Responsive image
博碩士論文 etd-0631117-124120 詳細資訊
Title page for etd-0631117-124120
論文名稱
Title
窄頻通過變壓器的電力線通訊應用研究
Research of Power Line Communication through Transformer for Narrow Band Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-14
繳交日期
Date of Submission
2017-07-31
關鍵字
Keywords
變壓器、正交分頻多工(OFDM)、窄頻、資料通訊、電力線通訊
OFDM, Transformer, Narrow Band, PLC, Data Communication
統計
Statistics
本論文已被瀏覽 5695 次,被下載 29
The thesis/dissertation has been browsed 5695 times, has been downloaded 29 times.
中文摘要
近年來,關於如何運用電力傳輸線進行資料傳輸的研究議題倍受關注。許多研究和工廠都嘗試設計一些裝置來能彌補電力線傳輸的缺點。由於電力線本身是設計用來傳輸電力的,而非傳輸電子訊號。
電力線包括許多分支及不匹配的阻抗,造成訊號傳輸時的反射及衰減,最終導致訊號傳輸或接收的不完全。此外,當資料傳輸通過變壓器時,其信號的干擾、衰減及劣化亦趨嚴重。基於此原因,正交分頻多工(OFDM)是近期研發出的調變技術,在有限的頻寬下實現更好的數位資料傳輸。本文以電力傳輸線(PLC)通過變壓器的特性為基準,對其做全面性的分析,並進行PLC的數學建模,利用最新的調變技術,對PLC通過變壓器進行模擬及結果測試。
本文的主要建構一種全新通過變壓器進行電力線傳輸的方式。以不同調變順序、調變類型及不同雜訊下進行測試,並應用於兩種模型通道,分別為附加性高斯白雜訊(AWGN)和電力線模型化通道,對其測試結果以印證在傳輸訊息或圖像時的選擇性。為了更完整模擬通訊系統,利用MATLAB和數位信號處理器(DSP)結合通信系統作為模擬虛擬發射器和接收器以利識別在通信系統內傳輸消息或圖像。
Abstract
Abstract
A Recent study about data communication through existing power lines has been the subject interest of research for many researchers for over the past decade. Many researchers and industries have tried to develop and produce some devices to cover the disadvantages of using power line as data communication. This is because the power line is designed for transmission of power instead of signal transmitting originally. The heterogeneous structure of the power line network with numerous branches and impedance mismatches causing reflections and attenuation during signal transmission, and thus communication signal cannot be sent out or received completely. Furthermore, when the data communication trespassing the transformer, the disturbance, attenuation and degrading of signal become more severe. Orthogonal Frequency Division Multiplexing (OFDM) as one of the latest modulation and demodulation technique is used to achieve better digital data transmission over a limited bandwidth.
This thesis serves as an investigation of the characteristics of Power Line Communication through Transformer with the presentation of a comprehensive and detailed analysis of the standards, mathematical modeling for PLC through Transformer, the latest modulation and demodulation technique used, and the behavior of PLC through Transformer based on the simulations and test results.
The main aim of this research is to design a comprehensive idea about power line communication through transformer in order to propose and examine a novel approach in comparing the different modulation order, different modulation type, and also application of different noise types and applying them to the two modeled channels, Additive White Gaussian Noise (AWGN) and Powerline modeled channel. This is an attempt to understand and recognize the most suitable technique for the transmission of message or image within a communication system. In doing so, MATLAB and embedded Digital Signal Processing (DSP) and Communication systems are used to simulate the operation of virtual transmitter and receiver.
目次 Table of Contents
Table of Contents
Thesis/Dissertation Verification Letter in Chinese i
Thesis/Dissertation Verification Letter in English ii
Declaration iii
Acknowledgement iv
Abstract v
Chinese Abstract vi
Table of Contents vii
List of Figures x
List of Tables xiv
Acronyms xv
Chapter 1
Introduction
1.1 Power Line Communication Systems 1
1.2 Background of The Thesis 3
1.3 Objective of The Thesis 4
1.4 Thesis Outlline 5
Chapter 2
Overview of NB-PLC through Transformer
2.1 History of PLC 13
2.2 Regulatory Standard for NB-PLC 14
2.3 Application of NB-PLC 20
2.4 Fundamentals of Transmission Line Theory 22
2.5 Noise in NB-PLC 33
2.6 Transformer 35
Chapter 3
OFDM Technique for PLC through Transformer
3.1 OFDM for NB-PLC for Better Performance 41
3.2 BER (Bit Error Rate) 47
3.3 SNR (Signal to Noise Ratio) 48
3.4 Simulation and Comparative Performance of OFDM 49
Chapter 4
Simulation and Test Results
4.1 Simulation for NB-PLC through Transformer 58
4.2 Eksperimental Results for NB-PLC through Transformer 68
Chapter 5
Conclusions and Future Work
5.1 Conclusions 79
5.2 Future Work 82
References 84
參考文獻 References
REFERENCES
1. Tanzirul Haq, Investigations into the impedance and communicaton requirement for the low voltage distribution line in the high frequency spectrum, February 2012.
2. M. Arzberger, Datenkommunikation auf elektrischen Verteilnetzen für erweiterte Energiedienstleistungen, Logos Verlag, Berlin, 1998.
3. Regis J. Bud Bales et al., “Voice and Data Communication Handbook”, ISBN-0-07-213188-8, Osborne/Mc Graw Hill, 2001.
4. S. Galli, A. Scaglione and K. Dostert, Broadband is power: Internet access through the power line network. IEEE Commun. Mag.., 41(5), 82–3, May 2003, Guest Editorial.
5. Miss Noushin Karimian, Design and Analysis of OFDM System for Power Line Communication, Uclan, 2011.
6. M. Ardakani, G. Colavolpe, K. Dostert, H. C. Forreiva, D. Fertonani, T. G. Swart, A. M. Tonello, D. Umehara and A. J. H. Vinck, Digital Transmission Techniques, Volume I, 2012, page 218-221.
7. M. Ardakani, G. Colavolpe, K. Dostert, H. C. Forreiva, D. Fertonani, T. G. Swart, A. M. Tonello, D. Umehara and A. J. H. Vinck, Digital Transmission Techniques, Volume I, 2012, page 195-200.
8. M. Ardakani, G. Colavolpe, K. Dostert, H. C. Forreiva, D. Fertonani, T. G. Swart, A. M. Tonello, D. Umehara and A. J. H. Vinck, Digital Transmission Techniques, Volume I, 2012, page 214.
9. F. J. Cañete, J. A. Cortés, L. Díez and J. T. Entrambasaguas, Analysis of the cyclic short-term variation of indoor power line channels. IEEE J. on Sel. Areas in Commun., 24(7), 1327–38, Jul. 2006.
10. I. H. Cavdar, Performance analysis of FSK power line communications systems over the time-varying channels: Measurements and modelling. IEEE Trans. on Power Delivery, 19(1), 111–17, Jan. 2004.
11. Paul Guaming Lin, OFDM Simulation in MatLab, California, June 2010.
12. IEEE Std 1901.2-2013, IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line Communications for Smart Grid Applications, page 9.
13. Y.-H. Kim, H.-H. Song, J.-H. Lee and S.-C. Kim, Wideband channel measurements and modeling for in-house power line communication. Proc. Int. Symp. Power Line Commun. and its Applic., Athens, Greece, Mar. 27–9, 2002.
14. IEEE Std 1901.2-2013, IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line Communications for Smart Grid Applications, page 105.
15. Dan Raphaeli , Amit Grauer. (2000). A new powerline Communications Modem based on a Novel Modulation Technique, ISPLC, pp. 282 – 288.
16. R. Chang and R. Gibby. (August 1968). “A theoretical study of performance of an orthogonal multiplexing data transmission scheme,” IEEE Transactions on Communication Technology, volume 16, pp. 529–540.
17. Z. Peyton and JR. Peebles (1987). Digital Communication Systems. USA: Prentice/Hall International Inc. pp. 5 – 36.
18. N. Pavlidou, A.J. Han Vinck, J. Yazdani, B. Honary, “Power line communications: state of the art and future trends”, Communications Magazine, IEEE, Volume: 41, Issue: 4, Pages: 34 - 40, 2003.
19. J. S. Barnes, A physical multi-path model for power distribution network propagation. Proc. Int. Symp. Power Line Commun. and its Applic., Tokyo, Japan, Mar. 24–6, 1998, pp. 76–89.
20. T. Calliacoudas and F. Issa, Multiconductor Transmission Lines and Cables solver’, an Efficient Simulation tool for PLC Networks Development. Proc. Int. Symp. Power Line Commun. and its Applic., Athens, Greece, Mar. 27–9, 2002.
21. Gorman, M.J., Grainger, J.J. Transformer modeling for distribution system studies. 1. Linear modeling basics. 1992: IEEE Transactions on Power Delivery. Volume: 7, Issue: 2. pp 567-574
22. Tlili. F, Rouissi. F, Ghazel. A: Precoded OFDM for Power Line Broadband Communication. IEICE Trans, Fundamentals, vol. E79-A, No.9, September 1996.
23. Carl Andren: CCK Modulation Delivers 11Mbps for High Rate IEEE 802.11 Extension. Wireless Symposium, 1999
24. Zhang, D.-M., Xu, Y.-Y., Cai, Y.-M.: High efficiency algorithm of power and bit allocation for OFDMA system. Journal on Communications 29(4) (April 2008).
25. Ding, L., Yin, Q.-Y., Dengke: A Computationally Efficient Transmit Power and Bit Allocations Algorithm for Wireless OFDM Systems. Journal of Electronics & Information Technology 29(7) (July 2007)
26. Design of PLC-Based Identifier to Support Transformer Load Management in Taipower Chao-Shun Chen, Senior Member, IEEE, Te-Tien Ku, and Chia-Hung Lin, Member, IEEE. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 46, NO. 3, MAY/JUNE 2010, page 1072.
27. Nassar, M., Lin, J., Mortazavi, Y., Dabak, A., Kim, H., Evans, B.L.: Local utility powerline communications in the 3–500 kHz band: channel impairments, noise, and standards. IEEE Signal Process. Mag. 29, 116–127 (2012).
28. I. Papaleonidopoulos, C. Capsalis, C. Karagiannopoulos, and N. Theodorou, “Statistical analysis and simulation of indoor singlephase low voltage power-line communication channels on the basis of multipath propagation,” IEEE Trans. Consumer Electron., vol. 49, no. 1, pp. 89–99, Feb. 2003.
29. Ferreira, H.C. Grove, H.M. Hooijen, O. Han Vinck, A.J.: Power Line Communi-cation: An Overview. IEEE AFRICON 4th, Vol.2, pp.558-563 199.
30. Bernard Sklar (Jan 2001). Digital Communications Fundamentals and Applications. 2nd ed. California and University of California, Los Angeles: Prentice/Hall International Inc. pp. 2-5, 169.
31. http://www.webopedia.com/TERM/B/BER.html. Accessed on 15 June 2017.
32. https://en.wikipedia.org/wiki/Signal-to-noise_ratio, accessed on 10 June 2017
33. Karadeniz, E. Determining of Impedance and Attenuation on Power Line Communication System. MSc Thesis, Karadeniz Technical University: Trabzon, Turkey, 2006.
34. H. Philipps, “Performance measurements of power line channels at high frequencies,” in Proc. of IEEE Int. Symp. on Power Line Commun. And its App., Japan, March 1998, pp. 229 – 237.
35. B. Praho, M. Tlich, P. Pagani, A. Zeddam, and F. Nouvel, “Cognitive detection method of radio frequencies on power line networks,” in Proc. of IEEE Int. Symp. on Power Line Commun. and its App., Brazil, March 2010.
36. A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power Energy Mag., vol. 7, no. 2, pp. 52–62, Mar./Apr. 2009.
37. Channel Model Sub-committee of P1901, "Electrical Network and Topology Channel and Noise Model," P1901-10-0356-00, Sept. 2010.
38. T. E. Lee, Y. M. Tzeng, C. S. Chen, J. S. Wu, and C. C. Lee, “Application of automated mapping system to distribution transformer load management,” in Proc. IEE Japan Power Energy Conf., 1994, pp. 65–70.
39. K. Razazin, M. Umari, A. Kamalizad, V. Loginov, M. Navid, G3-PLC Specification for Powerline Communications: Overview, System Simulation and Field Trial Results, ISPLC, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code