. 1041-1135, Oct. 2010.
[42] http://140.113.226.70/www/course/sem.pdf
[43] http://www.corning.com/CMS/Overview.aspx?id=46575
[44] O. Kokkinaki, S. Georgiou. “Incubation in the UV irradiation of condensed CHCl3 solids,” Applied Physics, Vol. 92, no. 4, pp. 1013-1017, Sep. 2008.
[45] D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger et al. “Ultrawide tuning range in doped organic solid-state lasers,” Appl. physics letters, vol. 85, Sep. 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.173.112
論文開放下載的時間是 校外不公開

Your IP address is 3.145.173.112
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code