Responsive image
博碩士論文 etd-0631114-172039 詳細資訊
Title page for etd-0631114-172039
論文名稱
Title
針對具有半嚴格回授擾動非線性系統之步階迴歸 控制器設計
Design of Backstepping Controllers for Perturbed Nonlinear Systems in Semi-strict Feedback Form
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-14
繳交日期
Date of Submission
2014-07-31
關鍵字
Keywords
嚴格回授系統、終端區塊步階迴歸控制、李亞普諾夫穩定性理論、步階迴歸控制、半嚴格回授系統
semi-strict feedback form, Backstepping control, terminal block backstepping control, Lyapunov stability t, strict feedback form
統計
Statistics
本論文已被瀏覽 5669 次,被下載 67
The thesis/dissertation has been browsed 5669 times, has been downloaded 67 times.
中文摘要
本論文針對含有匹配與非匹配雜訊之非線性系統分別提出三種不同的強健型控制策略。首先,第一種控制策略是針對具有半嚴格回授狀態延遲擾動的非線性系統,設計出適應性區塊步階迴歸控制器,用來解決系統校準的問題。在每一層的虛擬控制器中也有調適機制的設計,將一些不滿足嚴格回授的項次累積到最後一層並利用調適機制有效的壓制未知的擾動上界,使受控系統能夠達到漸進穩定。接著,第二種控制策略是針對具有匹配和非匹配擾動的非線性系統,設計區塊終端步階迴歸控制器,用來解決系統校準的問題。在設計控制器的過程中利用微分估測器來估測擾動,使其步階迴歸控制法則中過度複雜化與奇異點問題的兩大缺點可以一併消除,利用此控制架構,受控系統的狀態將在有限時間內達到零的效果。最後,第三種控制策略則是針對具有匹配與非匹配的兩個不同混沌系統利用適應性步階迴歸控制器設計來解決同步的問題,於此控制架構下,受控系統可以保證同步軌跡能夠達到UUB的特性。
上述三種控制架構皆以李亞普諾夫定理為理論基礎,針對本論文所提出之控制架構,利用數值範例來驗證其可行性。
Abstract
Three robust control strategies are proposed in this dissertation for nonlinear dynamic systems with matched and mismatched perturbations. Firstly, a block backstepping control method is presented so that it can be directly applied to systems with multiple state delayed perturbations in block semi-strict feedback form to solve regulation problems. The terms in the dynamic equations which do not satisfy the block strict-feedback form are accumulated in the last design step and are suppressed effectively by the designed adaptive gains. Adaptive mechanisms are employed in each of the virtual input controllers as well as the robust controller, hence the least upper bounds of perturbations are not required to be known in advance, and the property of asymptotic stability is guaranteed. Secondly, a terminal block backstepping control method is presented for a class of multi-input systems with matched and mismatched perturbations to solve regulation problems. A derivative estimation algorithm embedded in the controller is utilized to estimate the perturbations, so that the drawbacks of so-called ``explosion of complexity" and ``singularity problem" are totally eliminated. This control scheme not only has the ability of dealing with mismatched perturbations, but also is capable of driving the controlled states to reach zero within finite time. Thirdly, synchronization of two different chaotic systems with matched and mismatched perturbations by utilizing adaptive backstepping control technique is developed. The resultant control scheme guarantees the property of uniformly ultimately boundedness when solving the chaotic synchronization problems. Several numerical examples are demonstrated for showing the feasibility of the proposed control methodologies.
目次 Table of Contents
Contents
Abstract 1
List of Figures 5
Chapter 1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 2 Design of Block Backstepping Controllers for a Class of Perturbed
Multiple Inputs and State-delayed Systems in Semi-strict Feedback
Form 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 System Descriptions and Problem Formulations . . . . . . . . . . . . . . 15
2.3 Design of Adaptive Backstepping Controllers . . . . . . . . . . . . . . . 17
2.4 Numerical Example and Practical Application . . . . . . . . . . . . . . . 31
Chapter 3 Design of Terminal Block Backstepping Controllers for Perturbed
Systems in Semi-strict Feedback Form 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 System Descriptions and Problem Formulations . . . . . . . . . . . . . . 40
3.3 Design of Terminal Block Backstepping Controllers . . . . . . . . . . . . 41
3.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Chapter 4 Design of Backstepping Controllers for Systems with Non-strict
Feedback Form and Application to Chaotic Synchronization 56
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Systems Description and Problem Formulations . . . . . . . . . . . . . . 57
4.3 Design of Adaptive Backstepping Controllers . . . . . . . . . . . . . . . 58
4.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Chapter 5 Conclusions and FutureWorks 70
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 FutureWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Bibliography 72
Appendix 81
List of Figures
2.1 The trajectory of state variable x1. . . . . . . . . . . . . . . . . . . . . . 35
2.2 The trajectories of state variables x21 and x22. . . . . . . . . . . . . . . . 36
2.3 The trajectories of state variables x31, x32 and x33. . . . . . . . . . . . . 36
2.4 The adaptive gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Control inputs u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 The adaptive gains (2.29) and (2.30). . . . . . . . . . . . . . . . . . . . . 37
2.7 Control inputs u with saturation function. . . . . . . . . . . . . . . . . . 37
2.8 The trajectories of state variables x1 and x2 of chemical reactor system. . 38
2.9 The adaptive gains of chemical reactor system. . . . . . . . . . . . . . . 38
2.10 Control input u of chemical reactor system. . . . . . . . . . . . . . . . . 38
3.1 The trajectory of state variable z1. . . . . . . . . . . . . . . . . . . . . . 53
3.2 The trajectory of state variable z2. . . . . . . . . . . . . . . . . . . . . . 53
3.3 The trajectory of state variable xi. . . . . . . . . . . . . . . . . . . . . . 53
3.4 The trajectory of state variable ui. . . . . . . . . . . . . . . . . . . . . . 54
3.5 The trajectory of state variable xi. . . . . . . . . . . . . . . . . . . . . . 54
3.6 The trajectory of state variable z1(Case 6 happened). . . . . . . . . . . . 54
3.7 The trajectory of state variable z2(Case 6 happened). . . . . . . . . . . . 55
4.1 Tracking errors e1, e2 and e3. . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Adaptive gains kO1, kO2 and kO3. . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Perturbation estimation error. . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Control effort u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Tracking errors e1, e2 and e3 (Example 2). . . . . . . . . . . . . . . . . . 68
4.6 Adaptive gains kO1, kO2 and kO3 (Example 2). . . . . . . . . . . . . . . . . . 68
4.7 Perturbation estimation error (Example 2). . . . . . . . . . . . . . . . . . 68
4.8 Control effort u (Example2). . . . . . . . . . . . . . . . . . . . . . . . . 69
參考文獻 References
Bibliography
[1] C, Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications,
London: Taylor and Francis, 1998.
[2] J. Y. Hung, W. Gao, and J. C. Hung, Variable structure control: a survey, IEEE
Transactions on Industrial Electronic, vol. 40, pp. 2-22, 1993.
[3] Y. Chang and C. C. Cheng, “Adaptive sliding mode control for plant with mismatched
perturbations to achieve asymptotical stability,” International Journal of
Robust and Nonlinear Control, vol. 17, pp. 880-896, 2007.
[4] C. C. Cheng, C. C. Wen, and W. T. Lee, “Design of decentralised sliding surfaces
for a class of large-scale systems with mismatched perturbations,” International
Journal of Control, vol. 82, pp. 2013-2025, 2009.
[5] C. C. Cheng and Y. Chang, “Design of decentralised adaptive sliding mode controllers
for large-scale systems with mismatched perturbations,” International Journal
of Control, vol. 81, pp. 1507-1518, 2008.
[6] X. G. Yan, S. K. Spurgeon, and C. Edwards, “Global stabilisation for a class of nonlinear
time-delay systems based on dynamical output feedback sliding mode control,”
International Journal of Control, vol. 82, pp. 2293-2303, 2009.
[7] H. K. Khalil, Nonlinear Systems, Prentice-Hall, New Jersey, 1996.
[8] A. J. Koshkouei and K. J. Burnham, “Adaptive backstepping sliding mode control
for feedforward uncertain systems,” International Journal of Systems Science, vol.
42, pp. 1935-1946, 2011.
[9] R. Ma, J. Zhao, and G. M. Dimirovski, “Backstepping design for global robust
stabilisation of switched nonlinear systems in lower triangular form,” International
Journal of Systems Science, vol. 44, pp. 615-624, 2013.
[10] C. H. Lee and B. R. Chung, “Adaptive backstepping controller design for nonlinear
uncertain systems using fuzzy neural systems,” International Journal of Systems
Science, vol. 43, pp. 1855-1869, 2012.
[11] W. S. Chen, “Adaptive backstepping dynamics surface control for systems with
periodic disturbances using neural networks,” IET Control Theory and Applications,
vol. 3, pp. 1383-1394, 2009.
[12] T. Li, D. Wang, J. Li, and Y. Li, “Adaptive decentralized NN control of nonlinear
interconnected time-delay systems with input saturation,” Asian Journal of Control,
vol. 15, pp. 1-10, 2013.
[13] Y. Zhang, S. Li, and Q. Zhu, “Backstepping-enhanced decentralised PID control for
MIMO processes with an experimental study,” IET Control Theory and Applications,
vol. 1, pp. 704-712, 2007.
[14] B. Chen and X. Liu, “Fuzzy approximate disturbance decoupling of MIMO nonlinear
systems by backstepping and application to chemical processes,” IEEE Transactions
on Fuzzy Systems, vol. 13, pp. 832-847, 2005.
[15] Q. Hu, L. Xu, and A. Zhang, “Adaptive backstepping trajectory tracking control of
robot manipulator,” Journal of Franklin Institute, vol. 349, pp. 1087-1105, 2012.
[16] C. C. Hua, Q. G. Wang, and X. P. Guan, “Adaptive backstepping control for a
class of time delay systems with nonlinear perturbation,” International Journal of
Adaptive Control and Signal Processing, vol. 22, pp. 289-305, 2008.
[17] H. Lee, “Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear
systems,” IEEE Transactions on Fuzzy Systems, vol. 19, pp. 265-275, 2011.
[18] C. C. Hua, X. P. Guan, and G. Feng, “Robust stabilization for a class of time-delay
systems with triangular structure,” IET Control Theory and Applications, vol. 1, pp.
875-879, 2007.
[19] B. Yao and M. Tomizuka, “Adaptive robust control of MIMO nonlinear systems in
semi-strict feedback forms,” Automatica, vol. 37, pp. 1305-1321, 2001.
[20] A. J. Koshkouei, A. S. I. Zinober, and K. J. Burnham, “Adaptive sliding mode backstepping
control of nonlinear systems with unmatched uncertainty,” Asian Journal
of Control, vol. 6, pp. 447-453, 2004.
[21] M. Wang, B. Chen, and S. Zhang, “Adaptive neural tracking control of nonlinear
time-delay systems with disturbances,” International Journal of Adaptive Control
and Signal Processing, vol. 23, pp. 1031-1049, 2009.
[22] M. Wang, B. Chen, X. Liu, and P. Shi, “Adaptive fuzzy tracking control for a class
of perturbed strict-feedback nonlinear time-delay systems,” Fuzzy Sets and Systems,
vol. 159, pp. 949-967, 2008.
[23] C. C. Cheng, Y. S. Lin, and A. F. Chien, “Design of backstepping controllers for
systems with non-strict feedback form and application to chaotic synchronization,”
18th, IFAC World Congress, Milano, Italy, pp. 10964-10969, 2011.
[24] B. Chen, X. P. Liu, S. S. Ge, and C. Lin, “Adaptive fuzzy control of a class of
nonlinear systems by fuzzy approximation approach,” IEEE Transactions on Fuzzy
Systems, vol. 20, pp. 1012-1021, 2012.
[25] M.Wang, S. S. Ge, and K. S. Hong, “Approximation-based adaptive tracking control
of pure-feedback nonlinear systems with multiple unknown time-varying delays,”
IEEE Transactions on Neural Networks, vol. 21, pp. 1804-1816, 2010.
[26] M. Wang, X. Liu, and P. Shi, “Adaptive neural control of pure-feedback nonlinear
time-delay systems via dynamic surface technique,” IEEE Transactions on System,
Man, and Cybernetics-Part B: Cybernetics, vol. 41, pp. 1681-1692, 2011.
[27] D. Wang, “Neural network-based adaptive dynamic surface control of uncertain
nonlinear pure-feedback systems,” International Journal of Robust and Nonlinear
Control, vol. 21, pp. 527-541, 2011.
[28] T. P. Zhang, Q. Zhu, and Y. Q. Yang, “Adaptive neural control of non-affine purefeedback
non-linear systems with input nonlinearity and perturbed uncertainties,”
International Journal of Systems Science, vol. 43, pp. 691-706, 2012.
[29] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control
for a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45,
pp. 1893-1899, 2000.
[30] A. M. Zou, Z. G. Hou, and M. Tan, “Adaptive control of a class of nonlinear purefeedback
systems using fuzzy backstepping approach,” IEEE Transactions on Fuzzy
Systems, vol. 16, pp. 886-897, 2008.
[31] S. J. Yoo and J. B. Park, “Neural-network-based decentralized adaptive control for
a class of large-scale nonlinear systems with unknown time-varying delays,” IEEE
Transactions on System, Man, and Cybernetics-Part B: Cybernetics, vol. 39, pp.
1316-1323, 2009.
[32] Y. Li, S. Tong, and Y. Li, “Observer-based adaptive fuzzy backstepping control of
MIMO stochastic nonlinear strict-feedback systems,” Nonlinear Dynamics, vol. 67,
pp. 1579-1593, 2012.
[33] Y. Chang, “Block backstepping control of MIMO systems,” IEEE Transactions on
Automatic Control, vol. 56, pp. 1191-1197, 2011.
[34] C. C. Cheng, G. L. Su, and C. W. Chien, “Block backstepping controllers design
for a class of perturbed nonlinear systems with m blocks,” IET Control Theory and
Applications, vol. 6, pp. 2021-2030, 2012.
[35] C. C. Cheng and Y. H. Ou, “Design of adaptive block backstepping controllers
for uncertain nonlinear dynamic systems with n blocks,” International Journal of
Control, vol. 86, pp. 469-477, 2013.
[36] J. Li and C. Qian, “Global finite-time stabilization by dynamic output feedback for
a class of continuous nonlinear systems,” IEEE Transaction on Automatic Contol,
vol. 51, no. 5, pp. 879-884, 2003.
[37] Y. Hong, “Finite-time stabilization and stabilizability of a class of controllable systems,”
Systems and Control Letters, vol. 46, no. 4, pp. 231-236, 2002.
[38] Y. Hong, J. Huang, and Y. Xu, “On an output finite-time stabilization problem,”
IEEE Transaction on Automatic Contol, vol. 46, no. 2, pp. 305-309, 2001.
[39] S. Li and Y. P. Tian, “Finite-time stability of cascaded time-varying systems,” International
Journal of Control, vol. 80, no. 4, pp. 646-657, 2007.
[40] Y. J. Sun, “A novel chaos synchronization of uncertain mechanical systems with
parameter mismatchings, external excitations, and chaotic vibrations,” Communications
in Nonlinear Science and Numerical Simulation, vol. 17, pp. 496-504, 2012.
[41] C. F. Chuang, Y. J. Sun, and W. J. Wang, “A novel synchronization scheme with
a simple linear control and guaranteed convergence time for generalized Lorenz
chaotic systems,” Chaos, vol. 22, pp. 1-7, 2012.
[42] C. F. Chuang, W. J. Wang, Y. J. Sun and Y. J. Chen, “T-S fuzzy model based H
finite-time synchronization design for chaotic systems,” International Journal of
Fuzzy Systems, vol. 13, no. 4, pp. 358-368, 2011.
[43] M. Zhihong and X. H. Yu, Terminal sliding mode control of MIMO linear systems,”
IEEE Transaction on Circuits and Systems, vol. 44, no. 11, pp. 1065-1070, 1997.
[44] M. Zhihong and X. H. Yu, “Multi-input uncertain linear systems with terminal
sliding-mode control,” Automatica, vol. 34, pp. 389-392, 1998.
[45] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for
robotic manipulators with terminal sliding mode,” Automatica, vol. 41, pp. 1957-
1964, 2005.
[46] X. Yu and M. Zhihong, “Fast terminal sliding-mode control design for nonlinear
dynamical systems,” IEEE Transaction on Circuits and Systems, vol. 49, no. 2, pp.
261-264, 2002.
[47] D. Zhao, S. Li, and F. Gao, “A new terminal sliding mode control for robotic manipulators,”
International Journal of Control, vol. 82, no. 10, pp. 1804-1813, 2009.
[48] D. Zhao, S. Li, Q. Zhu, and F. Gao, “Robust finite-time control approach for robotic
manipulators,” Control Theory and Applications, vol. 4, no.1, pp. 1-15, 2010.
[49] Y. Feng, X. Yu, and F. Han, “On nonsingular terminal sliding-mode control of
nonlinear systems,” Automatica, vol. 49, pp. 1715-1722, 2013.
[50] T. H. S. Li and Y. C. Huang, “MIMO adaptive fuzzy terminal sliding-mode controller
for robotic manipulators,” Information Sciences, vol. 180, pp. 4641-4660,
2010.
[51] L. Wang, T. Chai, and L. Zhai, “Neural-network-based terminal sliding-mode control
of robotic manipulators including actuator dynamics,” IEEE Transactions on
Industrial Electronics, vol. 56, no. 9, pp. 3296-3304, 2009.
[52] Y. Feng, S. Bao, and X. Yu, “Inverse dynamics nonsingular terminal sliding mode
control of two-link flexible manipulators,” International Journal of Robotics and
Automation, vol. 19, no. 2, pp. 91-102, 2004.
[53] Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid
manipulators,” Automatica, vol. 38, no. 12, pp. 2159-2167, 2002.
[54] C. K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using
fuzzy wavelet networks,” IEEE Transaction on Fuzzy Systems, vol. 14, no. 6, pp.
849-859, 2006.
[55] Y. Feng, X. H. Yu, and F. L. Han, “On nonsingular terminal sliding-mode control of
nonlinear systems,” Automatica, vol. 49, no. 6, pp. 1715-1722, 2013.
[56] C. C. Cheng, S. H. Chien, and F. C. Shih, “Design of robust adaptive variable
structure tracking controllers with application to rigid robot manipulators,” IET
Control Theory and Applications, vol. 4, pp. 1655-1664, 2010.
[57] Z. Zhang, S. Xu, and Y. Chu, “Adaptive stabilisation for a class of non-linear state
time-varying delay systems with unknown time-delay bound,” IET Control Theory
and Applications, vol. 4, pp. 1905-1913, 2010.
[58] S. V. Drakunov, W. Perruquetti, J. P. Richard, and L. Belkoura, “Delay identification
in time-delay systems using variable structure observers,” Annual Reviews in
Control, vol. 30, pp. 143-158, 2006.
[59] D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay
identification in a chaotic semiconductor laser with optical feedback: A dynamical
point of view,” IEEE Journal of Quantum Electronics, vol. 45, pp. 879-891, 2009.
[60] G. Zheng, J. P. Barbot, and D. Boutat, “Identification of the delay parameter for
nonlinear time-delay systems with unknown inputs,” Automatica, vol. 49, pp. 1755-
1760, 2013.
[61] Hardy, G. H., Littlewood, J. E., and Polya, G., Inequalities, Cambridge: Cambridge
University Press, 1998.
[62] T. Gang, Adaptive Control Design and Analysis, John Wiley & Sons, New Jersey,
2003 .
[63] C. H. Chou, and C. C. Cheng, “Design of adaptive variable structure controllers for
perturbed time-varying state delay systems,” Journal of Franklin Institute, vol. 338,
pp. 35-46, 2001.
[64] C. C. Wen and C. C. Cheng, “Design of sliding surface for mismatched uncertain
systems to achieve asymptotical stability,” Journal of Franklin Institute, vol. 345,
pp. 926-941, 2008.
[65] C. Hua and P. X. Liu, “Backstepping control for nonlinear systems with time delays
and applications to chemical reactor systems,” IEEE Transactions on Industrial
Electronics, vol. 56, pp. 2723-2732, 2009.
[66] C. C. Cheng and M. W. Chang, “Design of derivative estimator using adaptive
integral variable structure technique,” American Control Conference, Minneapolis,
Minnesota, USA, June 14-16, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code