Responsive image
博碩士論文 etd-0631118-093859 詳細資訊
Title page for etd-0631118-093859
論文名稱
Title
利用廢油泥與農業廢棄物製成各式鍋爐所需熱值RDF-5之研究
The study of producing RDF-5 to required heating value of various boiler by using waste oil sludge and agricultural waste.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-12
繳交日期
Date of Submission
2018-07-31
關鍵字
Keywords
油泥、農業廢棄物、再利用,輔助性燃料、RDF-5、鍋爐
Boiler, Oil sludge, Agricultural waste, RDF-5, Supplementary fuel, Reuse
統計
Statistics
本論文已被瀏覽 5690 次,被下載 4
The thesis/dissertation has been browsed 5690 times, has been downloaded 4 times.
中文摘要
近年來,全球各地許多國家積極地發展工業,大量使用石化燃料造成大量之溫室氣體產生,同時也產生許多的工業污染物,如電鍍工業產生之重金屬廢水、廢水處理產生之污泥以及於煉油廠、鋼鐵工廠或冷熱軋廠所產生之油泥。傳統上油泥處理多為以掩埋方式進行最終處理,對於事業單位來說,填埋屬於成本低廉且最為簡易之方式,然而掩埋場之容量有其極限,再加上存在污染物溶出風險,對環境仍有一定的衝擊。現今資源再利用環保意識日益高漲,為了降低燃料污染與使用成本並達成善盡廢棄物資源化再利用及環境友善之目標,本計畫選用生質物之農業廢棄物稻稈及甘蔗渣作為骨材,再與合法的廢油泥回收公司提供之混合油泥均勻混合後進行壓錠,以製成固態廢棄物衍生燃料−RDF-5,而其做為燃料時,含有體積減量、有效利用油泥熱值、增加可磨性、除臭、抑制 N2O排放、容易保存等眾多優點,不僅使企業產生更多的經濟效益,同時能達到廢棄物減量、降低污染之目的。本計畫與產業進行合作,利用油泥製備RDF-5,應用於廢棄物焚燒廠、發電廠等產業上,可降低環境污染、增加企業競爭,朝向現今政府推廣「垃圾零廢棄」目標邁進。
Abstract
In recent years, many countries around the world have been actively developing their industries. The heavy use of fossil fuels not only causes a large amount of greenhouse gases, but also produces many industrial pollutants. Such as heavy metal wastewater from the electroplating industry, sludge from wastewater treatment and sludge from refineries, steel plants or cold and hot rolling mills. Traditionally, oil sludge treatment is mostly carried out by landfill. For public utilities, landfill is a cheap and easy way, but this way has a risk. This project intends to use raw materials of agricultural waste rice straw and bagasse as aggregate, recycled waste polyethylene as curing agent, and then mixed with waste sludge to make the refuse derivative fuel - RDF-5. RDF-5 has many advantages like volume reduction, effective use of sludge heat value, increase grindability, deodorant, inhibition of N2O emissions, easy to save. The project, in cooperation with the industry, uses sludge to prepare RDF-5 for applications in waste incineration plants and power plants to reduce environmental pollution and increase competition among enterprises. Toward the present government to promote "waste zero waste" goal.
目次 Table of Contents
目錄
學位論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標 3
第二章 文獻回顧 5
2-1油泥來源 5
2-2油泥之組成與特性 5
2-3油泥處理技術 9
2-4固化劑 13
2-4-1固化劑之種類及用途 13
2-4-2廢棄回收聚乙烯之燃燒特性分析 16
2-5 農業廢棄物 17
2-5-1稻米收穫及供給量 20
2-6生質物共燃燒的材料特性與燃燒效果 21
2-7廢棄物衍生燃料(RDF) 24
2-8鍋爐 26
2-8-1鍋爐原理及種類 26
2-8-2鍋爐燃料 28
第三章 研究方法 31
3-1研究架構與流程 32
3-2實驗材料與藥品 33
3-3實驗步驟流程 34
第四章 結果與討論 42
4-1 資材基本性質分析 42
4-2 資材最佳混合比例分析 44
4-4 元素分析 50
4-4-1 未混合之資材 50
4-4-2 廢棄黃油分別混合稻稈或甘蔗渣 54
4-4-3 工業廢油分別混合稻稈或甘蔗渣 57
4-5 燃燒試驗 60
4-5-1 廢棄黃油與稻稈或甘蔗渣混合 60
4-5-2 工業廢油與稻稈或甘蔗渣混合 62
4-6 熱值檢測 64
4-6-1 原資材熱值分析 64
4-6-2 混合資材之熱值檢測 65
4-7 資材混合之重金屬含量 71
4-7-1 廢棄黃油與稻稈或甘蔗渣混合 71
4-7-2 工業廢油與稻稈或甘蔗渣混合 75
4-7-3 燃燒後廢棄黃油與工業廢油之混和油品重金屬含量 78
4-8 燃燒氣體分析 84
4-8-1 廢棄黃油與稻稈或甘蔗渣混合後燃燒氣體分析 84
4-8-2 工業廢油與稻稈或甘蔗渣混合後燃燒氣體分析 86
4-9混合資材PM2.5燃燒排放 90
4-9-1 廢棄黃油與稻稈或甘蔗渣混合燃燒後PM2.5分析 90
4-9-2 工業廢油與稻稈或甘蔗渣混合燃燒後PM2.5分析 91
4-10成本效益分析 93
第五章 結論與建議 97
5-1結論 97
5-2建議 98
第六章 參考文獻 99


圖目錄
圖1-1 歷年來全球石化業二氧化碳排放量統計 1
圖1-2 近年全球大氣中CO2之濃度統計 2
圖2-1 高密度聚乙烯(HDPE)回收代碼 15
圖2-2 低密度聚乙烯(HDPE)回收代碼 15
圖2-3 農業剩餘物分類圖 18
圖2-4 廢棄衍生燃料分類、發電效率及主要應用 26
圖2-5 鍋爐系統流程示意圖 27
圖3-1 本研究之實驗流程圖 32
圖3-2 元素分析儀 36
圖3-3 感應耦合電漿原子發射光譜儀 37
圖3-4 研磨機 38
圖3-5 直讀式氣體偵測儀 38
圖3-6 循環送風式烘箱 39
圖3-7 PM2.5採樣管 39
圖3-8 微量分析電子天平 39
圖3-9 熱重分析儀 40
圖3-10 壓錠機 41
圖4-1 廢棄黃油 44
圖4-2 工業廢油 44
圖4-3 稻稈 44
圖4-4 甘蔗渣 44
圖4-5 廢棄黃油1:1混合 45
圖4-6 廢棄黃油2:1混合 45
圖4-7 廢棄黃油3:1混合 45
圖4-8 工業廢油1:1混合 45
圖4-9 工業廢油2:1混合 45
圖4-10 工業廢油3:1混合 45
圖4-11 混合比1:1壓錠 45
圖4-12 混合比2:1壓錠 45
圖4-13 油品及生質物碳含量 52
圖4-14 廢棄黃油與稻稈混合之C%變化 56
圖4-15 廢棄黃油與甘蔗渣混合之C%變化 56
圖4-16 工業廢油與稻稈混合之C%變化 59
圖4-17 工業廢油與甘蔗渣混合之C%變化 59
圖4-18 廢棄黃油與稻稈混合 61
圖4-19 廢棄黃油與甘蔗渣混合 61
圖4-20 工業廢油與稻稈混合 63
圖4-21 工業廢油與甘蔗渣混合 63
圖4-22 原資材之熱值與含碳量比較 68
圖4-23 廢棄黃油與農業廢棄物混合之熱值與含碳量比較 68
圖4-24 工業廢油與農業廢棄物混合之熱值與碳含量比較 69
圖4-25 廢棄黃油與稻稈混合之Zn變化 73
圖4-26 廢棄黃油與稻稈混合之Cr、Ni變化 73
圖4-27 廢棄黃油與甘蔗渣混合之Zn變化 74
圖4-28 廢棄黃油與甘蔗渣混合之Cr、Ni變化 74
圖4-29 工業廢油與稻稈混合之重金屬變化 77
圖4-30 工業廢油與甘蔗渣混合之重金屬變化 77
圖4-31 廢棄黃油與稻稈混合燃燒後Zn之變化 80
圖4-32 廢棄黃油與稻稈混合燃燒後Cr、Ni之變化 80
圖4-33 廢棄黃油與甘蔗渣混合燃燒後Zn之變化 81
圖4-34 廢棄黃油與甘蔗渣混合燃燒後Cr、Ni之變化 81
圖4-35 工業廢油與稻稈混合燃燒後之重金屬變化 82
圖4-36 工業廢油與甘蔗渣混合燃燒後之重金屬變化 83
圖4-37 黃油稻稈比2:1之空氣污染排放濃度 86
圖4-38 黃油甘蔗渣比2:1之空氣污染排放濃度 86
圖4-39 廢油稻稈比2:1之空氣污染排放濃度 88
圖4-40 廢油甘蔗渣比2:1之空氣污染排放濃度 89



表目錄
表2-1 油田油泥與油池油泥之組成比例 6
表2-2 各廠所提供之油泥基本資料 8
表2-3 油泥殘渣粒徑分佈特徵參數 9
表2-4 回收聚乙烯袋與純聚乙烯之元素分析 16
表2-5 廢PE於不同溫度下燃燒之碳成分排放 17
表2-6 廢PE於不同溫度下燃燒之氮成分排放 17
表2-7 農業廢棄物之種類及項目 19
表2-8 2011年至2016年稻米收獲數量 20
表2-9 2011至2015稻米供給量 21
表2-10 各種生物質之性質分析 22
表2-11 稻稈與甘蔗渣主要元素分析值 22
表2-12 稻稈與甘蔗渣之性質分析 22
表2-13 稻稈、甘蔗渣與油泥之熱值 24
表2-14 各種生物質之發熱量 24
表2-15 各種燃料使用成本 30
表3-1 實驗藥品與耗材 33
表3-2 油泥與骨材之比例 34
表4-1 油泥與稻稈及甘蔗渣之三成分分析 43
表4-2 油泥、稻稈及甘蔗渣重金屬含量 48
表4-3 土壤污染管制標準 48
表4-4 歐盟規定土地施用之重金屬濃度標準 49
表4-5 油泥、稻稈、甘蔗渣之基本元素分析 53
表4-6 廢棄黃油分別混合稻稈或甘蔗渣 55
表4-7 工業廢油分別混合稻稈或甘蔗渣 58
表4-8 混合樣品燃燒試驗之碳含量分析 60
表4-9 混合樣品燃燒試驗之碳含量分析 62
表4-10 原料之熱值檢測 64
表4-11 混合資材之熱值 66
表4-12 資材熱值與含碳量 67
表4-13 各式燃料熱值 70
表4-14 各式燃料之用途 70
表4-15 廢棄黃油分別混合稻稈或甘蔗渣 72
表4-16 工業廢油分別混合稻稈或甘蔗渣 76
表4-17 廢棄黃油分別混合稻稈或甘蔗渣燃燒後之重金屬含量 79
表4-18 工業廢油分別混合稻稈或甘蔗渣燃燒後之重金屬含量 82
表4-19 混合樣品燃燒試驗之氣體分析 85
表4-20 工業廢油混合燃燒試驗之氣體分析 88
表4-21 廢棄黃油與生質物燃燒PM2.5排放濃度 91
表4-22 工業廢油與生質物燃燒PM2.5排放濃度 92
表4-23 設備(含維修)成本 93
表4-24 人力、投料及水電費成本(a) 94
表4-25 成本效益總表(a) 94
表4-26 人力、投料及水電費成本(b) 95
表4-27 成本效益總表(b) 95
表4-28 燃煤、RDF-5價格 96
參考文獻 References
第六章 參考文獻
Agustín G. B., Julia M., José A., Juan A. C. Thermogravimetric monitoring of oil refinery sludge. Journal of Analytical and Applied Pyrolysis, 2014, 105, 8-13.
Anufriev R. V., Volkova G. I., Vasilyeva A. A., Petukhov A. V., Usheva N. V. The Integrated Effect on Properties and Composition of High-paraffin Oil Sludge. Procedia Chemistry, 2015, 15, 2-7.
Buddhike N.M., Suyin G., Caro E., Hoon K.N. “Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques.” Fuel Processing Technology. 2017(59), 287–305.
Castorena C. G., Roldán C. T., Zapata P. I., Reyes A. J., Quej A. L., Marín C. J., Olguín L. P. Microcosm assays and Taguchi experimental design for treatment of oil sludge containing high concentration of hydrocarbons. Bioresource Technology, 2009, 100, 5671-5677.
Chen X., Xu R., Xu Y., Hu H., Pan S., Pan H. Natural adsorbent based on sawdust for removing impurities in waste lubricants. Journal of Hazardous Materials. 2018, 350, 38-45.
Chien-Song Chyang., Yun-Long Han., Li-Wei Wu., Hou-Peng Wan., Hom-Ti Lee., Ying-His Chang. “An investigation on pollutant emissions from co-firing of RDF and coal” Waste Management. 2010. Pages 1334-1340.
Choi P., Wang Q., Vignol E. Molecular dynamics study of the conformation and dynamics of precisely branched polyethylene. Polymer, 2014, 55, 5734-5738.
Chyang C. S., Han Y. L., Wu L. W., Wan H. P., Lee H. T., Chang Y. H. An investigation on pollutant emissions from co-firing of RDF and coal. Waste Management, 2010, 30, 1334-1340.
Collivignarelli M. C., Abbà A., Padovani S., Frascarolo M., Sciunnach D., Turconi M., Orlando M. Recovery of sewage sludge on agricultural land in Lombardy: current issues and regulatory scenarios. Environmental Engineering and Management Journal, 2015, 14, 7, 1477-1486.
Decker J. J., Meyers J. P., Paul D. R., Schiraldi D. A., Hiltner A., Nazarenko S. Polyethylene-based nanocomposites containing organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. Polymer, 2015, 61, 42-54.
Deng S. H., Wang X. B., Tan H. H., Mikulčić H., Yang F. X., Li Z. F., Duić N., Thermogravimetric study on the Co-combustion characteristics of oily sludge with plant biomass. Thermochimica Acta, 2016, 633, 69-79.
Deyab M. A., Riccardis D. A., Mele G. Novel epoxy/metal phthalocyanines nanocomposite coatings for corrosion protection of carbon steel. Journal of Molecular Liquids, 2016, 220, 513-517.
Diop M. F., Burghardt W. R., Torkelson J. T. Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer, 2014, 55, 4948-4958.
Eliche Q. D., Cunha R. A. D., Corpas I. F. A. Effect of sludge from oil refining industry or sludge from pomace oil extraction industry addition to clay ceramics. Applied Clay Science, 2015, 144, 202-211.
Feng L., Luo J., Chen Y. Dilemma of Sewage Sludge Treatment and Disposal in China. Science of The Total Environment, 2015, 49, 4781−4782.
Futalan C.M., Kan C.C., Dalida M.L., Pascua C., Wan M.W. “Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite.” Carbohydrate Polymers. 2011(83), 697–704.
George J., Moraes R., Viviane M. N., Adilson R. G., Vinicius F. N. S., Carlos M. Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Industrial Crops and Products, 2015, 64 ,52-58.
Hales R. L. Questioning Canada’s Fossil Fuel Emissions. ECOreport, 2016.
Hou S. S., Chenb M. C., Lin T. H. Experimental study of the combustion characteristics of densified refuse derived fuel (RDF-5) produced from oil sludge. Fuel, 2014, 116, 201-207.
Hou S.S., Chen M.C., Lin T.H. “Experimental study of the combustion characteristics of densified refuse derived fuel (RDF-5) produced from oil sludge” Fuel. 2014. Pages 201-207.
Hu G., Li J., Houc H. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge. Journal of Hazardous Materials, 2015, 283, 832-840.
Hu Q. Y., Li M., Wang C., Ji M. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater. Journal of Hazardous Materials, 2015, 295, 1-8.
Huang Y.F., Shih C.H., Chiueh P.T., Lo S.L. “Microwave co-pyrolysis of sewage sludge and rice straw.” Energy. 2015(87), 638–644.
Huanga H.J., Yanga T., Laia F.Y., Wub G.Q., “Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar.” ournal of Analytical and Applied Pyrolysis. 2017(125), 61–68.
Idris J., Shirai Y., Andou Y., Ali M. A. A., Othman R. M, Ibrahim I., Hassan A. M. Self-sustained carbonization of oil palm biomass produced an acceptable heating value charcoal with low gaseous emission. Journal of Cleaner Production, 2015, 89, 257-261.
Ihsan U., Raziya N., Munawar I., Qaisar M. “Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass.” Ecological Engineering. 2013, Pages 99-107.
Imane T., Younes C., Fatima E.M.A., Amal E.O., Abdelaziz S.D., Fouad B., Charafeddine J., Mohammed B. “Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste.” Waste Management. 2017(61), 78–86.
Kaye, George W. C. Kaye and Laby Tables of Physical and Chemical Constants. National Physical Laboratory. 2008.
Kim S. J., Moon H. J., Kim J. K. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel. Thermochimica Acta, 2015, 613, 9-16.
Kliopova I., Makarskiene K. Improving material and energy recovery from the sewage sludge and biomass residues. Waste Manage, 2015, 36, 269–276.
Kung-Yuh Chiang., Jer-Chyuan Jih., Kae-Long Lin. “The effects of calcium hydroxide on hydrogen chloride emission characteristics during a simulated densified refuse-derived fuel combustion process”. Journal of Hazardous Materials. 2008. Pages 170-178.
Kurchenko A. K., Murygina V. P., Gaidamaka S. N. Comparison of bioremediation technologies for preliminary washed oil sludge in Komi Republic. Journal of Biotechnology. 2010, 150, 213-214.
Lei Zhao., Apostolos Giannis., Wan-YeeLam., Sheng-Xuan Lin., Ke Yin., Guo-An Yuan., Jing-YuanWang. “Characterization of Singapore RDF resources and analysis of their heating value” Sustainable Environment Research. 2016. Pages 51-54.
Leila Emami-Taba., Muhammad Faisal Irfan., Wan Mohd Ashri Wan Daud., Mohammed HarunChakrabarti. “Fuel blending effects on the co-gasification of coal and biomass – A review” Biomass and Bioenergy. 2016., Pages 249-263.
Leiva M.B., Koupaie E.H., Eskicioglu C. Anaerobic co-digestion of wine/fruit-juice production waste with landfill leachate diluted municipal sludge cake under semi-continuous flow operation. Waste Management, 2014, 34, 1860-1870.
Lin B.Q., Han J., He X., Zhan Y., Yu F. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. Journal of Environmental Management, 2015, 154, 177-182.
Lin Y., Liao Y., Yu Z., Fang S., Lin Y., Fan Y., Peng X., Ma X. Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energy Conversion and Management, 2016, 118, 345-352.
Liu J., Jiang X., Zhou L., Wang H., Han X. Co-firing of oil sludge with coal–water slurry in an industrial internal circulating fluidized bed boiler. Journal of Hazardous Materials, 2009, 167, 817-823.
Loskutova Y. V., Ryzhov N. S., Yudin N. V., Beshagin E. V. The Influence of Processing Conditions on the Sedimentation Kinetics of Highly Waxy Crude Oil. Procedia Chemistry, 2015, 15, 49-53.
Ma Z. Z., Gao N. B., Xie L., Li A. Study of the fast pyrolysis of oilfield sludge with solid heat carrier in a rotary kiln for pyrolytic oil production. Journal of Analytical and Applied Pyrolysis, 2014, 105, 183-190
Materazzi M., Lettierib P., Taylor R., Chapman C. Performance analysis of RDF gasification in a two stage fluidized bed–plasma process . Waste Management, 2016, 47, 256-266.
Maxence F., Camille M., Bernard B., Sylvain C. Amine hardeners and epoxy cross-linker from aromatic renewable resources. European Polymer Journal, 2015, 73, 344-362.
Meng J., Tao M., Wang L., Liu X., Xu J. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Science of The Total Environment, 2018, 633, 300-307
Mike A.A., Joana P.C.P., Roel J.W.M., Piet N.L.L. “Biosorption of Cu(II) onto agricultural materials from tropical regions.” Chemical Technology and Biotechology. 2011( 86), 1184-1194.
Moltó J., Barneto A. G., Ariza J., Conesa J. A. Gas production during the pyrolysis and gasification of biological and physico-chemical sludges from oil refinery. Journal of Analytical and Applied Pyrolysis. 2013, 103, 167-172.
National Oceanic and Atmospheric Administration (NOAA). CO2 Monthly measurements. 2016.
Nutongkaew P., Waewsak J., Chaichana T., Gagnon Y. Greenhouse Gases Emission of Refuse Derived Fuel-5 Production from Municipal Waste and Palm Kernel. Energy Procedia, 2014, 52, 362-370.
Obi O. F. Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette. Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette, 2015, 52, 1749-1758.
Ouiminga S. K., Rogaume T., Daho T., Yonli A. H., Koulidiati J. Reductive and oxidative combustion of polyethylene bags: Characterization of carbonaceous and nitrogenous species. Journal of Analytical and Applied Pyrolysis, 2014, 98, 72-78.
Pánek P., Kostura B., Čepelákov I., Koutník I., Tomšej T. Pyrolysis of oil sludge with calcium-containing additive. Journal of Analytical and Applied Pyrolysis, 2014, 108, 274-283.
Park S. J., Lee S. G. Studies on Surface Free Energy of an Anhydride–Epoxy Cured System: Effect of Side Alkenyl Chain Length of Hardener on Tensile and Impact Properties. Journal of Colloid and Interface Science, 2000, 228, 90-94.
Park S. W., Jang C. H. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants. Waste Manage, 2011, 31, 523-529.
Park S. W., Jang C. H. Fuel characteristics of sewage sludge as alternative fuel of coal, 2010.
Pemberton P.C., Annegarn H., Cook C. “Emissions reductions from domestic coal burning—practical application of combustion principles.” Technology. 2009.
R.Sarc., K.E.Lorber.“Production, quality and quality assurance of Refuse Derived Fuels (RDFs).” Waste Management. 2013. Pages 1825-1834.
Rout T., Pradhan D., Singh R.K., Kumari N. “Exhaustive study of products obtained from coconut shell pyrolysis.” Journal of Environmental Chemical Engineering. 2016(4), 3696-3705.
Shie J. L., Chang C. Y., Lin J. P., Wu C. H., Lee D. J. Resources recovery of oil sludge by pyrolysis: kinetics study. Journal of Chemical Technology and Biotechnology, 2000, 75(6), 443-450.
Shin J., Liu X., Chikthimmah N., Lee Y. S. Polymer Surface Modification Using UV treatment for Attachment of Natamycin and the Potential Applications for Conventional Food Cling Wrap (LDPE). Applied Surface Science, 2016, 31.
Su J.B., Gao J.Y., Huang X.Y. Research Progress of Several High Value Application of Bagasse. 2012, 49-52.
Syeda Azeem Unnisa., Malek Hassanpour. “Development circumstances of four recycling industries (used motor oil, acidic sludge, plastic wastes and blown bitumen) in the world. ” Renewable and Sustainable Energy Reviews. 2017, Pages 605-624.
Thangalazhy G. S., Nadheri W. M. A., Jegarajan D., Sahu J. N., Mubarak N. M., Nizamuddinb S. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresource Technology, 2015, 178, 65-69.
Tripathi M., Sahu J. N., Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review., 2015, 55, 467-481.
Vasudevan N., Rajaram P. Bioremediation of oil sludge-contaminated soil. Environment International, 2001, 26, 409-411.
Wan H.P., Chang Y.H., Chien W.C., Lee H.T., Huang C.C. “Emissions during co-firing of RDF-5 with bituminous coal, paper sludge and waste tires in a commercial circulating fluidized bed co-generation boiler”. Fuel. 2008. Pages 761-767.
Wan H.W. A., Jong B.C., Zainul A.Z., Wan A.A. “Sugarcane bagasse as nutrient and support material for Cr(VI)-reducing biofilm. ” International Biodeterioration & Biodegradation. 2015, Pages 3-10.
Wang N. Y., Shih C. H., Chiueh P. T., Huang Y. F. Environmental Effects of Sewage Sludge Carbonization and Other Treatment Alternatives, 2013.
Wang S., Wang X., Zhang C., Li F., Guo G. L. Bioremediation of oil sludge contaminated soil by landfarming with added cotton stalks. International Biodeterioration & Biodegradation, 2016, 106, 150-156.
Yang Z. H., Xua R., Zheng Y., Chen T., Zhao L. J., Li M. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease. Bioresource Technology, 2016, 212, 164-173.
Yee W. Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. Bioresource Technology, 2015, 196, 1-8.
Zhanying Z., Lalehvash M., Ian M.O., William O.S.D. “Congo Red adsorption by ball-milled sugarcane bagasse.” Chemical Engineering Journal. 2011, Pages 122-128.
Zheng C., Wang M., Wang Y., Huang Z. Optimization of biosurfactant-mediated oil extraction from oil sludge. Bioresource Technology. 2012, 110, 338-342.
中華民國經濟部工業局,2015,經濟部事業廢棄物再利用法令及再利用機構運作注意事項,法令宣導說明會簡報。
台灣電力公司,2016,105年化石燃料成本重估之說明。
台灣電力股份有限公司,2017,台電公司燃煤現貨採購價格,台灣資訊開放平台,https://data.gov.tw/dataset/9749。
司洪濤,2015,廢棄物衍生燃料新技術與應用成功案例介紹,工業安全衛生室
向文川,2011,城市污水污泥乾化焚燒工藝的碳排放研究,中國西南交通大學市政工程,碩士論文。
江康鈺,張木彬,簡光勵,余崇聖,洪沂潁,2011,燃煤過程重金屬物種形成潛勢預測分析與相態分佈特性之研究,環保署/國科會空污防制科研合作計畫研究成果。
污泥及沉積物中重金屬檢測方法-酸消化法(NIEA M353.01C),中華民國91年11月28日環署檢字第0910083731號公告。
行政院經濟建設委員會,2003,挑戰二OO八:國家發展重點計畫,台北。
行政院農業委員會,農業統計年報,2016年。
行政院環保署,2015,104 年度有害事業廢棄物之調查與評估專案研究計畫。
行政院環境保護署,https://air.epa.gov.tw/
何宜倫,2012,半導體及LED廢切削油泥再利用之可行性研究,國立中央大學環境工程研究所,碩士論文。
何浩、王愛軍、張誌慶、徐磊,2010,新疆油田含油污泥特性研究,油氣田環境保護,第19卷,第3期,第31~35頁。
吳耿東,2015,生質能源開發技術與展望,國立中興大學。
李得元,2011,煤渣資源回收再利用之成本效益分析,嘉南藥理科技大學環境資源管理系,嘉南學報第三十七期,第182~187頁。
阮慕玲、林燕輝、黃浩梁,2004,事業廢棄物重金屬溶出回收現況概述,工安環保專欄,第22期。
事業廢棄物水分測定方法-間接測定法(NIEA R203.02C),中華民國98年5月11日環署檢字第0980040837A號公告。
幸福水泥股份有限公司民國102年企業社會責任報告書,2013,幸福水泥股份有限公司。
林文祥,2009,節能技術與案例介紹,台灣綠色生產力基金會。
林柏伸,2012,燃煤及稻稈純氧燃燒特性之模擬與分析,台灣成功大學機械工程學系,碩士論文。
空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法(NIEA A205.11C),中華民國101年4月24日環署檢字第1010033956號公告。
張世萱,2011,油泥脫鹽及其轉製廢棄物衍生燃料技術研究,國立台灣大學環境工程研究所,碩士論文。
張加欽,2007,原油儲槽清槽產生槽底有害油泥處理方式邊界初探,國立屏東科技大學環境工程研究所,碩士論文。
陳洪勇,金余其,崔潔,鄭曉園,鄭耀根,2015,原油罐底油泥的理化特性研究,能源與環境。
勞動部勞動及職業安全衛生研究所,2013,原油污泥自燃特性研究。
黃啟民,蔗渣資源化再利用,台灣糖業研究所,1999。
楊學翰,高麗菜廢葉添加雞糞與不同副資材堆肥化之研究,國立中興大學生物產業機電工程學系,2015。
經濟部工業局,2015,工業廢棄物清理與資源化資訊網。
萬皓鵬,2014,生質物─後化石世代的重要能源與工業原料,科學發展,第497期。
萬皓鵬,李宏台,2010,廢棄物衍生燃料的使用,科學發展,第450期。
葛家賢、吳佩芬,固態廢棄物衍生燃料技術簡介,工研院能源與資源研究所。
廖怡慧,2012,稻稈生質炭對重金屬銅、鋅、鎳、鎘、鉛吸附反應之探討,國立中興大學土壤環境科學系所,碩士論文。
碳、氫、硫、氧、氮元素含量檢測方法-元素分析儀法 (NIEA M403.00C),中華民國102年6月7日環署檢字第1020048013號公告。
臺北市政府產業發展局公用事業科,2010,廢棄物衍生燃料概述,廢棄物衍生燃料的使用科學發展,第450期。
劉宗宏、吳紹榮、歐廸政,2009,利用甘蔗渣廢棄物製備含高中孔洞結構比例與高吸附容碳材料之資源回收與利用研究,明志科技大學化學工程系。
劉家佑,陳冠邦,李嘉文,趙怡欽,2015,五節芒草與其生質炭燃燒特性之研究,國立成功大學。
劉廣尉,2011,生質能-生活中的低碳能源。
廢棄物中灰分、可燃分測定方法(NIEA R205.01C),中華民國92年11月17日環署檢字第 0920083144 號公告。
廢棄物熱值檢測方法-燃燒彈熱卡計–絕熱式熱卡計法(NIEA R214.01C),中華民國93年1月19日環署檢字第0930084869號公告。
戴文堅,2013,區域垃圾資源化處理及其管理之研究-以A地區為例,國立臺北科技大學工程科技研究所,博士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code