Responsive image
博碩士論文 etd-0701108-123918 詳細資訊
Title page for etd-0701108-123918
論文名稱
Title
高級淨水程序消毒副產物之生成研究
The Generation of Disinfection By-Products during Advanced Drinking Water Treatment Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
162
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-20
繳交日期
Date of Submission
2008-07-01
關鍵字
Keywords
鹵化乙酸、鹵化乙酸生成潛勢、三鹵甲烷生成潛勢、三鹵甲烷
Trihalomethanes, Trihalomethanes formation potential, Haloacetic acids, Haloacetic acid formation potential
統計
Statistics
本論文已被瀏覽 5669 次,被下載 3756
The thesis/dissertation has been browsed 5669 times, has been downloaded 3756 times.
中文摘要
自來水廠淨水程序中添加含氯消毒劑,具有淨化水質與確保水質安全衛生之功用。但消毒劑與存在於水中之天然或人為有機物發生反應會生成消毒副產物(Disinfection By-Products,DBPs),其中以鹵化乙酸(Haloacetic Acids,HAAs)與三鹵甲烷(Trihalomethanes,THMs)為消毒副產物之主要組成物種。
本研究針對南部三大淨水廠(A、B、C三廠)進行消毒副產物鹵化乙酸與三鹵甲烷之分析,探討三水廠使用高級淨水程序淨化與降低消毒副產物之生成濃度情形,並藉此調查目前南部地區自來水中鹵化乙酸與三鹵甲烷的濃度分布情形,其中A、B兩廠使用UF/RO系統,C廠使用BAC系統。鹵化乙酸之分析方法係根據美國環保署公告之Method 552.3進行實驗,三鹵甲烷的部分則是使用頂空固相微萃取法(HS-SPME)進行實驗,亦同步分析溶解性有機碳(DOC)與其他水質檢測項目,討論各檢測項目與消毒副產物之生成是否具有相關性,以作為法規訂定參考依據與提供台灣地區自來水廠在淨水程序中操作之參考。
本研究在民國96年6月至民國97年4月分別進行南部三水廠之採樣分析,南部三水廠最終清水的九種鹵化乙酸(HAA9)之總濃度分布如下:A廠為28.71 ± 14.77μg/L,B廠為 24.43 ± 15.70μg/L,C廠為28.91 ± 14.38μg/L,三水廠皆符合美國環保署現行HAA5=60μg/L的標準。而最終清水的三鹵甲烷(THMs)之總濃度分布如下:A廠為9.99 ± 3.39μg/L,B廠為 8.49 ± 4.05μg/L,C廠為0.94 ± 2.12μg/L,三水廠皆符合我國環保署現行規定THMs=80μg/L的標準。且結果顯示南部地區HAA9組成物種主要是BCAA,其次為TCAA,而THMs主要組成物種則為三氯甲烷(CHCl3)。
另外,在本研究中發現DBPs與其他水質檢測項目之相關性,是以DOC値與溫度變化對DBPs濃度較有相關性,其中在DOC値方面,是以原水之DBPs之生成潛勢與DOC之相關性較佳;而溫度與DBPs濃度相關程度雖然較差,但仍隨溫度上升DBPs濃度亦有上升之趨勢。總結本研究之結果,A、B水廠使用之高級淨水程序(UF/RO系統)對於DBPs最終生成濃度能有效降低,相較於使用BAC系統之C廠有較佳的出水水質,對於南部地區自來水之淨化能有效提升出水水質,但由於南部地區含溴之鹵化乙酸物種濃度偏高,故建議對此現象需加以改善與控制。
Abstract
Disinfectants, such as chlorine, are widely used in water treatment plants to ensure the safety and quality of drinking water. However, these disinfectants easily react with some natural or man-made organic compounds in raw water and then form disinfection by-products (DBPs). For example, halogenated acetic acid (HAAs) and trihalomethanes (THMs) are two main components of DBPs.
The purposes of this study are to analyze the concentration of DBPs including HAAs and THMs in drinking water and investigate the distribution of DBPs in the processes of three advanced water treatment plants in southern Taiwan. The analytical method of HAAs is based on the USEPA Method 552.3 and THMs is analyzed by headspace solid-phase microextraction(HS-SPME). Moreover, some factors which may influence the formation of DBPs such as dissolved organic carbon (DOC) and water temperature are also analyzed to further discuss the relation to the generation of DBPs. Through this study, the results could be the reference for operation control in water treatment plants and regulation setting in Taiwan.
The samples of drinking water were collected in three advanced water treatment plants in southern Taiwan from June 2007 to April 2008. The analyzed HAA9 results were 28.71 ± 14.77μ g / L in Plant A, 24.43 ± 15.70 μ g / L in Plant B, 28.91 ± 14.38 μ g / L in Plant C. Comparing the HAA5 results with the maximum contaminant level (MCL) in USEPA, it was clearly found that all the values were under the standard of 60 μ g / L. As to THMs, the results were 9.99 ± 3.39μ g / L in Plant A, 0.94 ± 2.12 μ g / L in Plant B, 28.91 ± 14.38 μ g / L in Plant C and greatly under the EPA standard of 80 μ g / L in Taiwan. Furthermore, the major species of HAA9 in order were BCAA and TCAA while THMs was trichloromethane (CHCl3).
In the relation between DOC and DBPs, the results demonstrated that DOC was more relative to DBPs in raw water; meanwhile, the water temperature did not show great relation. In general, despite the poor correlation, it was still could conclude that the concentration of DBPs increases with the increase of DOC and temperature.
In conclusion, the research results showed that the removal efficiency of DBPs in Plant A and B (UF/RO system) is greater than Plant C (Biological Activated Carbon system, BAC system ), and all three advanced water treatment plants could show greatly effectiveness in drinking water quality improvement. However, higher concentration of bromine products in HAAs was discovered in this research. It was suggested that the phenomenon should be further discussed and controlled.
目次 Table of Contents
謝誌 ………...…Ⅰ

中文摘要……………………………………………………….………Ⅲ

英文摘要………………………………………………................ Ⅴ

目錄…………………………………………………………………Ⅶ

表目錄………………………………………………………………XII

圖目錄……………………………………………………………XIII


第一章 前言.………………………………………………………....1-1
1.1 研究緣起 ...............1-1
1.2 研究目的 ………1-2

第二章 文獻回顧……………………………………………………....2-1
2.1 水中有機物之來源與影響…………………………………….…2-1
2.2 消毒副產物…………..………….………………………………..2-4
2.3 含氯消毒副產物………………………………………..………...2-5
2.4鹵化乙酸與鹵化乙酸生成潛勢…………………………………2-10
2.4.1 鹵化乙酸之分類…………………………………………...2-10
2.4.2鹵化乙酸之來源……………………………………..….. 2-12
2.4.3鹵化乙酸之生成因素…….………………………………...2-12
2.4.4 鹵化乙酸之危害性質……………………………………...2-16
2.4.5鹵化乙酸之法規管制標準…………………………..….. 2-18
2.4.6鹵化乙酸之生成潛勢…….………………………………...2-19

2.5三鹵甲烷與三鹵甲烷生成潛勢………………………………...2-20
2.5.1 三鹵甲烷之分類…………………………………………...2-20
2.5.2三鹵甲烷之來源……………………………………..….. 2-21
2.5.3三鹵甲烷之生成因素…….………………………………...2-22
2.5.4 三鹵甲烷之危害性質……………………………………...2-26
2.5.5三鹵甲烷之法規管制標準…………………………..….. 2-27
2.5.6三鹵甲烷之生成潛勢…….………………………………...2-28

第三章 研究方法…………………………………………….……….3-1
3.1鹵化乙酸(Haloacetic acids, HAA5)…………………….………....3-1
3.1.1 分析藥品.…………………………………………………....3-2
3.1.2 分析儀器及設備..……………………………………………3-3
3.1.3 採樣及保存..………………………….………………….....3-3
3.1.4 HAAs分析步驟..………………………….…………………3-4
3.1.5 氣相層析儀分析條件..………………………….…………...3-6
3.1.6 檢量線之建立..……………..…………….…………………3-6

3.2三鹵甲烷(Trihalomethane, THMS)…………………….………....3-7
3.2.1 分析藥品.…………………………………………………....3-7
3.2.2 分析儀器及設備..……………………………………………3-7
3.2.3 採樣及保存..………………………….………………….....3-8
3.2.4 THMS分析步驟..………………………….…………………3-9
3.2.5 氣相層析儀分析條件..………………………….…………...3-9
3.2.6 檢量線之建立..……………..…………….………………...3-10

3.3消毒副產物生成潛勢(DBPs formation potential, DBPFP)…3-10
3.3.1鹵化乙酸生成潛勢(HAA formation potential, HAAFP).….3-11
3.3.2三鹵甲烷生成潛勢(THM formation potential, THMFP)…3-11
3.3.3非揮發性溶解性有機碳(Non-Purgable Dissolved Organic
Carbon, NPDOC)..…………….………….………………...3-12

3.4 本研究樣本採集.………………………………………………...3-13

第四章 結果與討論……...…………………………………………………...4-1
4.1 三水廠水質分析結果…..……………………………………………..4-1
4.1.1原水來源不同之DBPs 濃度分布情形……………………...4-2
4.1.2淨水程序不同之DBPs 濃度分布情形………………..…….4-5

4.2鹵化乙酸之濃度分析……………………………………..…..…...4-9
4.2.1各淨水廠處理程序中鹵化乙酸之生成差異………………...4-9
4.2.2鹵化乙酸濃度之季節性差異…………………………..….4-19

4.3三鹵甲烷之濃度分析……………………………………..……...4-23
4.3.1各淨水廠處理程序中三鹵甲烷之生成差異…………….....4-23
4.3.2三鹵甲烷濃度之季節性差異…………………………..…...4-28

4.4消毒副產物與DOC之關係……………………..……….……...4-31

4.5消毒副產物與溫度之關係……………………….……….……...4-41

4.6消毒副產物與pH之關係……………………….……….……...4-50


第五章 結論及建議…………………………………………………..5-1
5-1 結論……………………………………………………………….5-1
5-2 建議……………………………………………………………….5-4

參考文獻……………………………………………………………...…..….參-1
附錄A 品保品管數據…………..…………………………………….A-1

表目錄

表2.1 NOM組成物種…………………………….………………2-3
表2.2加氯消毒副產物種類……………………………..…………2-7
表2.3鹵化乙酸化合物之物理性質……………………..…………2-10
表2.4各國HAA單一物種之法規值比較………….……………2-19
表2.5三鹵甲烷化合物之物理性質……….………………………2-20
表2.6國內外飲用水三鹵甲烷之管制值…………………………2-27
表3.1 A淨水廠之採樣明細………………………….…...............3-14
表3.2 B淨水廠之採樣明細………………………….…...............3-15
表3.3 C淨水廠之採樣明細………………………….…...............3-16

圖目錄
圖1.1 研究架構圖…………………….………………………………1-3
圖2.1鹵化乙酸之結構式……………………………..…..…...……2-11
圖2.2三鹵甲烷之結構式…….…………………………………..…2-21
圖3.1 HAAs之實驗分析步驟……..…………………….....………3-7
圖3.2 THMs之實驗分析步驟……..……………………...………3-12
圖3.3 A淨水廠之處理流程圖…….….....………………………3-17
圖3.4 B淨水廠之處理流程圖…….….....………………………3-18
圖3.5 C淨水廠之處理流程圖…….….....………………………3-19
圖4.1四分位等級圖…….….....……………………..…………….4-2
圖4.2 A、B廠原水與清水HAA5四分位等級圖………………4-3
圖4.3 A、B廠原水與清水HAA9四分位等級圖…….……...…4-4
圖4.4 A、B廠原水與清水THMs四分位等級圖………………4-5
圖4.5 B、C廠原水與清水HAA5四分位等級圖…….……...…4-6
圖4.6 B、C廠原水與清水HAA9四分位等級圖………………4-7
圖4.7 B、C廠原水與清水THMs四分位等級圖…….……...…4-8
圖4.8 A淨水廠HAA5物種組成…………………………..……4-12
圖4.9 A淨水廠HAA9物種組成…….………………...…...…4-12
圖4.10 B淨水廠HAA5物種組成………………………………4-15
圖4.11 B淨水廠HAA9物種組成…….………………....…...…4-15
圖4.12 C淨水廠HAA5物種組成………………………………4-18
圖4.13 C淨水廠HAA9物種組成…….………………....…...…4-18
圖4.14三淨水廠月均溫之變化…….………………..…....…...…4-21
圖4.15 A、B廠HAA9之季節性差異…………………………4-21
圖4.16 A、B廠HAA9之季節性差異………………....…...…4-22
圖4.17 A淨水廠THMs物種組成…….………………....…...…4-24
圖4.18 B淨水廠THMs物種組成………………………………4-26
圖4.19 C淨水廠THMs物種組成…….………………....…...…4-27
圖4.20 A、B廠THMs之季節性差異…………………………4-30
圖4.21 B、C廠THMs之季節性差異………………....…...…4-30
圖4.22 DOC與DBPs生成之關係(A水廠原水)…………4-35
圖4.23 DOC與DBPs生成之關係(B水廠原水)…………4-36
圖4.24 DOC與DBPs生成之關係(C水廠原水)…………4-37
圖4.25 DOC與DBPs生成之關係(A水廠清水)…………4-38
圖4.26 DOC與DBPs生成之關係(B水廠清水)…………4-39
圖4.27 DOC與DBPs生成之關係(C水廠清水)…………4-40
圖4.28 DOC與Temp生成之關係(A水廠原水)…………4-44
圖4.29 DOC與Temp生成之關係(B水廠原水)…………4-45
圖4.30 DOC與Temp生成之關係(C水廠原水)…………4-46
圖4.31 DOC與Temp生成之關係(A水廠清水)…………4-47
圖4.32 DOC與Temp生成之關係(B水廠清水)…………4-48
圖4.33 DOC與Temp生成之關係(C水廠清水)…………4-49
圖4.34 DOC與pH生成之關係(A水廠原水)……………4-52
圖4.35 DOC與pH生成之關係(B水廠原水)……………4-53
圖4.36 DOC與pH生成之關係(C水廠原水)……………4-54
圖4.37 DOC與pH生成之關係(A水廠清水)……………4-55
圖4.38 DOC與pH生成之關係(B水廠清水)……………4-56
圖4.39 DOC與pH生成之關係(C水廠清水)……………4-57
參考文獻 References
張慧?隉]2004),「台灣地區飲用水中含鹵乙酸之分析與流佈調查」,
國立台灣大學公共衛生學院環境衛生研究所碩士論文。
林永璋(2007),「高級淨水程序處理成效與廢水回收再利用可行性之
研究-以大高雄地區淨水場為案例-」,國立中山大學環境工程研究所
博士論文。
韓佳芸(2007),「淨水場改善前後對自來水水質即適飲提升之研究」,
國立中山大學環境工程研究所博士論文。
陳緯豪(2006),「游泳池水中含氯乙酸之生成及其液相光催化分解特
性研究」,國立高雄第一科技大學環境與安全衛生工程系碩士論文
李偉立(2006),「輸送管網及高級處理技術影響高雄市自來水水質之探
討」,國立中山大學環境工程研究所博士論文。
樓基中(2005),「大高雄地區自來水水質提升之調查研究第二年」,
台灣省自來水股份有限公司委託計畫報告(93MOEATWC201)。
劉彭譽(2002),「臭氧結合傳統淨水程序控制鳳山水庫原水消毒副產
物生成之研究」,逢甲大學環境工程與科學研究所碩士論文。
賴文亮(2002),「各種淨水程序對生物可分解有機質及消毒副產物之控
制」,國立成功大學環境工程研究所博士論文。
林坤樟(2005),「利用頂空固相微萃取法探討水中三鹵甲烷生成速率的
可行性」,國立中興大學環境工程研究所碩士論文。
洪妙芬(2004),「以固相微萃取法偵測垃圾污水中揮發性脂肪酸之研
究」,中國醫藥大學環境醫學研究所。
曾四恭、劉志仁,(1997),優養化水源消毒副產物之研究,自來水會刊
第十六卷第三期,pp.35-46。
蔣本基(1996),「飲用水中消毒副產物調查及處裡技術之評估」,行政
院環境保護署。
蕭蘊華,傅崇德,許鼎居譯(1999),環境工程化學(下冊),第四版,
台北市:希爾國際股份有限公司,635-639 頁。譯Clair N. Sawyer, Perry
L. McCarty.

英文參考文獻
Amy, G. L., Debroux, J., Sinha, S., Brandhuber, P., Chao, J. (1998),
“Occurrence of Disinfection By-Products(DBPs) Precursors in Source
Waters and DBPs in Finished Water” The 4th International Workshop on
Drinking Water Quality Management and Treatment Technology, pp. 59-70.
Anastasia, D. N., Spyros, K. Golfinopoulos and Themistokles, D. Lekkas.,
2002. Formation of organic by-products during chlorination of natural
waters. Journal of Environmental Monitoring. 4, 910-916.
Arbuckle, T.E., Hrudey, S.E., Krasner, S.W., Nuckols, J.R., Richardson,
S.D., Singer, P., Mendola, P., Dodds, L.,Weisel, C., Ashley, D.L., Froese,
K.L., Pegram, R.A., Schultz, I.R., Reif, J., Bachand, A.M., Benoit, F.M.,
Lynberg, M., Poole, C., Waller, K., 2002. Assessing exposure in
epidemiologic studies to disinfection by-products in drinking water: report
from an international workshop. Environ. Health Perspect. 110 (1), 53–60.
Bank, J., Wilson, D. (2002). Low cost solution for trihalomethanes
compliance. Journal of the Chartered e Institution of Water and
Environmental Management. 16(4), 264-269.
Batterman, S., Zhang, L., Wang, S. (2000), Quenching of chlorination
disinfection by-products formation in drinking water by hydrogen peroxide.
Wat. Res., 34(5), 1652-1658.
Bolto, B., G. Abbt-Braun, D. Dixon, R. Eldridge, F. Frimmel, S. Hesse, S.
King and M. Toifl, (1999)“Experimental Evaluation of Cationic
Polyelectrolytes For Removing Natural Organic Matter from Water” Wat.
Sci. Tech., Vol. 40, No. 9, pp. 71-79.
Bull, R.J. and Kopfler, F. C. (1991). Health effects of disinfectants and
disinfection by-products. Denver, CO: American Water Works Association
Research Foundation.
Bull, R. J., Sanchez, I. M., Nelson, M. A., Larson, J. L., Lansing, A. J.
(1990). Liver tumor induction in B6C3F1 mice by dichloroacetate and
trichloroacetate. Toxicology. 63(3), 341-359.
Cantor, K.P., Lynch, C.F., Hildesheim, M.E., Dosemeci, M., Lubin,
Alavanja, J., Craun, G., 1998. Drinking water source and chlorination
by-products: I. Risk of bladder cancer. Epidemiology 9 (1), 21–28.
Christman R. F., Norwood D. L., Millington D. S., Johnson J.D. and Steven
A. A. Identity and yields of major halogenated products of aquatic fulvic
acid chlorination. Environmental Science and Technology. 1983; 17(10),
625-628
Cicmanec, J. L., Condie, L. W.,Olson, G. R., Wang, S. R. (1991). 90-Day
toxocoty study of dichloroacetate. Metabolism. 30(10), 1024-1039.
Crozes, G., White, P., Marshall, M., 1995. “Enhanced coagulation: its effect
on NOM removal and chemical costs” J. AWWA 87 (1), pp. 78-89.
Cuy, L. L., Frank, M. B., and Davud, T. W. (1997). A one-year survey of
halogenated disinfection by-products in the distribution system of treatment
plants using three different disinfection processes. 34(11), 2301-2317.
C. V. Antoniou, E. E. Koukouraki, and E. Diamadopoulos (2005). Analysis
of chlorinated volatile organic compounds in water and wastewater by
means of headspace-spme-gc.
David, T. W., Guy, L. L., and Frank, M. B. (1997). Disinfection by-products
in Canadian drinking water. Chemosphere. 34(2), 299-316.
Drikas, M., 1997. NOM, the curse of the water industry. Water
September/October, 29–33.
Fuscoe, J. C., Afshari, A. J., George, M. H., DeAngelo, A. B., Tice, R. R.,
Salman, T., Allen, J. W. (1996). In vivo genotoxicity of dichloroacetic acid:
Evaluation with the mouse peripheral blood micronucleus assay and the
single cell gel assay. Environmental and Molecular Mutagenesis. 27(1), 1-9.
Gallard, H. and Gunten, U. V. (2002). Chlorination of natural organic matter:
kinetic of chlorination and of THM formation. Wat, Res., 36, 65-74.
Giller, S., Le, C. F., Erb, F. and Marzin, D. (1997). Comparative
genotoxicity of halogenated acetic acids found in drinking water.
Mutagenesis. 12(5), 321-328.
Golfinopoulos, S. K. (2000). The occurrence of trihalomethanes in the
drinking water in Greece. Chemosphere. 41, 1761-1767.
Graham, N. J. D., Wardlaw, V. E., Perry, R. and Jiang, J. Q. (1998). The
significance of algae as trihalomethane precursors. Wat. Sci. Tech., 37,
83-89.
Harish, A., Mark. W., Le, C. and Kevin, L. D., 1997. DBP occurrence survey.
Journal American Water Works Association. 89(6), 60-68.
Hsu, C. H., Jeng, W. L., Chien, R. M. and Ham, B. C. (2001). Estimation of
potential lifetime cancer risks for trihalomethanes from consuming
chlorinated drinking water in Taiwan. Environ. Res., Section A85, 77-82.
Jacangelo, J. G., Demarco, J., Owen, D. M., and Randtke, S. J., 1995.
Selected Processes for Removing NOM: an Overview. Journal American
Water Supply Work Association, 87(1), 64-77.
Johnson, P. D., Dawson, B. V., Goldberg, S. J. (1998). Cardiac
teratogenicity of trichloroacetate on carbonhydrate metabolism in B6C3F1
mice. Toxicology. 130, 141-154.
Keith, W. W., Ellen, H. R., Hunter, E. S. (2000). Comparative pathogenesis
of haloacetic acid and protein Kinase inhibitor embrytoxicity in mouse
whole embryo culture. Toxicological Sciences. 53(1), 118-126.
Khan, E., R. W. Babcock, I. H. Suffet and M. K. Stenstorm, (1998),
“Biodegradable Dissolved Organic Carbon for Indicating Wastewater
Reclaimation Plant Performance and Treated Wastewater Quality” Wat.
Environ. Res., Vol. 70, No. 5, pp. 1033-1040.
Kitis, Mehmet, Karanfil, Tanju, Wigton, Andrew, and Kilduff, James E.
(2002) “Probing Reactivity of Dissolved Organic Matter for Disinfection
By-product Formation Using XAD-8 Resin Adsorption and Ultrafiltration
Fractionation” Water Research, pgs 3834-3848.
Korshin, G. V., M. M. Benjamin and R. S. Sletten, (1997), “Adsorption of
Natural Organic Matter(NOM) on Iron Oxide: Effects on NOM
Composition and Formation of Organo-Halide Compounds During
Chlorination” Wat. Res., Vol. 31, No. 7, pp. 1643-1650.
Krasner, S.W. (1999). Chemistry of disinfection by-products formation on
formation and control of disinfection by-products in drinking water, Chapter
2. AWWA.
Krasner, S. W., Croue, J. P., Buffle, J., and Perdue, E. M. “Three
Approaches for Characterizing NOM.” Jour. AWWA, 88(6), pp.66~79,
1996.
Krasner, S., McGuire, M., Jacangelo, J., Patania, N., Reagen, K. and Aieta,
E., 1989. The occurrence of disinfection by-products in US drinking water.
Journal American Water Works Association. 81, 41-53.
Leenheer, J. A., G. K. Brown, P. Maccarthy and S. E. Cabaniss,(1998),
“Models of Metal Binding Structures in Fulvic Acid From the Suwannee
River, Georgia” Environ. Sci Technol., Vol. 32, No.16 , pp. 2410-2416.
Liang, Lin and Singer, Phillip C. (2003) “Factors Influencing the Formation
and Relative Distribution of Haloacetic Acids and Trihalomethanes in
Drinking Water” Environ. Sci. technol., pgs. 2920-2928.
Linder, R. E., Klinefelter, G. R., Strader, L. F., Suarez, J. D., Dyer. C. J.
(1994). Acute spermatogenic effects of bromoacetic acids. Fundamental &
Applied Toxicology. 22(3), 422-430.
Martin, M. B., Croue, J. P., Lefebvre, E. and Legube, B. (1997)
“Distribution and Characterization of Dissolved Organic Matter of Surface
Waters”, Wat. Res., Vol. 31, pp. 541-553.
Miller, J. H., Minard, K., Wind, R. A., Oener, G. A., Sasser, L. B., Bull, R. J.
(2000). In vivo MRI measurements of tumor growth induced by
dichloroacetate. Implications for mode of action. Toxicology. 145(2-3),
115-125.
Mohamed, A. E. and Ali, R. K. (1995). THMs formation during chlorination
of raw NILE river water. Wat. Res., 29, 375-378.
Nikolaou A. D., Kostopoulou M. N. and Lekkas T. D. Organic by-products
of drinking water chlorination: a review. Global Nest: Int J. 1999; 1(3),
143-156
Noblet, J., L. Schweitzer, E. Ibrahim, K. D. Stolzenbach, L. Zhou and I. H.
Suffet, (1999) “Evaluation of a Taste and Odor Incident on The Ohio River”
Wat. Sci. Tech., Vol. 40, No. 6, pp. 185-193.
Parrish, J. M., Austin, E. W., Stevens, D. K., Kinder, D. H., Bull, R. J.
(1996). Haloacetate-induced oxidative damage to DNA in the liver of male
B6C3F1 mice. Toxicology. 110(1-3), 103-111.
Pempkowial, J., J. Kozuch and H. Grzegowska, (1999), “Biological vs.
Chemical Properties of Natural Organic Matter Isolated From Selected
Norwegian Lakes” Environment International., Vol. 25, No.2/3 , pp.
357-366.
Rodriguez, M. J. and Serodes, J. (2001). Spatial and temporal evolution of
trihalomethanes in three water distribution system. Wat. Res., 35,
1572-1586.
Siddiqui, M. S., G. L. Amy and B. D. Murrhy, (1997), “Ozone enhanced
removal of natural organic matter from drinking water sources” Wat. Res.,
Vol. 31, No. 12, pp. 3098-3106.
Singer, P. 1994. Control of disinfection by-products in drinking water.
Journal of environment Engineering. 120(4), 727-774.
Singer, P. C. 1999. Humic substance as precursors for potentially harmful
disinfection by-products. Water Sci. Tech., 40(9), 25-30.
Stacpoole, P. W. (1989). The pharmacology of dichloroacetate. Metabolism:
Clinical &Experimental. 38(11), 1124-1144.
Stevens, A.A., Moore, L.A., Miltner, R.J. (1989). Formation and control of
non trihalomethane disinfection by-products. J. AWWA. 81(8), 54-59.
Toth, G. P., Kelty, K. C., George, E. L., Read, E. J., Smith, M. K. (1992).
Adverse male reproductive effects following subchronic exposure of rats to
sodium dichloroacetate. Funfamental & Applied Toxicology. 19(1), 57-63.
Trussell, R. R., and Posner, A. M. (1978). Gel chromatography of humic
acid. J. Soil Sci., 22, 237-317.
Trussell, R. R., Umphres, M. D. (1978). The formation of trihalomethanes.
Journal AWWA. 70(11), 604-612.
Urbansky, E.T. and Magnuson, M. L., 2002. Analyzing drinking water for
disinfection byproducts. Analytical Chemistry. 5(1), 261A-267A.
USEPA, 1993. Guidance Manual for Enhanced Coagulation and Enhanced
Precipitative Softening.
Villanueva, C. M., Kogevinas, M. and Grimalt, J. O. 2003. Haliacetic acids
and trihalomethanes in fished grinking waters from heterogeneous sources.
Water Research. 37, 953-958.
Williams, D., LeBel, G.L., Benoit, F. (1997). Disinfection by-products in
Canadian drinking water. J. Chemosphere. 34(29), 299-316.
Xie, Y. F. (2004). Disinfection by-products in drinking water: formation,
analysis and control. Lewish Publishers. USA.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code