Responsive image
博碩士論文 etd-0701103-224518 詳細資訊
Title page for etd-0701103-224518
論文名稱
Title
適應性基因演算法與混合式模糊PID控制器於線性馬達之定位控制
Hybrid Fuzzy PID Controller with Adaptive Genetic Algorithms for the Position Control of Linear Motors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-06
繳交日期
Date of Submission
2003-07-01
關鍵字
Keywords
混合式模糊PID控制器、定位控制、線性馬達、模糊控制、基因演算法
position control, relay feedback, hybrid fuzzy PID controller, linear motors, fuzzy control, genetic algorithms
統計
Statistics
本論文已被瀏覽 5673 次,被下載 3856
The thesis/dissertation has been browsed 5673 times, has been downloaded 3856 times.
中文摘要
摘要
本論文研究應用適應性基因演算法於混合式模糊PID控制器設計與線性直流馬達的定位控制。由於具有高速及精密的定位能力,線性直流馬達被廣泛地應用在許多領域中。然而,隨著定位精度要求的增加,在精密定位中,非線性摩擦力的影響會變的很顯著。由於巨觀範圍內的動摩擦力及微觀範圍內的靜摩擦力差異極大,我們將針對巨觀與微觀兩個階段分別設計控制器。在巨觀階段,我們採用混合式模糊PID控制器,並利用適應性基因演算法來搜尋最佳的控制器參數,以改善系統的性能。本文並提出一項新的適應性突變及交配率計算方法。在微觀階段,由於不易求得精密的摩擦力模型,故採用繼電器迴授的方法來設計PID控制器。最後經由電腦模擬及實驗,證明本論文所使用的控制方法可獲得令人滿意的成果。
Abstract
Abstract
This thesis studies on the design of hybrid fuzzy PID controller via genetic algorithms and the position control of linear DC motors. Due to the high precision and high speed positioning ability, linear DC motors have been widely used in many fields. However, with the higher requirements of positioning accuracy, the effect of nonlinear friction becomes very significant. Because of the large difference between dynamic friction in macrodynamic region and static friction in microdynamic region, we design the two-stage controller for positioning in macrodynamic and microdynamic stage individually. In the macrodynamic stage, we use the hybrid fuzzy PID controller and finding the optimal membership functions and scaling factors of the controller via adaptive genetic algorithms to enhance performance of the system. A novel formula for calculating adaptive crossover and mutation rate is also presented. Since it is not easy to establish a precise static friction model in the microdynamic region, the relay feedback method is adopted to design PID controllers. Finally, through computer simulations and experiments, it is obviously that the performance of the proposed controllers is satisfactor
目次 Table of Contents
Contents
Contents i
List of Symbols iv
List of Figures vii
List of Tables ix
Chinese Abstract x
English Abstract xi

Chapter 1. Introduction 1
1.1 Research Motivations and Goal 1
1.2 Papers Review 2
1.2.1 Position Control of Linear DC Motors 2
1.2.2 Friction Models 3
1.2.3 Genetic Algorithms and Fuzzy Logic Controller 7
1.2.4 Tuning Methods of PID Controllers 8
1.3 Thesis Overview 9

Chapter 2. Model Building 10
2.1 Equations of Linear DC Motors 10
2.2 Macrodynamic Model Identification 12
2.3 Analysis of Microdynamic Behaviors 14

Chapter 3. Genetic Algorithms 19
3.1 Introduction to Genetic Algorithms 19
3.2 Fundamentals of Genetic Algorithms 22
3.2.1 Encoded and Decoded Processes 22
3.2.2 Fitness Function 23
3.2.3 Reproduction 25
3.2.4 Crossover 26
3.2.5 Mutation 27
3.3 Adaptive Genetic Algorithms 28
3.3.1 Adaptive Probabilities of Crossover and Mutation 29
3.3.2 Elitist Strategy 32
3.3.3 Extinction and Immigration Strategy 33
3.3.4 The Structure of Adaptive Genetic Algorithms with Elitist,
Extinction and Immigration Strategy 35

Chapter 4. Fuzzy Systems and Control 37
4.1 Introduction of Fuzzy Systems 37
4.2 Simplified Fuzzy Reasoning Method 40
4.3 Hybrid Reduced Rule Fuzzy PID Like Controller 42

Chapter 5. Controller Design 45
5.1 Hybrid Reduced Rule Fuzzy PID Controller Design 46
5.1.1 Design Steps of PIDFLC 46
5.1.2 Parameters Tuning of PIDFLC Using AGA and the
Simulation Results 51
5.2 Relay Feedback Tuning of PID Controllers 55
5.3 Dynamics Transition Condition 57

Chapter 6. Experiments and Results 59
6.1 Experimental Setup 59
6.2 Experimental Results 61
6.2.1 Position Control with Macrodynamic Controller 61
6.2.2 Position Control with Microdynamic Controller 64
6.2.3 Position Control with Two-stage Controller 66

Chapter 7. Conclusions and Recommendations 71

References 73
參考文獻 References
References
[1] Armstrong-Hélouvry, B., Control of machines with friction, Boston, MA: Kluwer, 1991.
[2] Armstrong-Hélouvry, B., Dupont, P., and De Wit, C.C., “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, Vol. 30, No. 7, pp. 1083-1138, 1994.
[3] Åström, K.J. and Hägglund, T., “Automatic tuning of simple regulators with specifications on phase and amplitude margins,” Automatica, Vol. 20, No. 5, pp. 645-651, 1984.
[4] Balestrino, A., Landi, A., and Sani, L., “ATV techniques: troubles and remedies,” in Proc. Int. Symp. ADCHEM 2000, Pisa, Italy, 2000, pp. 755-759.
[5] Basak, A. and Anayi, F.J., “A DC linear motor with a square armature,” IEEE Transactions on Energy Conversion, Vol. 10, No. 3, Sep. 1995.
[6] Canudas de Wit, C., Olsson, H., Astrom, K.J., and Lischinsky, P., “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, Vol. 40, No. 3, pp. 419-425, Mar. 1995.
[7] Cheng, C.Y., Hybrid Fuzzy PID Controller for an Active Vibration Control System via Genetic Algorithms, Master thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Taiwan, R.O.C, 2002.
[8] Choi, H.T., Kim, B.K., Suh, I.H., and Chung, W.K., “Design of Robust High-Speed Motion Controller for a Plant With Actuator Saturation,” Journal of Dynamic Systems, Measurement, and Control, Vol. 122, No. 3, pp. 535-541, Sep. 2000.
[9] Coley, D.A., An introduction to genetic algorithms for scientists and engineers, World Scientific Publishing Co. Pte. Ltd., 1999.
[10] Dahl, P., “A solid friction model,” Aerospace Corp., EI Segundo, CA, Tech. Rep. TOR-0158(3107-18)-1, 1968.
[11] Egami, T. and Tsuchiya, T., “Disturbance suppression control with preview action of linear DC brushless motor,” IEEE Transactions on Industrial Electronics, Vol. 42, No. 5, pp. 494-500, Oct. 1995.
[12] Famouri, P. and Cooley, W.L., “Design of DC traction motor drives for high efficiency under accelerating conditions,” IEEE Transactions on Industry Applications, Vol. 30, No. 4, pp. 1134-1138, Jul./Aug. 1994.
[13] Frenzel, J.F., “Genetic algorithms,” IEEE Potentials, Vol. 12, No. 3, pp. 21-24, Oct. 1993.
[14] Futami, S., Furutani, A., and Yoshida, S., “Nanometer positioning and its micro-dynamics,” Nanotechnology, Vol. 1, No. 1, pp. 31-37, Jul. 1990.
[15] Goldberg, D.E., Genetic algorithms in search, optimization, and machine learning, Mass.: Addison-Wesley, 1989.
[16] Haessig, D.A. and Friedland, B., “On the modeling and simulation of friction,” Journal of Dynamic Systems, Measurement, and Control, Vol. 113, pp. 354-362, Sep. 1991.
[17] Hang, C.C., Aström, K.J., and Ho, W.K., “Refinements of the Ziegler-Nichols tuning formula,” IEE Proceedings-D, Vol. 138, No. 2, pp. 111-118, Mar. 1991.
[18] Horn, D., “Linear motors provide precise positioning,” Mechanical Engineering, pp. 70-74, Nov. 1988.
[19] Huang, T.T, Chung, H.Y., and Lin, J.J., “A fuzzy PID controller being like parameter varying PID,” 1999 IEEE International Fuzzy Systems Conference Proceedings, Vol. 1, pp. 269-276, 1999.
[20] Iwasaki, M., Shibata, T., and Matsui, N., “Disturbance-observer-based nonlinear friction compensation in table drive system,” IEEE/ASME Transactions on Mechatronics, Vol. 4, No. 1, pp. 3-8, Mar. 1999.
[21] Kaya, I. and Atherton, D.P., “Exact parameter estimation from relay autotuning under static load disturbances,” Proceedings of the American Control Conference, Vol. 4, pp. 3274-3279, 2001.
[22] Kim, B.K., Chung W.K., Choi, H., Suh, I.H., and Chang, Y.H., “Robust internal loop compensator design for motion control of precision linear motor,” Industrial Electronics, 1999. ISIE '99. Proceedings of the IEEE International Symposium on, Vol. 3, pp. 1045-1050, 1999.
[23] Kim, J., Choi, M., and Kang, S., “The unified gain tuning approach to the PID position control with minimal overshoot, position stiffness, and robustness to load variance for linear machine drives in machine tool environment,” Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, Vol. 1, pp. 635-641, 2001.
[24] Komada, S., Ishida, M., Ohnishi, K., and Hori, T., “Disturbance observer-based motion control of direct drive motors,” IEEE Transactions on Energy Conversion, Vol. 6, No. 3, pp. 553-559, Sep. 1991.
[25] Liaw, C.M., Shue, R.Y., Chen, H.C., and Chen, S.C., “Development of a linear brushless DC motor drive with robust position control,” IEE Proceedings-Electric Power Applications, Vol. 148, No. 2, pp. 111-118, Mar. 2001.
[26] MacVicar-Whelan, P.J., “Fuzzy sets for man-machine interaction,” International Journal of Man-Machine Studies, Vol. 8, pp. 687-697, 1976.
[27] Mizumoto, M., “Realization of PID controls by fuzzy control methods, ” fuzzy sets and systems, Vol. 70, pp. 171-182, 1995.
[28] Mizumoto, M., “Product-sum-gravity method = fuzzy singleton-type reasoning method = simplified fuzzy reasoning method,” Proc. 5th IEEE Conf. on Fuzzy Systems, New Orleans, Vol. 3, pp. 2098-2102, 1996.
[29] Pan, Y.C., Investigation of static friction and high precision positioning control, Doctoral thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, R.O.C., 2000.
[30] Pan, Y.C. and Hsieh, C., “Parameter identification of PM brush DC motor,” Proc. of Automatic Control Conference, Taiwan, pp. 261-266, 1997.
[31] Rattan, K.S. and Van Cleave, D., “Design and implementation of a reduced rule fuzzy logic PID controller,” NAFIPS.19th conf. of the North American Fuzzy Information Society, Atlanta, Georgia, pp. 465-469, 2000.
[32] Reznik, L., “Fuzzy controller design: recommendations to the user,” 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, Vol. 3, pp. 609-616, 21-23 Apr. 1998.
[33] Rice, J.R. and Ruina, A.L., “Stability of steady frictional slipping,” Journal of Applied Mechanics, Vol. 50, No. 2, 1983.
[34] Ro, P.I. and Hubbel, P.I., “Model reference adaptive control of dual-mode micro/macro dynamics of ball screws for nanometer motion,” Journal of Dynamic Systems, Measurement, and Control, Vol. 115, pp. 103-108, Mar. 1993.
[35] Roemer, M.J. and Mook, D.J., “Mass, stiffness, and damping matrix identification: an integrated approach,” Journal of Vibration and Acoustics, Vol. 144, pp. 358-363, Jul. 1992.
[36] Sandhu, G.S., Brehm, T., and Rattan, K.S., “Analysis and design of a proportional plus derivative fuzzy logic controller,” Proc. IEEE National Aerospace and Electronics Conf., Dayton, Ohio, Vol. 1, pp. 397-404, 1996.
[37] Sinha, N.K., Di Cenzo, C.D., and Szabados, Barna, “Modeling of DC motors for control applications,” IEEE Transactions on Industrial Electronics and Control Instrumentation, Vol. IECI-21, No. 2, pp. 84-88, May 1974.
[38] Srinivas, M. and Patnaik, L.M., “Adaptive probabilities of crossover and mutation in genetic algorithms,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 24, No. 4, pp. 656-667, Apr. 1994.
[39] Srinivas, M. and Patnaik, L.M., “Genetic algorithms: a survey,” Computer, Vol. 27, No. 6, pp. 17-26, Jun. 1994.
[40] Tang, K.L. and Mulholland, R.J., “Comparing fuzzy logic with classical controller designs,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-17, No. 6, pp. 1085-1087, Nov./Dec. 1987.
[41] Wakiwaka, H., Yajima, H., Senoh, S., Yamada, H., Oda, J., and Morimura, T., “Simplified thrust limit equation of linear DC motor,” IEEE Transactions on Magnetics, Vol. 32, No. 5, pp. 5073-5075, Sep. 1996.
[42] Wakiwaka, H., Yajima, H., Yamada, H., and Oda, J., “Design and evaluation of linear DC motor for pen recorder,” IEEE Transactions on Magnetics, Vol. 31, No. 6, pp. 3755-3757, Nov. 1995.
[43] Wang, Q.G., Zou, B., Lee, T.H., and Bi, Q., “Auto-tuning of multivariable PID controllers from decentralized relay feedback,” Automatica, Vol. 33, No. 3, pp. 319-330, 1997.
[44] Xu, Li and Yao, Bin, “Adaptive robust repetitive control of a class of nonlinear systems in normal form with applications to motion control of linear motors,” 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, Vol. 1, pp. 527-532, 2001.
[45] Xu, L. and Yao, B., “Output feedback adaptive robust precision motion control of linear motors,” Automatica, Vol. 37, No. 7, pp. 1029-1039, Jul. 2001.
[46] Yao, B., Al-Majed, M., and Tomizuka, M., “High-performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments,” IEEE/ASME Transactions on Mechatronics, Vol. 2, No. 2, pp. 63-76, Jun. 1997.
[47] Yao, L. and Sethares, W.A., “Nonlinear Parameter Estimation via the Genetic Algorithm,” IEEE Transactions on Signal Processing, Vol. 42, No, 4, pp. 927-935, Apr. 1994.
[48] Zhuang, M. and Atherton, D.P., “Automatic tuning of optimum PID controllers,” IEE Proceedings-D, Vol. 140, No. 3, pp. 216-224, May 1993.
[49] 王俊賢,線性馬達之高速精密定位控制,國立中山大學機械工程研究所,碩士論文,1998。
[50] 林鴻鈞,模糊控制器性能之研究,國立中山大學機械工程研究所,碩士論文,1992。
[51] 陳奕仁,適應性基因演算法結合菁英政策於線性馬達定位機台之主動式振動控制器設計,國立中山大學機械工程研究所,碩士論文,2001。
[52] 張世彬,“精密定位系統之快速次微米超越量定位控制技術”,科儀新知,第十八卷二期,pp.78-87,1996。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code