Responsive image
博碩士論文 etd-0631118-120005 詳細資訊
Title page for etd-0631118-120005
論文名稱
Title
高效率輕載模式之直流直流轉換器與動態電壓校正庫倫積分之電量估測電路
A PWM-based DC-DC Buck Converter with High-efficiency Light Load Mode Operation and SOC Estimation Circuit Using Coulomb Counting Method with Dynamic Voltage Calibration
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-07-31
關鍵字
Keywords
電池、直流直流轉換器、開關數量、庫倫積分法、動態電壓、電池監控
battery, DC-DC converter, dynamic voltage, BMS, coulomb counting, power switches
統計
Statistics
本論文已被瀏覽 5660 次,被下載 1
The thesis/dissertation has been browsed 5660 times, has been downloaded 1 times.
中文摘要
本論文研究題目係「水下載具動力與導航即時運算晶片系統開發(II)」研究計畫之電池管理系統中的兩個子電路,分別為高效率輕載模式直流直流轉換器以及動態電壓校正庫倫積分之電量估測電路,分別使用TSMC 0.50 μm CMOS High Voltage以及TSMC 0.18 μm 製程,來完成晶片下線與量測。

本論文所提之高效率輕載模式直流直流轉換器,係針對傳統使用脈衝寬度調變控制方法的直流直流轉換器,其輕載轉換效率不佳的問題加以改善。藉由控制高壓電晶體的數量,減少切換損耗使得輕載操作的轉換效率顯著地提升,因為在輕載時高壓電晶體的數量則根據導通損耗以及切換損耗公式推導而決定。本論文所提出控制高壓電晶體數量的方式是一種有效且簡單的方法,在輕載轉換效率上能提高36%,直流直流轉換器在非輕載時的轉換效率也不會因此降低,整體效率值最高可達到91.68%。

另外,本論文針對水下無人載具的使用特性,實現一種具避險機制的電池電量估測電路。因為庫倫積分法對於誤差有累積性,因此有可能會出現實際電池電量與估測出的電量相差甚遠的情形,因此對於電池電量準確度十分要求的水下載具而言,誤差的累積甚至可能影響是否可將水下載具收回。本論文所採用的方式為根據放電電壓曲線與電池電量的關係圖,判斷目前電池電壓的變化是否符合其所對應的電池電量,以檢測庫倫積分法所估測的電量是否正確。藉由把電池電壓變化加入估測的考量,可有效增加電池電量估測電路的可靠性。
Abstract
The research topics of this thesis are related to two sub-circuits in a Battery Management System of the AUV research project, which are a PWM-based DC-DC buck converter with high-efficiency light load mode operation and SOC estimated circuit using Coulomb counting method with dynamic voltage calibration. They are realized using TSMC 0.50 um CMOS High Voltage and TSMC 0.18 um CMOS processes, respectively. The first topic is meant to resolve the poor efficiency in the light load operation of PWM-based DC/DC converters. By turning off an optimal number of power MOSFETs, the switching loss is reduced such that the efficiency is enhanced effectively. Most importantly, the optimal light load efficiency is found by the derivation of analytic equations, and then justified by post-layout simulations to prove the best efficiency theoretically. The light load mode efficiency is proved to be improved by 36%, while the peak efficiency is 91.68%.

Since AUV (autonomous underwater vehicle) is only operated by battery power, the correct information of SOC (state of charge) is a must for safety. Although coulomb counting
method has been widely used for SOC estimation, it is suffered from the accumulative error. The consequence is that the actual battery’s capacity is far from the estimated capacity.
To reduce the error therein between, the function between the battery voltage and the capacity is used to calibrate the estimated capacity. Namely, by taking the battery voltage variation into the estimation, the reliability of the SOC estimation circuit can be effectively enhanced.
目次 Table of Contents
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1 概論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關文獻與研究探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 直流直流轉換器控制方法與其優缺點. . . . . . . . . . . . . . 4
1.2.2 直流直流轉換器架構. . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 直流直流轉換器控制方法. . . . . . . . . . . . . . . . . . . . 6
1.2.4 電量估測技術. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 高效率輕載模式直流直流轉換器. . . . . . . . . . . . . . . . 9
1.3.2 動態電壓校正庫倫積分之電量估測電路. . . . . . . . . . . . 10
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 高效率輕載模式直流直流轉換器. . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 直流直流轉換器損耗分析. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 直流直流轉換器損耗最佳化. . . . . . . . . . . . . . . . . . . . . . . 13
2.4 高效率輕載模式直流直流轉換器系統架構. . . . . . . . . . . . . . . 15
2.5 高效率輕載模式直流直流轉換器電路設計. . . . . . . . . . . . . . . 16
2.5.1 直流直流轉換器核心. . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 誤差放大器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 脈衝寬度調變電路. . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 停滯時間電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.5 輕負載控制電路. . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 預計規格與電路模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.1 預計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.2 電路模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.3 預計規格與模擬結果比較. . . . . . . . . . . . . . . . . . . . 26
2.8 晶片量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8.1 量測環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8.2 量測結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8.3 量測結果與模擬結果比較. . . . . . . . . . . . . . . . . . . . 31
2.9 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 動態電壓校正庫倫積分之電量估測電路. . . . . . . . . . . . . . . . . . . . 33
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 電池特性實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 中央控制單元與估測電路. . . . . . . . . . . . . . . . . . . . 35
3.3.2 庫倫積分電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 開迴路電壓偵測電路. . . . . . . . . . . . . . . . . . . . . . . 38
3.3.4 斜率校正電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 電路模擬結果與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1 電路模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 規格與模擬結果比較. . . . . . . . . . . . . . . . . . . . . . . 46
3.6 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 研究成果與結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 未來研究規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
參考文獻 References
[1] 科學人雜誌, 改變世界的概念車. [Online]. Available: http://sa.ylib.com/MagArticle.aspx?Unit=featurearticles&id=150.

[2] 清流月刊, 人水下載具(UUV) 的現況與未來. [Online]. Available: https://goo.gl/LnecPe.

[3] KONGSBERG, Autonomous Underwater Vehicle, REMUS 6000. [Online].Available: https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/
481519DA1B0207CDC12574B0002A8451?OpenDocument.

[4] Z.-Y. Hou, P.-Y. Lou, and C.-C. Wang, “State of charge, state of health, and state of function monitoring for EV BMS,” in Proc. 2017 IEEE International Conference on
Consumer Electronics (ICCE), pp. 310–311, Jan. 2017.

[5] 游宗穎, “具有脈衝寬度調變和脈衝頻率調變之同步高效率互補式金氧半切換式穩壓器,” 國立交通大學電子研究所碩士論文, Jul. 2003.

[6] S. Keeping, DC/DC 切換式電壓轉換器的脈衝頻率調變優勢. Electronic Products, 2014.

[7] Tech Web, 開關穩壓器的基礎. [Online]. Available: http://micro.rohm.com/tw/techweb/knowledge/dcdc/s-dcdc/02-s-dcdc/92.

[8] M. W. S. Dulara, N. Tsukiji, K. Yasunori, K. Asaishi, N. Takai, and H. Kobayashi, “Delay-time suppression technique for DC/DC buck converter using voltage mode PWM control,” in Proc. 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 758–763, Nov. 2017.

[9] A. Morra, M. Piselli, M. Flaibani, and A. Gola, “A buck converter operating in PFM mode, mathematical model and simulation analysis,” in Proc. 2007 International Telecommunications Energy Conference (INTELEC), pp. 23–26, Sep. 2007.

[10] KAMAMI, L6986. [Online]. Available: http://kamami.com/ldo-regulators/234680-l6986.html.

[11] K. S. Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh, “Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries,”
Applied Energy, vol. 86, no. 9, pp. 1506–1511, Sep. 2009.

[12] wikipedia, 卡爾曼濾波. [Online]. Available: https://goo.gl/RfhCdM.

[13] S. Kim and G. A. Rincon-Mora, “Achieving high efficiency under micro-watt loads with switching buck DC–DC converters,” Journal of Low Power Electronics, vol. 5,
no. 2, pp. 229–240, Aug. 2009.

[14] S.-Y. Park, J. Cho, K. Lee, and E. Yoon, “A PWM buck converter with load-adaptive power transistor scaling scheme using analog-digital hybrid control for high energy
efficiency in implantable biomedical systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 6, pp. 885–895, Dec. 2015.

[15] R. J. Baker., CMOS: Circuit Design, Layout, and Simulation, 3rd Edition. Wiley-
IEEE Press, 2010.

[16] D. El-Damak and A. P. Chandrakasan, “Solar energy harvesting system with integrated battery management and startup using single inductor and 3.2nW quiescent
power,” in Proc. 2015 Symposium on VLSI Circuits (VLSI Circuits), pp. C280–C281, Jun. 2015.

[17] C.-S. Wu, M. Takamiya, and T. Sakurai, “Buck converter with higher than 87% efficiency over 500nA to 20mA load current range for IoT sensor nodes by clocked hysteresis
control,” in Proc. 2017 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4, Apr. 2017.

[18] N. D. Ghatpande and A. Anand, “50W DC-DC converter cascaded buck current fed push-pull topology with average current dode control,” in Proc. 2012 IEEE International
Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–6, Dec. 2012.

[19] T.-H. Lee, J.-G. Kim, and K.-S. Yoon, “A CMOS buck converter with PFM / hysteretic mode,” in Proc. 2016 International SoC Design Conference (ISOCC),
pp. 347–348, Oct. 2016.

[20] C.-C. Wang, W.-J. Lu, and M.-Y. Tseng, “An all-digital battery capacity monitor using calibrated current estimation approach,” in Proc. 2014 IEEE Asia Pacific Conference
on Circuits and Systems (APCCAS), pp. 563–566, Nov. 2014.

[21] Y. M. Jeong, Y. K. Cho, J. H. Ahn, S. H. Ryu, and B. K. Lee, “Enhanced coulomb counting method with adaptive SOC reset time for estimating OCV,” in Proc. 2014
IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1313–1318, Sep. 2014.

[22] N. A. Michailidis, N. A. Bezas, G. S. Misyris, D. I. Doukas, D. P. Labridis, and A. G. Marinopoulos, “Comparative analysis of online estimation algorithms for battery energy
storage systems,” in Proc. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–6, Sep. 2017.

[23] Y. Tian, D. Li, J. Tian, and B. Xia, “An optimal nonlinear observer for state-ofcharge estimation of lithium-ion batteries,” in Proc. 2017 12th IEEE Conference on
Industrial Electronics and Applications (ICIEA), pp. 37–41, Jun. 2017.

[24] C.-C. Wang and C.-J. Hsu, “An on-chip PWM-based DC-DC buck converter design with high efficiency light load mode operation,” in Proc. 2018 The 3rd International
Conference on Electronics Engineering and Informatics (ICEEI), (accepted, paper ID = I004), Jun. 2018.

[25] Y. Zhou, Y. Zheng, and K. N. Leung, “Fast-response full-wave inductor current sensor for 10 MHz buck converter,” Electronics Letters, vol. 54, no. 6, pp. 379–381,
Mar. 2018.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code