Responsive image
博碩士論文 etd-0701103-110919 詳細資訊
Title page for etd-0701103-110919
論文名稱
Title
矽晶圓非等向性溼式蝕刻之特性研究
Studies on the Anisotropic Wet Wtching Characteristic of Silicon Wafer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee

口試日期
Date of Exam
2003-06-28
繳交日期
Date of Submission
2003-07-01
關鍵字
Keywords
界面活性劑、超音波震盪、非等向性溼式蝕刻
surfactant, Anisotropic wet etching, ultrasonic
統計
Statistics
本論文已被瀏覽 5701 次,被下載 14016
The thesis/dissertation has been browsed 5701 times, has been downloaded 14016 times.
中文摘要
摘要

非等向性溼式蝕刻是微機電體型微加工技術的重要製程,攪拌方式是影響非等向性溼式蝕刻的主要參數之一,影響的範圍包括蝕刻速率及蝕刻面的表面粗糙度等。一般非等向性溼式蝕刻是使用磁石攪拌方式,本研究則利用超音波振盪以及添加界面活性劑的方式來代替,並針對KOH蝕刻液及TMAH蝕刻液進行一系列的實驗。

實驗結果發現,KOH蝕刻液使用超音波振盪可以使蝕刻面達到甚至是Ra 47.5Å的表面粗糙度,並提高蝕刻速率。但輸出功率過大對於微結構會產生損傷的現象;添加陰離子型界面活性劑,在沒有任何攪拌的情況下亦可達到與超音波相同的效果。

TMAH蝕刻液添加陽離子及非離子型界面活性劑皆可使表面粗糙度降低,其中非離子型界面活性劑更有減緩底切現象的作用。

關鍵詞:非等向性溼式蝕刻、磁石攪拌、超音波、界面活性劑
Abstract
Abstract

Anisotropic wet etching is one of the key technologies for the microstructure fabrication in Micro Electro Mechanical Systems (MEMS). Agitation technique is one of the key parameters to affect significantly the quality of silicon anisotropic wet etching, which includes the etch rate and surface roughness. In general, magnetic stirring is used during silicon anisotropic wet etching operation. The ultrasonic agitation and add surfactant have been to replaced and to proceed a series of experiment for KOH solution and TMAH solution in this study.

The results show that the ultrasonic agitation can reduce the surface roughness and achieve the high-quality etching surface, its roughness even is only about Ra 47.5Å. Besides, the etch rate is also increased slightly. But it is easily to cause the damage of the microstructure. The addition of anionic surfactant to the KOH solution without any agitation condition can achieve the same at the etching performance of the ultrasonic agitation.

The addition of anionic surfactant and nonionic surfactant to the TMAH solution without any agitation condition can achieve the same at the etching performance of the ultrasonic agitation. TMAH solution adds nonionic surfactant not only improves the surface roughness, but also retards the phenomenon of the undercut.

Keyword:anisotropic wet etching, magnetic stirring, ultrasonic, surfactant
目次 Table of Contents
總 目 錄
頁次
總目錄 i
圖目錄 iv
表目錄 viii
中文摘要 ix
英文摘要 ……………x

第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.3 論文架構 8

第二章 理論基礎 9
2.1 單晶矽非等向性溼式蝕刻 9
2.1.1 矽的晶體結構 9
2.1.2 基本概念 10
2.1.2.1 蝕刻終止技術 13
2.1.2.2 蝕刻保護技術 16
2.1.2.3 殘留應力問題 17
2.2 非等向性溼式蝕刻的影響因素 19
2.2.1 非等向性溼式蝕刻的反應機制 19
2.2.2 蝕刻液 21
2.2.3 非等向性溼式蝕刻之物理模型 24

第三章 實驗設計與製程規劃 27
3.1 實驗目的 27
3.2 製程規劃 28
3.3 實驗設備 30
3.3.1 黃光微影製程 30
3.3.2 非等向性溼式蝕刻製程 30
3.3.3 量測系統 34
3.3.3 微鎳電鑄系統 36
3.4 界面活性劑的選擇 38

第四章 實驗結果與討論 39
4.1 超音波振盪 39
4.1.1 表面粗糙度 39
4.1.1.1 KOH之蝕刻特性 39
4.1.1.2 TMAH之蝕刻特性 45
4.1.2 蝕刻速率 53
4.1.2.1 KOH之蝕刻特性 53
4.1.2.2 TMAH之蝕刻特性 56
4.2 界面活性劑 60
4.2.1 表面粗糙度 60
4.2.1.1 KOH之蝕刻特性 62
4.2.1.2 TMAH之蝕刻特性 73
4.2.2 蝕刻速率 85
4.2.2.1 KOH之蝕刻特性 85
4.2.2.2 TMAH之蝕刻特性 89
4.2.3 光學分析 91
4.3 非等向性溼式蝕刻之應用 93
4.3.1 薄膜微結構 93
4.3.2 角落補償 97
4.3.3 微鎳電鑄 105

第五章 結論 109
5.1 結論 109
5.2 未來展望 111
參考文獻 112

附錄 A
參考文獻 References
參考文獻

1. E. Obermaier, H. Sandmaier and K. Kuhl, IEEE Workshop on Micro-Robotics and Teleoperators, Hyannis, MA, (1987).
2. H.R. Robbins and B. Schwartz, “Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2,” J. Electrochem, Soc., Vol. 106, No. 6, pp. 505-508, (1959).
3. H.R. Robbins and B. Schwartz, “Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2”, J. Electrochem, Soc., Vol. 107, No. 2, pp. 108-111, (1960).
4. B. Schwartz and H. R. Robbins, “Chemical etching of silicon-III. A temperature study in the acid system, “ J. Electrochem. Soc., Vol. 108, No. 4, pp. 365-372, (1961).
5. Gregory T. A. Kovacs, Nadim I. Maluf, Kurt E. Petersen, “Bulk Micromachining of Silicon”, Proceedings of the IEEE, Vol. 86, No. 8, August, pp.1536-1551, (1998).
6. M. Elwenspoek, “The form of etch rate minima in wet chemical anisotropic etching of silicon”, Journal of Micromechanical and Microengineering, Vol. 6, pp. 405-409, (1996).
7. B. Schwartz and H. R. Robbins, “Chemical etching of silicon-IV. Etching technology, ” J. Electrochem. Soc., Vol. 123, No.12, pp. 1903-1909, (1976).
8. A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger, “Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH,” J. Electrochem. Soc. Solid State, Vol. 114, No. 9, pp. 970-973, Sept. (1997).
9. D. L. Kendall, “On etching very narrow grooves in silicon”, Applied Physics Letters, Vol. 26, pp. 195-198, (1975).
10. K. Bean, “Anisotropic etching of silicon”, IEEE Transactions on
Electron Devices,Vol. ED-25, No. 10, pp. 1185-1193, (1978).
11. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer”, J. Electrochem. Soc., Vol. 137, No. 11, pp. 3612-3626, (1990).
12. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants”, J. Electrochem. Soc., Vol. 137, No. 11, pp. 3626-3632, (1990).
13. C. Scheibe, E. Obermeier, “Compensating corner undercutting in anisotropic etching of (100) Silicon for chip separation”, J. Micromech. Microeng. No 5, pp. 109-111, (1995).
14. http://www.kaz.mech.nagoya-u.ac.jp/
15. K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, “Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration”, Sensors and Actuators A 64, pp. 87-93, (1998).
16. K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, and S. Ito, “Roughness of single-crystal silicon surface etched by KOH water solution”, Sensors and Actuators 73, pp. 122-130, (1999).
17. K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, “Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation”, Sensors and Actuators 73, pp. 131-137, (1999).
18. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic properties of KOH and TMAH solutions” Sensors and Actuators 80, pp. 179-188, (2000).
19. Jan A. Dziuban, “Microwave enhanced fast anisotropic etching of monocrystalline silicon”, Sensors and Actuators A 85, pp. 133-138, (2000).
20. Irena Zubel, Malgorzata Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in
KOH and TMAH solutions”, Sensors and Actuators A 93, pp. 138-137, (2001).
21. C. Jing, L. Litian, L. Zhijian, T. Zhimin, J. Qianshao, F. Huajun, X.Yang, “Study of anisotropic etching of (100) Si with ultrasonic agitation”, Sensors and Actuators A 96, pp. 152-156, (2002).
22. O. Tabata, “Anisotropy and selectivity control of TMAH”, J. Micro Electro Mechanical Systems, (1998). MEMS 98. Proceedings, pp. 229-233, (1999).
23. O. Tabata, R. Asahi, H. Funabashi, S. Sugiyama, “Anisotropic etching of silicon in TMAH solutions”, Sensors and Actuators A 34, pp. 51-57, (1992).
24. Donald A. Neamen, Semiconductor Physics and Devices, McGraw-Hill Higher Education, (2003).
25. L. Walter, “Silicon microstructuring technology”, Materials science and engineering, R17, pp. 1-55, (1996).
26. D. B. Lee, “Anisotropic etching of silicon “, Journal of Applied physics, Vol. 40, No. 11, pp. 4569-4574, (1969).
27. P. J. Hesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon anisotropic etching”, J. Electrochem. Soc., Vol.140, No.4, pp. 1080-1084, (1993).
28. D. R. Ciarlo, “Corner compensation structures for (110) oriented silicon”, IEEE Micro Robots and Teleoperators Workshop, pp. 6/1-4, (1987).
29. W. Fang and J. A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams”, Journal of Micromechanical and Microengineering, Vol. 5, pp. 276-281, (1996).
30. J. Klein, H. Guckel, D. P. Siddons, E. D. Johnson, “X-Ray masks for very deep X-Ray lithography”, Microsystem Technologies 4, pp. 70-73, (1998).
31. E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “Ellipsometric study of the etch-stop mechanism in heavily doped silicon”, J. Electrochem. Soc., pp. 135-141, (1985).
32. T. N. Jackson, M. A. Tischler, and K. D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures”, IEEE Electron. Dev. Lett., Vol. EDL-2, No.2, pp. 44-45, (1981).
33. P. M. Sarro, A. W. van Herwaarden, “Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications”, J. Electrochem. Soc., Vol. 133, No. 8, pp. 1724-1729, (1986).
34. M. Hirata, S. Suwazono, and H. Tanigawa, “Diaphragm Thickness control in silicon pressure sensors using an anodic oxidation etch-stop”, J. Electrochem. Soc., Vol. 134, No. 8, pp. 2037-2041, (1987).
35. E. D. Palik, O. J. Glembocki, I. Heard, P. S. Burno, L. Tenerz, “Etching roughness for (100) silicon surfaces in aqueous KOH”, J. Appl. Phys. 70 (6), pp. 3291-3300, (1991).
36. 莊達人, VLSI製造技術, 高立圖書有限公司.
37. T. Baum, D. J. Schiffrin, “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications”, J. Micromech. Microeng. Number 4, pp. 338-342, (1997).
38. S. S. Tan, M. L. Reed, H. Han, R. Boudreau, “Mechanisms of etch hillock formation”, J. Micro Electro Mechanical Systems, Vol. 5, No. 1, pp. 66-72, (1996).
39. Y. K. Bhatnagar and A. Nathan, “ On pyramidal protrusions in anisotropic etching of <100> silicon”, Sensors and Actuators A, Vol. A36, pp. 233-240, (1993).
40. W. K. Choi, J. T. L. Luo, P. Tan, C. M. Chua, T. H. and Y. Bai, “Characterisation of pyramid formation arising from the TMAH etching of silicon”, Sensors and Actuators A, Vol. A71, pp. 238-243, (1998).

41. L. M. Landsberger, S. Naseh, M. Kahrizi and M. Paranjape, “On hillocks generated during anisotropic etching of Si in TMAH”, Journal of Microelectromechanical System, Vol. 5, No. 2, pp. 106-116, (1996).
42. O. Tabata, “pH-controlled TMAH etchants for silicon micromaching”, Transducers ’95, pp. 83-86.
43. M. Madou, Fundamentals of microfabrication, CRC Press, New York, pp. 145-186, (1997).
44. M. Elwenspoek, “On the mechanism of anisotropic etching of silicon”, J. Electrochem. Soc., Vol. 140, No. 7, pp. 2075-2080, (1993).
45. 楊啟榮、陳柏穎等人, 中國機械工程學會第十九屆全國學術研討會, E1-15, (2002).
46. 趙承琛, 界面科學基礎, 復文書局.
47. U. Schnakenberg, W. Benecke, B. Lochel, “NH4OH-based etchants for silicon micromachining”, Sensors and Actuators A, A21-A23, pp. 1031-1035.
48. A. S. Louro, J. R. Senna, “Real-time, in-site microscopic observation of bubbles and roughening in KOH etching of silicon”, Society of Photo-Optical Instrumentation Engineers, Proceedings of SPIE, (2001).
49. H. Toshiyoshi, Optical MEMS, UCLA, (2002).
50. G. K. Mayer, H. L. Offereins, H. Sandmaier, and K. Kuhl, “Fabrication of non-underetched convex corners in Anisotropic etching of (100) silicon in aqueous KOH with respect to novel micromechanic element, “ Journal of the Electrochemical Society, Vol. 137, No. 12, pp.3947-3951, (1990).
51. M. Bao, C. Burrer, J. Esteve, J. Bausells and S. Marco, “Etching Front of <110> strips for corner compensation, “ Sensors and Actuators A, Vol. 37-38, pp. 727-732, (1993).

52. Q. Zhang, L. Liu and Z. Li, “A new approach to convex corner compensation for anisotropic etching of (100) Si in KOH, “ Sensors and Actuator A, Vol. 56, pp. 251-254, (1996).
53. M. M. Abu-Zeid, “corner undercutting in anisotropically etched isolation contours, “ Journal of the Electrochemical Society, Vol. 131, No. 9, pp. 2138-2142, (1984).
54. S. Kalveram and A. Neyer, Precision molding techniques for optical wavequide devices, SPIE 3135, 2-11, (1997).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code