Responsive image
博碩士論文 etd-0701105-001519 詳細資訊
Title page for etd-0701105-001519
論文名稱
Title
表面電漿子在金屬薄層之理論與模擬分析
Theory and Simulation Analysis of SP in Metal Thin Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-24
繳交日期
Date of Submission
2005-07-01
關鍵字
Keywords
表面電漿子、超解析近場結構
Super-RENS, Surface Plasmons
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
表面電漿子被廣泛的應用於各種感測器與元件中,而表面電漿子激發與其共振角、阻尼率、共振半寬度和入射光反射率等這些物理量有著很大的關係,因此本論文將就其表面電漿子激發的三種基本組態來探討其這些物理量之近似值,並將其推廣至任意層,並且將各層參數帶入進行模擬由所推出之公式進而模擬,並且得到一些重要結果,以利往後在製作感測器或元件中可以依照參數之調整來達到最符合元件特性之製作。
表面電漿子亦可應用於近場光學中,當光碟片使用超解析近場結構時,其資料密度將可大幅提昇,且可突破原本之繞射極限問題,同時銻與氮化銻之介面激發表面電漿子之故可增強其近場強度,因此在本論文中亦論述了其銻薄膜超解析度近場結構的表面電漿子之傳播、函數與模擬。我們也已得到一些初步的結果,由計算和模擬的結果,我們可知當金屬層介電常數之虛部較小時可增強場強度,且當稜鏡之介電常數變大或中間之介電層的介電常數變小時將使得共振角變小,另外,在超解析近場結構中選擇適合之參數將可得到最佳之共振條件。
Abstract
Surface plasmons(SPs)have been extensive applied to various kinds of detector and devices. There are very great relations of physical quantity, such as resonant angle, damping rate, halfwidth of resonance and reflection rate, etc. of resonating in the exciting of SPs. In this study, we derived some approximate formulas of these physical quantities from fresnel’s formulas and pole approximate expansion, such as, the damping rate of SPs, the resonant angle, the optimum metallic thickness of these structure. In addition, we have also proceeding to some numerical simulations.
Surface plasmons can also apply to near-field optics, using the super-resolution near-field structure(Super-RENS) , the data densities can be promoted, and the diffraction limit can be overcome. SPs are excited at the Sb/SiN interface may concentrate light spot and enhance the field intensity. In this study, we have also expounded the fact that its antimony film in a Super-RENS of propagation, function and simulation of the SPs. As a result of calculations and simulations, we conclude that the enhanced filed intensity is larger for a system using a metal with a smaller imaginary part of the dielectric constant. The resonant angle decreases when the dielectric constant of the prism increases and the dielectric constant of the intermediate layer decreases. In addition, the optimum resonant condition in Super-RENS can be made by proper selection of parameters.
目次 Table of Contents
附表目錄..................................................... i
附圖目錄.................................................... ii
第一章 序 論 1
1.1 何謂表面電漿子 1
1.1.1 電漿子之基本介紹 1
1.1.2 SP基本認識 1
1.1.3 輻射性和非輻射之SP 2
1.2 常見之SP激發組態 2
1.2.1 Otto組態 2
1.2.2 Kretschmann組態 3
1.2.3 Sarid組態 4
1.3 SP之應用 4
1.3.1 光電之應用 4
1.3.2 薄膜量測與平坦度之應用 5
1.3.3 近場之應用 5
1.3.4 OLED之應用 6
1.3.4.1 OLED之基本結構 6
1.3.4.2 OLED發光之激發機制 7
1.3.4.3 SP對OLED的影響 8
1.3.4.4 使用SP耦合穿過非透明電極發光之OLED 10
第二章 SP原理結構和模型 13
2.1 SP色散關係 13
2.1.1 介電常數函數 13
2.1.2 VP之色散曲線 14
2.1.3 SP色散關係 15
2.2 SP在二層系統激發之原理 16
2.2.1 二層系統之色散關係式 16
2.2.2 SP之色散曲線 20
2.2.3 反射係數與穿透係數 21
2.3 SP在三層系統激發之原理 24
2.3.1 三層系統之總反射係數 24
2.3.2 SP之激發與色散曲線之關係 24
2.3.3 SP之阻尼率 26
2.3.4 SP之反射率公式 31
2.3.5 SP之共振特性 34
第三章 OTTO與KRETSCHMANN組態之模擬 38
3.1 多層系統之OTTO組態 38
3.1.1 多層系統SP共振特性 38
3.1.2 Otto組態之理論模擬 41
3.2 多層系統之KRETSCHMANN組態 42
3.2.1 SP之共振特性 42
3.2.2 Kretschmann組態之理論模擬 43
第四章 SARID組態之模擬與應用 45
4.1 多層系統之SARID組態 45
4.1.1 Sarid組態之共振特性與理論推導 45
4.1.2 Sarid組態之理論模擬 46
4.2 SP在近場光學之應用 47
第五章 結 論 51
參考文獻.................................................... 52
參考文獻 References
[1] Kittel C., Introduction to Solid State Physics, 6th ed., P.262, John Wiley & Sons, New York(1986)
[2] Powell, C.J., and Swan, J.B., “Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium,” Phys. Rev., 118, 640(1960).
[3] Otto, A., “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys., 216, 398(1968).
[4] Kretschmann, E., “The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons,” Z. Phys., 241, 313(1971).
[5] Sarid, D., “Long-Range Surface-Plasma Waves on Very Thin Metal Film,” Phys. Rev. Lett., 47, 1927(1981).
[6] Sincerbox, G. T., and Gordon, J. C., “Small Fast Large-Aperture Light Modulator Using Attenuated Total Reflection,” Appl. Opt., 20, 1491(1981).
[7] Plumereau, C., Bouchoux, A., and Cachard, A., “Electrooptic Light Modulator Using Long-Range Surface Plasmons,” Pro. SPIE, 800, 79(1987).
[8] Schildkraut, J. S., “Long-Range Surface Plasmon Eletrooptic Modulator,” Appl. Opt., 27, 4587(1988).

[9] Dawn K. Gifford, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett., 81, 4315(2002).
[10] Peter A. Hobson, ”Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater., 14, 1393(2002).
[11] Chen, W. P., and Chen, J. M., “Use of Surface Plasma Waves for Determination of the Thickness and Optical Constants of Thin Metallic Films,” J. Opt. Soc. Am., 71,189(1981).
[12] Pockrand, I., and Raether, H., “Surface Plasma Oscillations in Silver Films with Wavy Surface Profiles:A Quantitative Experimental Study,” Opt. Commun., 18, 395(1976).
[13] Raether, H., “The Dispersion Relation of Surface Plasmons on Rough Surface:A Comment on Roughness Data,” Surf. Sci., 125, 624(1983).
[14] 顧鴻壽,「光電有機電激發光顯示器技術及應用」,2002。
[15] 顧鴻壽,「光電液晶平面顯示器-技術基礎及應用」,2004。
[16] Benisty ,H., De Neve, H., and Weisbuch, C., “ Impact of planar microcavity effects on light extraction-Part II:Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron., 34, 1632(1998).
[17] Windisch, R., Heremans, P., Knobloch, A., Dohler, K.P.G.H., Dutta, B., and Borghs, G., “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett., 74, 2256(1999).
[18] Matterson, B.J., Lupton, J.M., Safanov, A., Salt, M.G., Barnes, W.L., and Samuel, I.D.W., “Increased efficiency of a polymer light emitting diode by wavelength scale microstructure,” Adv. Mater., 13, 123(2001).
[19] Tsutsui, T., Yokogawa, H., Kawano, K., and Yokoyama, M., “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater., 13, 1149,(2001).
[20] Hobson, Peter A., Stephen Wedge, Wasey, Jon A.E., Ian Sage, and Barnes, William L., “ Surface plasmon mediated emission from organic light-emitting Diodes,” Adv. Mater., October 2, 14, 1393(2002).
[21] Adachi, C., Baldo, A.M., Thompson, M.E., and Forrest, S.R., “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys., 90, 5048(2001).
[22] Gifford, Dawn K., and Hall, Dennis G., “Emission through one of two metal electrodes of an organic light-Emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett., 81, 4315(2002).
[23] Wallis, R. F., and Stegeman, G. I., Electromagnetic Surface Excitations, ed., P.5, Springer-Verlag, Berlin(1985).
[24] 廖志雄,「在多層系統中面電漿子的共振特性與化學感測器的最佳化設計之研究」,1997。
[25] Arfken, G., Mathematical Methods for Physicists, 2nd ed., P.317, Academic Press, New York(1973).
[26] Betzig, E. and Trautman, J., Science, 257,189(1992).
[27] Betzig, E., Trautman, J. and Wolfe, R., “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett., 61, 142(1992).
[28] Tominaga, J., Nakano, T., and Atoda, N. “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett., 73,2078(1998).
[29] Tsai, D. P., and Lin, W. C., “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett., 77, 1413(2000).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.82.79
論文開放下載的時間是 校外不公開

Your IP address is 13.58.82.79
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code