Responsive image
博碩士論文 etd-0631117-011734 詳細資訊
Title page for etd-0631117-011734
論文名稱
Title
閉迴路馬達控制於近場靜電紡絲製造聚偏二氟乙烯壓電纖維於智慧布製造
Closed-loop Motor Control to Fabricate PVDF Fibers for Smart Patches using Near-field Electrospinning
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-07-31
關鍵字
Keywords
聚偏二氟乙烯、壓電纖維、智慧貼片、近場靜電紡絲
polyvinylidene fluoride (PVDF), near-field electrospinning (NFES), piezoelectric fiber, smart patch
統計
Statistics
本論文已被瀏覽 5699 次,被下載 0
The thesis/dissertation has been browsed 5699 times, has been downloaded 0 times.
中文摘要
本研究以閉迴路之馬達控制,控制近場靜電紡絲(NFEF)之滾筒收集器,製作聚偏二氟乙烯(PVDF)之壓電纖維。紡製而成的PVDF壓電纖維,進行拍打測試,藉由低頻率頻率振動的機械能,轉變為電能產生電壓電流的訊號。PVDF壓電纖維具有優越的電壓反應與可撓性,因此可以作為智慧布之類的可撓性感測元件。為了取得更良好的製造程序, 以有利於得到穩定的電能轉換,得到更高的電性訊號,我們利用閉迴路速度控制來改善開迴路系統無補償的問題。藉由閉迴路速度控制,暫態響應和穩態響應可以被精確執行。18%wt PVDF混合溶液放在金屬針筒之中使用直徑0.2、0.25及0.33 mm金屬針; 輸液泵以0.2、0.4及0.8 ml/h 給藥速率進料速率給藥; 13k、15k及17k 高電壓; 針頭與滾筒收集器保持1 mm間距; 針頭以20、160及200 mm/min的速度在滾筒的軸向移動; 滾筒收集器以900-1900 rpm六種不同轉速旋轉。閉迴路速度控制可得到 Ip-p = 8.8×10-7 A (Imax = -5.0 × 10-7 A) 與Vp-p = 0.22V (Vmax = -0.12 V). 開迴路系統可得到Ip-p = 3.2×10-7 A (Imax = -2.1× 10-7 A) 與Vp-p = 0.17 V (Vmax = -0.10 V)。利用閉迴路速度控制所得到之壓電纖維,其電性訊號因而得到改善。用多紡口結構改善滾筒式NFES壓電纖維製程,以製造大面積壓電纖維。以印刷電路板結構與錫球上鑽孔作為噴流口,設計製作多紡口結構。使用田口法設計電場、滾筒收集之速度、加熱溫度與加熱持續時間之製程參數。將PVDF纖維利用掃描式電子顯微鏡(SEM)觀察表面形貌; X光繞射分析儀(XRD)分析PVDF壓電纖維的β相成分特性。用聚二甲基矽氧烷(PDMS)對指叉式電極(IDE)進行封裝。以放電加工製造指叉式電極的模具,在PDMS IDE結構上塗佈銀膠,形成具備導電性的銀膠結構IDE。將PVDF壓電纖維放置於指叉電極之上,封裝成貼片,再施以1400-7000 V電壓,並加熱65°C進行再極化處理,完成智慧貼片製作。
Abstract
In this study, we report on the closed-loop control for a cylindrical collector to obtain polyvinylidene fluoride (PVDF) piezoelectric fiber using near-field electrospinning (NFES). The as-spun PVDF fibers were laid on the top of parallel electrodes to generate current and voltage signals by means of the energy converting of mechanical energy to electrical energy. The PVDF fibers can be used as a flexible sensing device, such as smart fabric, owing to their excellent voltage response. A PVDF fiber with uniform diameter was expected to have the stable energy conversion for achieving higher electrical current and voltage signals. To ensure the quality of the product process, a closed-loop speed control was designed to improve the disadvantages of open-loop systems. Transient response and steady-state error can be controlled accurately. A mixed solution of 18%wt PVDF was placed into an injector and driven by a syringe pump with 0.2, 0.4, and 0.8 ml/h feeding rates. The needle with 0.2, 0.25, and 0.33 mm diameters was subjected to 13k, 15k, and 17k high voltages with a gap of 1 mm between the needle and the collectors. The travelling speed in the axial direction of the cylindrical collectors at 120, 160, and 200 mm/min, respectively. The cylindrical collector motor operated with six different speeds from 900 to1900 rpm. With the closed-loop speed control, the currents Ip-p = 8.8×10-7 A (Imax = -5.0 × 10-7 A) and the voltages Vp-p = 0.22V (Vmax = -0.12 V) were obtained, which is better than Ip-p = 3.2×10-7 A (Imax = -2.1× 10-7 A) and Vp-p = 0.17 V (Vmax = -0.10 V) with the open-loop system. The PVDF fiber is obtained from closed-loop speed control system, which is better than the fibers of the open-loop system. We improved the NFES using multi-spinnerets with a cylindrical collector to fabricate a large area PVDF fibers. We designed multi-spinnerets by means of printed circuit board (PCB) and drilled spinnerets on the solder balls. The study used Taguchi method to design process parameters, electrical field, collecting velocity of cylindrical collector, heating temperature and heating time. In addition, we used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze β-phase crystal quality and the surface character of PVDF fibers, respectively. In this part, the fibers made a large-area force sensor packaged in a smart patch. The fibers were packaged in polydimethylsiloxane (PDMS) with interdigitated electrode (IDE) structures. The molds of IDE were fabricated by electrical discharge machining (EDM). A conductive silver gel was coated on the IDE by soft contact lithography. The fibers on the IDE were repolarized by the electrical field via high electrical voltage of 1400 to 7000 V and at the temperature of 65°C.
目次 Table of Contents
Contents:
List of Figures
List of Tables
Chapter 1: Introduction………………………………………………………………..1
1.1 Background. ……………………………………………………………….1
1.2 Literatures review……………………………….…………………………2
1.3 Motivation………………………………………………………………....7
1.4 Structure of the dissertation………………………………………….……8
Chapter 2: Close-loop Speed Control for PVDF Fibers Manufacturing…..…….....….10
2.1 Materials and methods………………….………..…………...………10
2.1.1 Materials preparation…………………………………………..…..…10
2.1.2 Equipment with closed-loop speed control system………………...…10
2.1.3 Measurement method……………………………...………….………13
2.1.4 Measurement equipment of tapping system……….…...…..…………13
2.2 Measuring result……...……………….……………………..……………15
2.2.1 Electric properties test by energy harvesting…………...…….....………15
2.2.2 Measurement using oscilloscope…………..........................……………15


Chapter 3: PVDF Fibers manufactured using NFES with Multi-Spinneret Design....22
3.1 Configuration of NFES with multi-spinneret design……...……….22
3.2 Materials and methods……………….……..……………………….23
3.2.1 Conductivity and concentration and of PVDF solution………..……23
3.2.2 The design of multi-spinneret structure…………………….....…….25
3.2.3 Manufacturing of multi-spinneret structure…..…………..…...………27
Chapter 4: Closed-loop Speed Control on PVDF Fibers in Smart Patch ……………29
4.1 Materials and method…………………………………..…………..……29
4.1.1 Material preparedness ……………………...………………….……..29
4.1.2 Experiment method …………………...……………………………...30
4.2 Measurement of piezoelectric fibers…………………..……...………34
4.3 PVDF fibers packaged into PDMS smart patch……….…….…….…36
Chapter 5: Result and Discussion………...………………………………...…………38
5.1 Closed-loop speed control and open-loop system in NFES…...…………38
5.1.1 Properties and characteristics of PVDF fiber …...……...……………..38
5.2 PVDF Fibers manufactured using NFES with multi-Spinneret design....44

5.2.1 Influence of electrical field………………………….….………....…..44
5.2.2 Taguchi method analysis…………………………….…….……....…..44
5.2.3 The effect of solder balls dimensions………………...…..……..…..….51
5.2.4 Parameter contribution degree……………………………………....…..52
5.2.5 Beating test…………………..……………….………...…………....…..53
5.3 Closed-loop Speed control on PVDF fibers in smart patch…..….………54
5.3.1 Relationship between PVDF solution parameters and NFES process with closed-loop control…………………………………………….………………54
5.3.2 Properties of PVDF fibers ……………………………….……………63
5.3.3 Repolarization treatment………………………………..………………64
Chapter 6: Conclusions……………………….……………………..…………………64
6.1 Conclusions of the study…………………….…………...………………66
6.2 Future work…………………………………….……...…………………68
參考文獻 References
1. Chang, J.; Dommer, M.; Chang, C.; Lin, L., Piezoelectric nanofibers for energy scavenging applications. Nano Energy 2012, 1, 356-371.
2. Liu, Z. H.; Pan, C. T.; Su, C. Y.; Lin, L. W.; Chen, Y. J.; Tsai, J. S., A flexible sensing device based on a PVDF/MWCNT composite nanofiber array with an interdigital electrode. Sensors and Actuators A: Physical 2014, 211, 78-88.
3. Liu, J.-Q.; Fang, H.-B.; Xu, Z.-Y.; Mao, X.-H.; Shen, X.-C.; Chen, D.; Liao, H.; Cai, B.-C., A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectronics Journal 2008, 39, 802-806.
4. Fang, H.-B.; Liu, J.-Q.; Xu, Z.-Y.; Dong, L.; Wang, L.; Chen, D.; Cai, B.-C.; Liu, Y., Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectronics Journal 2006, 37, 1280-1284.
5. Pan, C. T.; Liu, Z. H.; Chen, Y. C.; Liu, C. F., Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sensors and Actuators A: Physical 2010, 159, 96-104.
6. Pan, C. T.; Liu, Z. H.; Chen, Y. C., Study of broad bandwidth vibrational energy harvesting system with optimum thickness of PET substrate. Current Applied Physics 2012, 12, 684-696.
7. Wang, X., Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy 2012, 1, 13-24.
8. Roundy, S.; Leland, E. S.; Baker, J.; Carleton, E.; Reilly, E.; Lai, E.; Otis, B.; Rabaey, J. M.; Sundararajan, V.; Wright, P. K., Improving Power Output for Vibration-Based Energy Scavengers. IEEE Pervasive Computing 2005, 4, 28-36.
9. Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D., Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 2008, 319, 807-10.
10. Granstrom, J.; Feenstra, J.; Sodano, H. A.; Farinholt, K., Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures 2007, 16, 1810-1820.
11. Priya, S., Advances in energy harvesting using low profile piezoelectric transducers. Journal of Electroceramics 2007, 19, 167-184.
12. Chandrakasan, A. P.; Verma, N.; Daly, D. C., Ultralow-power electronics for biomedical applications. Annu Rev Biomed Eng 2008, 10, 247-74.
13. Chang, C.; Limkrailassiri, K.; Lin, L., Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Applied Physics Letters 2008, 93, 123111.
14. Yeo, I. S.; Oh, J. E.; Jeong, L.; Lee, T. S.; Lee, S. J.; Park, W. H.; Min, B. M., Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules 2008, 9, 1106-16.
15. Sun, D.; Chang, C.; Li, S.; Lin, L., Near-field electrospinning. Nano Lett 2006, 6, 839-42.
16. Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y. K.; Lin, L., Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 2010, 10, 726-31.
17. Pu, J.; Yan, X.; Jiang, Y.; Chang, C.; Lin, L., Piezoelectric actuation of direct-write electrospun fibers. Sensors and Actuators A: Physical 2010, 164, 131-136.
18. Kawai, H., The Piezoelectricity of Poly (vinylidene Fluoride). Japanese Journal of Applied Physics 1969, 8, 975-976.
19. Holmes-Siedle, A. G.; Wilson, P. D.; Verrall, A. P., PVdF: An electronically-active polymer for industry. Materials & Design 1983, 4, 910-918.
20. Lee, C. K., Piezoelectric strain rate gages. The Journal of the Acoustical Society of America 1991, 90, 945.
21. Spineanu, A.; Bénabès, P.; Kielbasa, R., A digital piezoelectric accelerometer with sigma-delta servo technique. Sensors and Actuators A: Physical 1997, 60, 127-133.
22. Chen, Z.; Shen, Y.; Xi, N.; Tan, X., Integrated sensing for ionic polymer–metal composite actuators using PVDF thin films. Smart Materials and Structures 2007, 16, S262-S271.
23. Lee, Y.-S.; Elliott, S. J.; Gardonio, P., Matched piezoelectric double sensor/actuator pairs for beam motion control. Smart Materials and Structures 2003, 12, 541-548.
24. Pan, C.-T.; Yen, C.-K.; Wang, S.-Y.; Lai, Y.-C.; Lin, L.; Huang, J. C.; Kuo, S.-W., Near-field electrospinning enhances the energy harvesting of hollow PVDF piezoelectric fibers. RSC Advances. 2015, 5, 85073-85081.
25. Anton, F. Process and Apparatus for Preparing Artificial Threads. U.S. Patent 1975504, 2 October 1934.
26. Taylor, G. Electrically driven jets. Proceedings of the Royal Society of London. Series A 1969, 313, 453–475.
27. Sun, D.; Chang, C.; Li, S.; Lin, L. Near-field electrospinning. Nano Letters. 2006, 6, 839–842.
28. Chang, C.; Tran, V.H.; Wang, J.; Fuh, Y.K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Letters. 2010, 10, 726–731.
29. Chang, C.; Fuh, Y.-K.; Lin, L. A direct-write piezoelectric PVDF nanogenerator. Solid-State Sensors, Actuators and Microsystems 2009, 1485–1488.
30. Chen, X.; Xu, S.; Yao, N.; Shi, Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Letters 2010, 10, 2133–2137.
31. Pu, J.; Yan, X.; Jiang, Y.; Chang, C.; Lin, L. Piezoelectric actuation of direct-write electrospun fibers. Sensors and Actuators A: Physical 2010, 164, 131–136
32. Li, F.; Liu, W.; Stefanini, C.; Fu, X.; Dario, P. A novel bioinspired PVDF sensing micro/nano hair receptor for a robot system. Sensors 2010, 10, 994–1011.
33. Ha, J.M.; Lim, H.O.; Jo, N.J. Actuation behavior of CP actuator based on polypyrrole and PVDF. Advanced Materials Research 2007, 29–30, 363–366
34. Elashmawi, I.S.; Abdelrazek, E.M.; Ragab, H.M.; Hakeem, N.A. Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine. Physica B. B 2010, 405, 94–98.
35. Neidhofer, M.; Beaume, F.; Ibos, L.; Bernes, A.; Lacabanne, C., Structural evolution of PVDF during storage or annealing. Polymer 2004, 45, 1679-1688.
36. Peng, Y.; Wu, P. Y., A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process. Polymer 2004, 45, 5295-5299.
37. Sajkiewicz, P.; Wasiak, A.; Goclowski, Z., Phase transitions during stretching of poly(vinylidene fluoride). European Polymer Journal 1999, 35, 423-429.
38. Chen, Y.; Shew, C.Y.; Conformational behavior of polar polymer models under electric fields. Chemical Physics Letters 2003, 378, 142–147.
39. Zhao, Z.; Li, J.; Yuan, X.; Li, X.; Zhang, Y.; Sheng, J., Preparation and properties of electrospun poly(vinylidene flouride) membranes. Journal of Applied Polymer Science 2005, 97, 466–474.
40. Ren, X.; Dzenis, Y., Novel continuous poly (vinylidene fluoride) nanofibers. Materials Research Society Symposium Proceedings library 2006, 920, 55–61.
41. Li, D.; Xia, Y., Electrospinning of Nanofibers: Reinventing the Wheel. Advanced Materials 2004, 16, 1151-1170.
42. Teo, W. E.; Ramakrishna, S., A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89-R106.
43. Khajavi, R.; Abbasipour, M., Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Scientia Iranica, Transactions F: Nanotechnology, 2012, 19, 2029-2034.
44. Dersch, R.; Graeser, M.; Greiner, A.; Wendorff, J. H., Electrospinning of Nanofibres: Towards New Techniques, Functions, and Applications. Australian Journal of Chemistry 2007, 60, 719.
45. Ding, B.; Kimura, E.; Sato, T.; Fujita, S.; Shiratori, S. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 2004, 45, 1895–1902.
46. Theron, S.A.; Yarin, A.L.; Zussman, E.; Kroll, E. Multiple Jets in Electrospinning: Experiment and modeling. Polymer 2005, 46, 2889–2899.
47. Liu, Y.; He, J.-H. Bubble electrospinning for mass production of nanofibers. International Journal of Nonlinear Sciences and Numerical Simulation 2007, 8, 393–396.
48. Wang, X.; Niu, H.; Lin, T.; Wang, X. Needleless electrospinning of nanofibers with a conical wire coil. Polymer Engineering & Science 2009, 49, 1582–1586.
49. Theron, S.A.; Zussman, E.; Yarin, A.L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, 2017–2030.
50. Dosunmu, O.O.; Chase, G.G.; Kataphinan, W.; Reneker, D.H. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology 2006, 17, 1123–1127.
51. Fuh, Y.-K.; Lien, L.-C.; Chen, S.-Y. High-Throughput Production of Nanofibrous mats via a porous materials electrospinning process. Journal of Macromolecular Science Part B 2012, 51, 1742–1749.
52. Liu, Y.; Zhang, L.; Sun, X.-F.; Liu, J.; Fan, J.; Huang, D.-W. Multi-jet electrospinning via auxiliary electrode. Materials Letters 2015, 141, 153–156.
53. Fang, J.; Niu, H.; Wang, H.; Wang, X.; Lin, T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy & Environmental Science 2013, 6, 2196–2202.
54. Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nature Communications 2013, 4, 1633.
55. Liu, Z.; Chen, R.; He, J. Active generation of multiple jets for producing nanofibres with high quality and high throughput. Materials & Design 2016, 94, 496–501.
56. Liu, Z.; Ang, K.K. J.; He, J. Needle-disk electrospinning inspired by natural point discharge. Journal of Materials Science 2016, 52, 1823–1830.
57. Ha, J. M.; Lim, H. O.; Jo, N. J., Actuation Behavior of CP Actuator Based on Polypyrrole and PVDF. Advanced Materials Research 2007, 29-30, 363-366.
58. Liu, Z. H.; Pan, C. T.; Lin, L. W.; Lai, H. W., Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors and Actuators A: Physical 2013, 193, 13-24.
59. Elashmawi, I. S.; Abdelrazek, E. M.; Ragab, H. M.; Hakeem, N. A., Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine. Physica B 2010, 405, 94-98.
60. Huang, Z.-M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003, 63, 2223-2253.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.247.196
論文開放下載的時間是 校外不公開

Your IP address is 3.129.247.196
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code