Responsive image
博碩士論文 etd-0631115-183855 詳細資訊
Title page for etd-0631115-183855
論文名稱
Title
奈米銀線應用聚甲基丙烯酸甲酯複合材料之機械性質及抗菌分析
Mechanical Measurement and Antibacterial of Silver Nanowires Application of PMMA Composite
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-20
繳交日期
Date of Submission
2015-07-31
關鍵字
Keywords
表面硬度、均勻實驗法、抗菌、奈米銀線、聚甲基丙烯酸甲酯
Surface hardness, Silver nanowire, Uniform Design, Polymethyl methacrylate, Antibacterial
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
聚甲基丙烯酸甲酯常用於臨時假牙的製作,而假牙材料有機械性質及抑制微生物在表面生長的需求,故本研究主要將奈米銀線添加入聚甲基丙烯酸甲酯中製成複合樹脂,利用均勻實驗法進行實驗設計探討其機械性質,複合樹脂製作完成初期先對表面的孔洞覆蓋率分析,在探討於37℃泡水保存後的表面硬度、粗糙度及顏色穩定性的變化,並進一步做抗菌實驗分析。研究結果顯示,孔洞率大表示結構鬆散導致其表面粗糙度高與機械性質不佳,而表面硬度分別使用奈米壓痕系統與微小維克氏硬度機來分析微觀與巨觀尺度下的特性,其量測結果是有相同的趨勢,其中影響表面硬度因子依序為聚合壓力>聚合時間>奈米銀長徑比>奈米銀濃度,實驗結果顯示其最佳的條件為聚合壓力1.6 bar、聚合時間10分鐘、奈米銀線長徑比為14及奈米銀混和濃度為0.5%,量測結果相較於原始材料之硬度值約提升1.7-2.4倍。在泡水保存後量測表面粗糙度及顏色穩定性結果都是穩定的,最後抗菌實驗結果顯示,固體的複合樹脂抗菌表現不佳,但均勻混和奈米銀線溶液的聚甲基丙烯酸甲酯液劑,對大腸桿菌是有效的。因此,本研究結果顯示採用奈米銀線混和製成複合樹脂,能有效提升其機械強度,並對大腸桿菌有抑制效果,為一種新的臨時假牙複合材料選擇
Abstract
Polymethyl methacrylate (PMMA) has been widely used for the fabrication in prosthodontic treatment. The most essential issues for denture materials are the mechanical properties and the formation of biofilm from microorganisms in oral. In this study, PMMA and silver nanowire (AgNWs) were mixed to manufacture composite resin. The experiment was designed by uniform design method and investigated the mechanical properties of composite resin. After the process, the hole coverage on surface was analyzed. Then, the change of surface hardness, roughness and color stability after restored in the 37℃ water were investigated. Moreover, the antimicrobial test was examined. The results showed that high hole rate, namely loose structure, caused poor surface roughness and mechanical properties. The hardness was analyzed under microscopic and macroscopic scale by using the MTS nanoindenter XP systems and micro Vickers tester, respectively. The factors, weighting of surface hardness were polymerization pressure > polymerization time > Aspect ratio > concentrations. The best conditions are polymerization pressure of 1.6 bar, polymerization time of 10 minutes, aspect ratio of 14, concentration of 0.5%. The hardness increased 1.7 to 2.4 times. The antibacterial experiments showed the solid composite resin had poor antimicrobial performance. However, the PMMA mixed with AgNWs had impact on E.coli. To sum up, composite resin mixed with AgNWs had better mechanical strength and inhibitory effect on E.coli.
目次 Table of Contents
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xii
第一章 序論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究動機與目的 5
1.4 本文架構 5
第二章 理論基礎與原理 7
2.1 奈米銀 7
2.1.1 奈米銀合成制備 7
2.1.2 多元醇化學還原法 8
2.1.3 奈米銀的特性 9
2.1.4 奈米銀的應用 9
2.1.5 奈米銀抗菌機制 10
2.2 聚甲基丙烯酸甲酯(PMMA) 11
2.2.1 聚甲基丙烯酸甲酯基本概述與分類[20] 12
2.2.2 影響聚甲基丙烯酸甲酯的環境因子 13
2.2.3 理想的臨時假牙製作 15
2.3 奈米壓痕試驗理論 15
2.3.1 奈米壓痕試驗之探針幾何形式和形狀 17
2.3.2 奈米壓痕試驗之硬度與楊氏係數理論基礎 20
2.3.3 連續剛性測量技術(CSM) 24
2.4 細菌培養與抗菌實驗簡介[41] 25
2.4.1 細菌生長研究方法[41] 25
2.4.2 細菌之觀察法簡介[41] 27
2.4.3 JIS Z 2801-2000抗菌實驗法[42] 29
2.4.4 抗生素之抗菌檢驗法 29
2.5 均勻實驗法[43] 31
2.5.1 實驗設計法 32
2.5.2 均勻實驗法概論 32
2.5.3 均勻設計表[47] 32
2.5.4 均勻實驗程序 35
2.5.5 均勻設計實驗結果分析 35
第三章 研究方法 36
3.1 實驗流程架構 36
3.2 實驗設備與藥品 36
3.2.1 奈米銀配置之設備及藥品 36
3.2.2 聚甲基丙烯酸甲酯配置之設備及藥品 38
3.2.3 抗菌實驗配置之設備及藥品 40
3.3 奈米銀製作流程 41
3.3.1 奈米銀的製備 42
3.3.2 奈米銀純化方式 43
3.4 奈米銀/聚甲基丙烯酸甲酯複合樹脂製作流程 44
3.4.1 複合樹脂之均勻實驗法分析 44
3.4.2 樣本製備方式 46
3.5 機械性質分析 47
3.5.1 試片前置流程 48
3.5.2 微小維克氏硬度分析 49
3.6 抗菌分析 50
3.6.1 固態抗菌性分析 50
3.6.2 液體抗菌性分析 51
3.7 實驗分析儀器介紹 52
3.7.1 穿透式電子顯微鏡 52
3.7.2 奈米壓痕系統 53
3.7.3 微小維氏硬度機 55
3.7.4 表面粗糙度量測儀 56
3.7.5 色彩輝度計 58
第四章 實驗結果與討論 59
4.1 機械性質的分析 59
4.1.1 溫度對於PMMA影響 59
4.2 奈米銀/PMMA複合樹脂分析 61
4.2.1 表面孔洞覆蓋率 62
4.2.2 表面粗糙度分析 64
4.2.3 顏色變化探討分析 68
4.2.4 奈米壓痕量測系統分析 72
4.2.5 微小維克氏硬度分析 75
4.2.6 硬度量測結果分析 76
4.3 均勻實驗法分析 78
4.3.1 均勻實驗法分析-線性回歸分析 78
4.3.2 均勻實驗法分析結果比較 82
4.4 Kriging反應曲面 83
4.5 抗菌性質分析 86
4.5.1 固態抗菌性分析 86
4.5.2 液體抗菌性分析 91
4.5.3 穿透式電子顯微鏡分析 100
第五章 結論與未來展望 101
5.1 結論 101
5.2 未來展望 103
參考文獻 104
參考文獻 References
[1] 蔡潔娃,盧素涵, “發掘齒科醫療器材的下一個藍海,” 金屬中心, 台北, 2010.
[2] Z. R. Zhou and J. Zhen, “Tribology of dental materials: a review,” Journal of Physics D : Applied Phyaics, Vol. 41, No. 113001, pp. 1-22, 2008.
[3] 高材,林康平,林峰輝,陳家進, “生物醫學工程導論,” 滄海書局, 台北, 2009.
[4] 鐘國雄, “牙科材料學,” 合記圖書出版社, 台北, 2004.
[5] 黃豐寅, “牙科修復材料之表面形貌及微奈米刮痕研究,” 碩士論文, 機械與精密工程研究所, 國立高雄應用科技大學, 高雄,台灣, 2012
[6] T.W. Prow, J.E. Grice, L.L. Lin, R. Faye, M. Butler, W, Becker, “Nanoparticles and Microparticles for Skin Drug Delivery,” Advanced Drug Delivery Reviews, Vol. 63, pp. 470-491, 2011.
[7] G.B. Sergeev, “Synthesis and Stabilization of Nanoparticles,” Nanochemistry, pp.7-36, 2006.
[8] R. Gottesman, A. Tangy, I. Oussadon and D. Zitoun, “Silver nanowires and nanoparticles from a millifluidic reactor: application to metal assisted silicon etching,” New Journal of Chemistry, vol. 36, pp. 2456-2459, Dec 2012.
[9] 連昭晴, “鐵/金核殼型磁性複合奈米粒子之製備與應用,” 碩士論文, 成功大學化學工程學系, pp. 1-113, 2004.
[10] S. Komarneni, D.S. Li, B. Newalkar, H. Katsuki, A.S. Bhalla, "Microwave-polyol process for Pt and Ag nanoparticles," Langmuir, vol. 18, pp. 5959-5962, Jul 23 2002.
[11] 洪琨皓, “多元醇法還原之電紡Ag/polymer纖維及導電薄膜特性探討,” 碩士論文, 機械與機電工程學系, 國立中山大學, 高雄,台灣, 2014.
[12] Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Letters, vol. 2, pp. 165-168, 2002.
[13] 周更生,李賢學,高振裕,盧育杰, “功能性粉末 奈米銀,” 科學發展, 第408期,
pp. 32-39, 2006.
[14] J.M. Kusnetsov, E. Iivanainen, N. Elomaa, O. Zacheus, P.J. Martikainen, “Copper and silver ions more effective against Legionellae than against Mycobacteria in a hospital warm water system,” Water Research, Vol. 35, No. 17, pp. 4217-4225, 2001.
[15] 楊雯涵, “新型奈米銀殺菌濾材去除大腸桿菌之研究,” 碩士論文, 環境工程與科學所, 逢甲大學, 台中,台灣, 2012.
[16] J. W. Kim, J. E. Lee, S. J. Kim, “Synthesis of Silver/Polymer Colloidal
Composites from Surface-Functionalporous Polymer Microspheres,” Polymer,
Vol. 45, pp. 4741-4747, 2004.
[17] 林坤億, “含銀聚胺基甲酸酯複合材料製備與研究,” 碩士論文, 化學工程碩士班, 國防大學理工學院, 桃園,台灣, 2013
[18] H.T. Shillingburg, S. Hobo, L.D. Whitsett, “Fundamentals of fixed prosthodontics,” 3rd ed. Chicago:Quintessence Publishing Co, pp. 225, 1999.
[19] M.F. Ireland, D.L. Dixon, L.C. Breeding, M.H. Ramp, “In vitro mechanical property comparison of four resins used for fabrication of provisional fixed restorations,” J Prosthet Dent, vol. 80, pp.158-162, 1998.
[20] 許載欣, “不同聚合條件對自聚式聚甲基丙烯酸甲酯樹脂之影響,” 碩士論文, 牙醫科學研究所, 國立陽明大學, 台北,台灣, 2001
[21] T. Ogawa, S. Aizawa, M. Tanaka, S. Matsuya, A. Hasegawa and K. Koyano, “Effect of water temperature on the fit of provisional crown margins during polymerization,” J Prosthet Dent, vol. 82, pp. 658-661, 1999.
[22] T. Ogawa, M. Tanaka and K. Koyano, “Effect of water temperature during polymerization on strength of autopolymerizing resin,” J Prosthet Dent, vol. 84, pp. 222-224, 2000.
[23] P.K. Vallittu, I.E. Ruyter and S. Buykuilmaz, “Effect of polymerization temperature and time on the residual mono mer content of denture base polymers,” Eur J Oral Sci, vol. 106, pp. 588-593, 1998.
[24] J.F. Roulet, “Polymer constructions used in restorative dentistry In: Degradation of dental polymers,” Karger AG, New York, pp. 3-53, 1987
[25] R.G. Craig, “Prosthetic applications of polymers. & Polymers and polymerization In: Restorative dental materials,” 8th ed., Mosby Co, Louis, pp.139-147, 509-555, 1989.
[26] A.R. Ogden, “Porosity in composite resins--an Achilles' heel? ,” J Dent, vol. 13, pp. 331-340, 1985.
[27] H.F. Atkinson and J.K. Harcourt, “The polymerization of self-curing acrylics under air pressure,” Austral Dent J, vol. 3, pp. 183-186, 1958.
[28] P.K. Vallittu, “Unpolymerized surface layer of autopolymerizing polymethyl methacrylate resin,” J Oral Rehabil, vol. 26, pp. 208-212, 1999.
[29] S.A. Yannikakis, A.J. Zissis, G.L. Polyzois and C. Caroni, “Color stability of provisional resin restorative materials,” J Prosthet Dent, vol. 80, pp. 533-539, 1998.
[30] D. Tabor, “A Simple Theory of Static and Dynamic Hardness,” Mathematical and Physical Sciences, Vol. 192, pp. 247-274, 1948.
[31] I.N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci., Vol. 3, pp. 47-57, 1965.
[32] M. Doerner, W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” Journal of Materials Research, Vol. 1, pp. 601-609, 1986.
[33] W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7, pp. 1564-1583, 1992.
[34] T. Ohmura, S. Matsuoka, K. Tanaka, T. Yoshida, “Nanoindentation Load–Displacement Behavior of Pure Face Centered Cubic Metal Thin Films on a Hard Substrate,” Thin Solid Films, Vol. 385, pp.198-204, 2001.
[35] J.B. Pethica, R. Hutchings, W.C. Oliver, “Hardness Measurement at Penetration Depths as Small as 20 nm,” Philos. Mag. A, Vol. 48, pp. 593-606, 1983.
[36] G.M. Pharr, W.C. Oliver, F.R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” J. Mater. Res., Vol. 7, pp. 613-617, 1992.
[37] G. Davies, “Properties and growth of diamond,” INSPEC, the Institution of Electrical Engineers, London, 1994.
[38] R.B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Struct., Vol. 23, pp. 1657-1664, 1987.
[39] 柯建安, “平面式/滾筒式近場靜電紡絲製程之PVDF/MWCNT壓電纖維機械性質探討,” 碩士論文, 機械與機電工程學系, 國立中山大學,高雄,台灣,2012
[40] B.N. Lucas, W.C. Oliver, J.E. Swindeman, “Dynamics of frequency-specific, depth-sensing indentation testing,” Materials Research Society Symposia Proceedings, Vol. 522, pp. 3-14, 1998.
[41] 郭思攸, “奈米氧化鋅於牙科瓷層表面抗菌性質之研究,” 碩士論文, 材料科學與工程研究所, 國立台北科技大學, 台北,台灣, 2008.
[42] Japanese Industrial Standard, "Antimicrobial products -- Test for antimicrobial activity and efficacy (foreign standard) ,” JIS Z 2801: 2000
[43] 林育如, “田口與均勻實驗法應用於多元醇合成奈米銀分析,” 碩士論文, 機械與機電工程學系, 國立中山大學, 高雄,台灣, 2015.
[44] 方開泰, “均勻設計-數理方法在試驗設計中的應用,” 概率統計通訊, vol. 1 ,pp.56-97,1978.
[45] Y. Wang, K.T. Fang, “A note on uniform distribution and experimental design,” Kexue tongbao,vol.26,pp.485-489,1981.
[46] 曾昭均,均勻設計及運用:重要工程類;中醫學類專用,北京:中國醫藥科技出版社, 2005.
[47] 方開泰,均勻設計與均勻設計表,北京:科學出版社, 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.184.214
論文開放下載的時間是 校外不公開

Your IP address is 18.218.184.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code