Responsive image
博碩士論文 etd-0701105-153353 詳細資訊
Title page for etd-0701105-153353
論文名稱
Title
有機電激發光元件之電流傳輸機制
Current Transport Mechanisms in Organic Light-Emitting Diode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-24
繳交日期
Date of Submission
2005-07-01
關鍵字
Keywords
電流、有機電激發光元件
Current, Organic Light-Emitting Diode
統計
Statistics
本論文已被瀏覽 5735 次,被下載 0
The thesis/dissertation has been browsed 5735 times, has been downloaded 0 times.
中文摘要
有機電激發光元件在顯示器有很多方面的優勢,但是現今還有很多
的問題需要去改進。而影響有機電激發光元件特性的因素,是有機材料中電荷載子的行為。因此,由理論的模擬去了解電流在有機層的傳輸行為,將會有益於OLED 的發展。
本研究使用三種模型,來模擬有機電激元件的特性,比較其電流密
度與電壓的電性曲線。所探討的三種模型分別為(1)場相依載子遷移率模型(FDM 模型),(2)考慮指數缺陷分佈的缺陷模型(EDT 模型),與(3)考慮電場影響之Poole-Frenkel 效應和缺陷存在理論的FDTO 模型 (FDTO模型),其中的缺陷又分為單能階缺陷分佈與指數缺陷分佈。用此三種模型,針對不同材料之有機層的各種單載子電洞元件與單載子電子元件來分析。比較在不同的溫度與厚度參數下,其實驗值與模擬出的結果,來探討出其單載子元件之各種參數對J-V 電性曲線變化關係。因此,可藉由本論文的結果去改善OLED 的各種特性。
Abstract
Organic light-emitting diode has several advantages using in
the flat penal display, but it is still needed to improve the disadvantages. The charge-carriers of the organic layers are one of the dominant factors to influence the performance of OLED.
Hence, it is worth to study and understand the charge
transporting behaviors by the theoretical simulation in the
organic layers of OLED, and that is helpful for the OLED in
future.
In this study, three kinds of models are used to simulate the
characteristics of several different organic light-emitting devices,
and it also try to compare the relationship between the current
density and voltage. Three kinds of models are described as (1)
The field-dependent carrier mobility model (FDM model), (2) An
exponential distribution of traps model (EDT model), and (3) The
field dependent trap occupancy model (FDTO model). For the
simulation of three models, the characteristics of several
hole-only devices and electron-only devices were analyzed to
investigate and discuss the organic layer of the devices with different materials. In addition, by varying the parameters such as the thickness and temperature, a comparison was made between the results simulated from models with the values obtained from experimental works. Finally, based on above results, the characteristics of OLED could be improved for future applications.
目次 Table of Contents
目錄 ............................................................................................... I
附表目錄 .................................................................................... IV
附圖目錄 .................................................................................... VI
第壹章 緒論 .................................................................................. 1
1-1 前言 ........................................................................................... 1
1-2 OLED 的歷史發展 .................................................................... 2
1-3 研究動機 ................................................................................... 3
第貳章 有機電激發光元件原理與結構 .................................... 5
2-1 有機發光二極體的原理 ........................................................... 5
2-1-1 螢光與磷光之激發態 ........................................................ 5
2-1-2 影響螢光與磷光之放射現象的參數 ................................. 8
2-2 有機材料的特性 ....................................................................... 9
2-2-1 小分子(OLED)與高分子(PLED)系統 .............................. 9
2-2-2 摻雜系統 .......................................................................... 10
2-3 有機電激發光元件之架構 ..................................................... 14
2-4 有機發光元件之全彩化技術 ................................................. 16
第參章 文獻回顧 ...................................................................... 19
3-1 有機層界面之載子注入(金屬/有機界面) ............................. 20
3-2 歐姆接觸電流 ......................................................................... 21
3-3 空間電荷限制電流(Space Charge Limited Current, SCLC) .... 21
3-3-1 Mott-Gurney square law.......................................................... 21
3-3-2 場相依遷移率模型(FDM) ................................................ 22
3-4 缺陷限制電荷電流(Trapped Charge Limited Current, TCLC). 23
3-4-1 載子捕捉缺陷 ................................................................... 23
3-4-2 淺層能階缺陷 .................................................................... 24
3-4-3 深層能階缺陷 .................................................................... 25
3-4-4 Poole Frenkel 效應 ............................................................ 25
3-4-5 缺陷限制電荷電流 ........................................................... 26
3-4-6 缺陷狀態分佈形式 ............................................................ 28
3-4-6-1 單能階缺陷狀態分佈 ............................................. 28
3-4-6-2 指數型缺陷狀態分佈 ............................................. 29
第肆章 結果分析與討論 .......................................................... 31
4-1 模型建構與假設 ..................................................................... 31
4-2 場相依遷移率(FDM)模型的模擬結果與結果分析 ............. 32
4-3 指數分佈缺陷(EDT)模型的模擬結果與結果分析 .............. 33
4-4 場相依缺陷佔據(FDTO)模型 ................................................ 34
4-4-1 場相依佔據模型的單載子電洞元件模擬結果 ................ 36
4-4-2 場相依佔據模型的單載子電子元件模擬結果 ................. 37
4-4-3 以FDTO 模型模擬之結果分析 ........................................ 38
4-5 模擬的結果討論 ..................................................................... 41
第伍章 結論與未來展望 .......................................................... 43
5-1 結論 ......................................................................................... 43
5-2 未來展望 ................................................................................. 44
附錄A ......................................................................................... 46
參考文獻 .................................................................................... 77
參考文獻 References
[1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. 38 , pp. 2042
(1963).
[2] W. Helfrich and W.G. Schneider, Phys. Rev. Lett. 14, pp. 229 (1965).
[3] N. V. Vityuk, V. V. Mikho, Sov. Phys. Semicond. 6 , pp. 1479 (1973).
[4] P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, Thin Solid
Films 94, pp. 476 (1982).
[5] G. G. Roberts, M. McGinnity, P.S. Vincett, and W. A. Barlow, Solid
State Commum. 32, pp. 683 (1979).
[6] Masahiro Uchida, Chihaya Adachi, Toshiki Koyama, and Yoshio
Taniguchi., J. Appl. Phys, 86, (1999) pp. 1680.
[7] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, pp. 913 (1987).
[8] C. W. Tang, S. A. Vanslyke and C. H. Chen, J. Appl. Phys. 65, pp. 3610
(1989).
[9] Hsin-Hua Chang, Chung-Chih Wu, Cheng-Chung Yang, Chieh-Wei
Chen, and Cheng-Chung Lee., Appl. Phys. Lett. 78, pp. 574 (2001).
[10] D. A. Skoog, and D. M. West, Fundamentals of Analytical Chemistry,
3nd 1976.
[11] I. D. W. Samuel and A. Beeby, Nature 403, p.710, 2000.
[12] Junji Kido and Kenichi Hongawa, Katsuro Okuyama, Katsutoshi Nagai.,
Appl .Phys. Lett. 63 (1993) 2627.
[13] Miyata. S, Nalwa. H. S., “Organic Electroluminescent Materials and
Devices”, Gordon and Breach Science Pubishers,1997, chap. 2.
[14] Miyata. S, Nalwa. H. S., “Organic Electroluminescent Materials and
Devices”, Gordon and Breach Science Pubishers, 1997, chap. 10.
[15] Eun-Mi Han, Lee-Mi Do, Noritaka Yamamoto, and Masamichi Fujihira,
Chemistry. Letters., 1995 (1995) 57.
[16] Yutaka Ohmori, Hirotake Kajii, Takumi Sawatani, Hiroshi Ueta, Katsumi
Yoshino., Thin Solid Films 393 (2001) 407-411.
[17] Masahiro Uchida, Chihaya Adachi, Toshiki Koyama, and Yoshio
Taniguchi .,J. Appl. Phys, 86, (1999) 1680.
[18] F. Pschenitzka and J. C. Sturm, A., Appl. Phys. Lett. Vol. 79 (2001) 4354.
[19] D. V. Roberts, B. P. Wittmershaus, Y.-Z. Zhang, S. Swan, and M. P.
Klinosky, J. Lumin. 79,225 (1998).
[20] Yuji Hamada, Hiroshi Kanno, Tsuyoshi Tsujioka, Hisakazu Takahashi,
and Tatsuro Usuki., Appl. Phys. Lett. 75, 1682 (1999).
[21] Miyata. S, Nalwa. H. S., “Organic Electroluminescent Materials and
Devices”, Gordon and Breach Science. Pubishers, 1997, chap. 10.
[22] G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, and
S. R. Forrest., J. Appl. Phys., 86, 4067 (1999).
[23] C. W. Tang, S. A. Van Slyke, and C. H. Chen, J. Appl. Phys. 65, 3610
(1989)
[24] Yuji Hamada, Noriyuki Matsusue, Hiroshi Kanno, Hiroyuki Fujii,
Tsuyoshi Tsujioka and Hisakazu Takahashi., Jpn. J. Appl. Phys. Vol. 40
(2001) pp. L753-L755.
[25] Z. Zhang, X. Jiang, S. Xu, T. Nagatomo, and O.Omoto, Synth. Met. 91,
131 (1997).
[26] Zhi-lin Zhang, Xue-yin Jiang, Shao-hong Xu, T. Nagatomo, O. Omoto.,
Synth. Metals, 91 (1997) 131.
[27] Hideyuki Murata, Charles D. Merritt, and Zakya H. Kafaai., IEEE J.
Quantum Electron., vol. 4 (1998) 760–769.
[28] X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K.
Leo., Appl. Phys. Lett. 78, 410 (2001).
[20] V.G. Kozlov, V. Bulovic, P.E. Burrows, M. Baldo, V.B. Khalfin, G.
Parthasarathy, S.R. Forrest, Y. You, M.E. Thompson, J. Appl. Phys. 84
(1998) 4096.
[21] I.D.Parker, J.Appl.Phys., Vol. 75, No. 3, pp. 1656, 1994.
[22] Helfrich, W. (1967). Space-charge-limited and volume-controlled currents
in organic solids. In Physics and Chemistry of the Organic Solid State, vol.
III, edited by D. Fox, M.M. Labes and A. Weissberger, pp. 58, New York:
Wiley.
[23] M. A. Lampert and P. Mark, Current Injection in Solids (Academic, NEW
York, 1970).
[24] W. D. Gill, J. Appl. Phys. 43 (1972) 3752.
[25] D. M. Pai, J. Chem. Phys. Vol. 52, 2285, 1970.
[26] P. W. M. Blom, M. J. M. de Jong, M. G. van Munster, Phys. Rev. B, Vol. 55,
No. 2, R656 1997.
[27] K. C. Kao and W. Hwang, Electrical Transport in Solids, with Particular
Reference to Organic Semiconductors, Pergamon, New York, 1981.
[28] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, and S. R. Forrest, J.
A. Cronin and M. E. Thompson, J. Appl. Phys. Vol. 79, pp. 7991, 1996.
[29] K. C. Kao, W. Hwang, Electrical Transport in Solids, Pergamon, Oxford,
1981.
[30] Y. Chan, T. S. Jayadevaiah, Phys. Stat. Sol. (b), 49, K129-33, 1972.
[31] Zhiqiang Gao, C. S. Lee, I. Bello, S. T. Lee, Ruey-Ming Chen, Tien-Yau
Luh, J. Shi, and C. W. Tang., Appl. Phys. Lett.,. 74, (1999) 865.
[32] Jianmin Shi and C. W. Tang., Appl. Phys. Lett. 70 (1997) 1665.
[33] Junji Kido and Toshio Matsumoto., Appl. Phys. Lett., 73 (1998) 2866.
[34] A. J. Campbell, D. D. C. Bradley, D. G. Lidzey, J. Appl. Phys. Vol. 82, pp.
6326, 1997.
[35] B. K. Crone, I. H. Campbell, P. S. Davids, D. L. Smith, J. Appl. Phys. Vol.
86, pp. 5767, 1999.
[36] Vikram Kumar, S. C. Jain, Ashok K. Kapoor, Wim Geens, Tom Aernouts,
J. Poortmans, and R. Mertens, J. Appl. Phys. Vol. 92, pp. 7325, 2002.
[37] P.S. Davids, I. H. Campbell, D. L. Smith, J. Appl. Phys., Vol. 82, pp. 6319,
1997.
[38] P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar, Appl. Phys. Lett., Vol.
68, pp. 3308, 1996.
[39] E. M. Conwell, M. W. Wu, Appl. Phys. Lett., Vol. 70, pp. 1867, 1997.
[40] M. A. Baldo, S. R. Forrest, Phys. Rev. B, Vol. 64, 085201, 2001.
[41] I. H. Campbell, D. L. Smith, Appl. Phys. Lett., Vol. 74, pp. 561, 1999.
[42] Y. Q. Peng, F. J. Zhang, X. Zhang, D. S. Zheng, Appl. Phys. A, Vol. 78, pp.
369, 2004.
[43] 顧鴻壽, 光電有機電激發光顯示器技術與應用, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.24.134
論文開放下載的時間是 校外不公開

Your IP address is 3.141.24.134
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code