Responsive image
博碩士論文 etd-0701110-114826 詳細資訊
Title page for etd-0701110-114826
論文名稱
Title
錳氧化物薄膜頻率相關磁電傳輸現象研究
High-frequency transport properties of manganeses oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-26
繳交日期
Date of Submission
2010-07-01
關鍵字
Keywords
晶界、弛豫時間、錳氧化物、磁阻抗、阻抗
magneto-impedance, grain boundary, manganese oxides, impedance, dielectric, magnetoresistance, relaxation time
統計
Statistics
本論文已被瀏覽 5686 次,被下載 0
The thesis/dissertation has been browsed 5686 times, has been downloaded 0 times.
中文摘要
本研究針對錳氧化物薄膜之高頻傳輸性質從事研究, 系統化的量測
La0.67Ca0.33MnO3 (LCMO), La0.8Ba0.2MnO3 (LBMO), La0.67Sr0.33MnO3 (LSMO(113))
and La0.67Sr1.33MnO4 (LSMO(214)) 等錳氧化物高頻阻抗對磁場、溫度頻譜的影響,
將實驗結果所對應的複數阻抗頻譜進行磁電傳輸分析,並使用等效電路法分析顆
粒膜電阻、電容與電感元件之貢獻。
首先,對於LSMO(214) and LSMO(113)錳氧化物薄膜做高頻磁電傳輸之機制
探討,由量測發現錳氧化物薄存在不同的磁特性,由於磁性質並存於介電行為
中,因此由弛豫時間與介電性質隨溫度變化可以了解在順磁性和鐵磁性相變轉換
過程中材料內部改變情況。進一步的分析顯示,磁性質主要來源並非自由載子所
感應的鐵磁性,而偏向於局域磁偶極矩行為,而磁相變無法由直流電阻直接測量
卻可由交流阻抗直接觀察得出,而LCMO and LBMO 從順磁性和鐵磁性相變轉也證
出相同性質,並提出阻抗頻譜為磁性量測機制上扮演重要角色。接著在探討錳氧
化物薄膜不同磁性(鐵磁、反鐵磁)材料系統在交變電磁場作用下,計算高頻磁電
性質物理參數之介電弛豫時間(電阻×電容) 隨溫度變化展現與直流電阻一致的
行為,發現其物理參數電容(C)並不隨溫度及磁相變而明顯改變,分析參數反映
出電偶極極化行為與自由載子傳導有強烈的相關。在次驗證利用等效電路分析阻
抗與直流電阻量測磁性轉換過程有等價效用。
在研究中發現,當LCMO薄膜厚度較小成長時間少時,薄膜粒徑較小使得晶界
(grain boundary)效應變大,使得其材料的共振頻率變小,相對得到弛豫時間也
變大。在LCMO(113)錳氧化物薄膜在交變電磁場作用下,所發現之巨磁阻抗現象
(GMI)其磁阻率比分別是Mχ(ac)>MR(ac)>MR(dc),另外分析參數結果判斷極薄
的顆粒膜自然晶界的傳導機制與人工層狀邊界低場磁阻效應有所不同,此機制說
明隨外加磁場變大晶粒邊界有序磁矩增加,同時晶界無序變短介面間電荷堆積,
因此磁電容則隨外加磁場而變大;而晶界磁矩無序到有序過程因而產生較大的晶界磁阻率,且晶界磁阻率大於晶粒磁阻率,其變化情形不同於人工層狀邊界磁矩
快速下降的低場效應,反而接近晶粒磁阻隨外加磁場而緩慢變化性質。
另外我們嘗試以古典電磁學理論出發,將LCMO_4min, LBMO_2min and
LSMO(214)材料視為一低損耗介電體,並且考慮可能影響材料阻抗的因素-磁后效
應與介質弛豫,發現自由載子與磁的耦合現象,電偶極極化快於磁偶極極化反
應,反映雙交換機制電子在Mn3+的eg state被跳躍至O2-的2p state傳輸有效跳躍
關聯於Mn離子週圍的電子因強Hund coupling受到Mn離子磁矩的影響而自旋偏極
化。此巨磁阻抗現象分析結果,可以提供材料製作之依據,進而獲得最佳之巨磁
阻抗變化,成為具應用潛力的高頻或磁感應元件。本研究對錳氧化物薄膜之高頻
磁電行為及傳導機制,可提錳氧化物薄膜在磁電性應用製作之基礎。
Abstract
In this thesis, we have performed systematical study of the complex impedance
spectra(CIS) with the manganeses oxide thin films by the equivalent circuit
model(ECM) composed of resistance and capacitance. The ECM has been utilized
in analog of the electrical and dielectric properties of the granular films. The purpose
of this research is to understand how the electrical- and magneto-transport properties
in La0.67Ca0.33MnO3(LCMO),La0.8Ba0.2MnO3(LBMO),La0.67Sr0.33MnO3(LSMO(113))
and La0.67Sr1.33MnO4 (LSMO(214)) thin films, at various magnetic fields and
temperatures.
First of all, we demonstrate that the LSMO(214) and LSMO(113) can be
sensitively affected by magnetic states on the manganite films. Our result provides
further understanding of the dielectrics variation during the phase transition from an
AFM insulating phase and/or a ferromagnetic metallic phase to a paramagnetic PM
metallic phase. It is known that the strong correlation between the itinerant carriers
and the local magnetic moments is the mechanism for FM/PM phase transition for
LSMO(113), while the direct magnetic exchange coupling governed the AFM/PM
phase transition and an indirect coupling to the status of intrinsic carriers for
LSMO(214) films. These transitions can not be concludes directly by using a dc
resistance measurement but can be clearly distinguished by the CIS measurement.
On the other hand, the dc resistance (Rdc) and the relaxation time(τ) have the same
tendency that this indicates the changes of τ matches to the electric transport
properties for LCMO_90min and LSMO(214) thin films.
We focus on the the dielectric properties of both samples are insensitive to
temperature, revealing that the dielectric behavior is independent of magnetic phase transition but strongly associated with the transport properties. Therefore, the
magnetic transitions can be most thoroughly investigated by combining CIS
measurements and RC ECM, as well as by making dc resistance measurements.
Moreover, the relative change of Mχ(ac) is nearly larger than the dc resistive
variation. This phenomenon, called giant magneto-impedance effect (GMI), implies that
thehigh-frequency magnetotransport effect may enhance the performance of these
manganese oxides for sensing the magnetic field. The CMI, have been analyzed by
ECM, including two sets of parallel R and capacitance (C) components in series. The
analyzing results the specific feature of grain boundaries(GBs) can be attributed to the
interplay of magnetic moment spin disorder to ordering. The grain boundary (GB)
effect can enhance low field magnetoresitance (LFMR) for artificial GBs, but shows
very limited enhancement for those GBs in epitaxial films. This study finds that
artificial GBs, which exhibit large LFMR, can be modeled as a non-conductive layer
which disconnects the lattice periodicity of adjacent grains and contains no magnetic
ions. The GBs in the present fully strained epitaxial film, which shows a relatively
smaller LFMR, are more similar to a semi-continuous grain with continuous
distribution of magnetic ions that align loosely parallel to the grain magnetic moment.
In addition, we report in this study the high frequency magneto-transport
properties, based on the classical model, of La0.8Ba0.2MnO3 and La0.67Ca0.33MnO3 thin
films around their ferromagnetic transitions and under an external magnetic field. It
is found that the specific features of magneto-impedance can be correlated with the
complex magnetization response and the dielectric relaxation in corresponding phase
states. The fast dielectric relaxation time, τE, and the slow magnetic response, τH,
reflect the interplay of itinerant carriers and the magnetic coupling to the ac
electromagnetic wave, indicating that the double exchange, or hopping, of carriers
between O 2P and Mn 3d-eg states occur prior to the indirect magnetic coupling of adjacent Mn ions via strong Hunt’s rules. Applied magnetic field enhances both
electric and magnetic dipoles are now responding faster to the electromagnetic wave.
The results of our work may provide a fundamental understanding of high frequency
magnetic and electrical properties of the manganite films, and imply tips for device
application of the films.
目次 Table of Contents
Contents
Abstract(Chinese) ---------------------------------------------------------------------------------------------I
Abstract(English) --------------------------------------------------------------------------------------------III
Acknowledgement-----------------------------------------------------------------------------------------VI
Contents---------------------------------------------------------------------------------------------------------VII
Table List---------------------------------------------------------------------------------------------------------IX
Figure List--------------------------------------------------------------------------------------------------------X
Chapter 1. Introduction to Giant Magneto-Impedance (GMI) Effect and
Manganites----------------------------------------------------------------------1
1-1.Brief review on the history of manganites ---------------------------------------------3
1-2.Giantmagneto-impedance(GMI)effect--------------------------------------------------7
1-3.Motivation----------------------------------------------------------------------------------9
1-4.Outline of the dissertation---------------------------------------------------------------10
Chapter 2. Fundamental of Manganites and Related Impedance Theories-12
2-1.Fundamental properties of manganites-----------------------------------------13
2-1-1.Giant magnetoresistance mechanism --------------------------------------------13
2-1-2.Jahn-Teller effect and double exchange effects--------------------------------15
2-1-3.Electron-phonon coupling and subsequent theories----------------------------20
2-1-4.Low-field magnetoresistance (LFMR)------------------------------------------ 22
2-2. Dielectric and magnetic material------------------------------------------------------26
2-2-1.Electrodynamic model-------------------------------------------------------------26
2-2-2.Good dielectrics--------------------------------------------------------------------30
2-2-3.Good conductors-------------------------------------------------------------------31
2-2-4.Equivalent circuit model(ECM) in impedance---------------------------------33
2-3.Ferroelectric and magnetic(FM or AFM) materials---------------------------------38
2-3-1.Dielectric relaxation---------------------------------------------------------------38
2-3-2.Magnetic after effect--------------------------------------------------------------41
2-3-3.Frequency response in loss low dielectric material-------------------------43
Chapter 3. Sample Preparation and Measurements----------------------------46
3-1.Sample Preparation-----------------------------------------------------------------------46
3-1-1.The RF magnetron sputtering system--------------------------------------------46
3-1-2.La0.67Ca0.33MnO3 (LCMO) films -------------------------------------------------47
3-1-3.La0.8Ba0.2MnO3 (LBMO) films----------------------------------------------------48
3-1-4.La0.67Sr0.33MnO3 (LSMO(113)) and La0.67Sr1.33MnO4 (LSMO(214)) films
---------------------------------------------------------------------------------------- 50
3-1-5.Photolithography for fabrication of thin-film microbridges-------------------52
3-1-6.Thickness of the films--------------------------------------------------------------53
3-2.Measurements-----------------------------------------------------------------------------54
3-2-1.DC electr ical-t ransport measurement--- --- ---- --- ---- --- ---- --- -54
3-2-2.AC electrical-transport measurement--------------------------------------------55
3-2-3.Magneto-transport measurements------------------------------------------------58
Chapter 4. Results and Discussion---------------------------------------------------------59
4-1.The high-frequency electrical- and magneto-transport of manganites------59
4-1-1.Dielectric response of La0.67Sr1.33MnO4 and La0.67Sr0.33MnO3 across
magnetic phase transitions---------------------------------------------------------59
4-1-2.Dielectric response of La0.8Ba0.2MnO3 with various thicknesses across
ferromagnetic phase transition----------------------------------------------------62
4-1-3.Availability of Debye model on La0.67Ca0.33MnO3 (LCMO_90min) and
La0.67Sr1.33MnO4 (LSMO(214)) films with Nequist single semicircles and
the dielectric response of La0.67Ca0.33MnO3 (LCMO_90min) across
ferromagnetic phase transition----------------------------------------------------63
4-1-4.Dielectric response of La0.67Ca0.33MnO3 thin films with various thicknesses
across ferromagnetic phase transitions------------------------------------------66
4-1-5.Room temperature dielectric response, ac magnetoresistance and inductive
magnetoreactance of La0.8Ba0.2MnO3 (LBMO) films with various
thicknesses---------------------------------------------------------------------------72
4-1-6.Room temperature dielectric response, ac magnetoresistance and inductive
magnetoreactance of La0.67Ca0.33MnO3 (LCMO) with various thickness---73
4-2.The CIS were analyzed by using an equivalent circuit model----------------------77
4-2-1.A series RL components of LSMO(113) ----------------------------------------77
4-2-2.A parallel RC components of LSMO(214) and LCMO------------------------79
4-2-3.Two parallel RC components of LCMO_2min and LBMO-------------------82
4-2-4.RC ECM of low-field magnetoresistance and magnetocapacitance--------90
4-3 Classic electromagnetic model Z=(μ/ε)1/2 in analysis of CIS ----------------------97
4-3-1.Dielectric and Magnetic response of LCMO_4min, LBMO_2min and
LSMO(214) films-------------------------------------------------------------------98
4-3-2.Dielectric and Magnet ic response of LCMO films with var ious
thickness--------------------------------------------------------------------------103
4-3-3.Classic electromagnetic model versuse quivalent circuit model------------106
Chapter 5. Conclusion-------------------------------------------------------------------111
Reference--------------------------------------------------------------------------------------114

Table List
Table 1-1:Types of magnetoresistance.------------------------------------------------------4
Table 4-2-1:Values extracted from the fitting result for the relaxation time (τ) of
LBMO_2min and LBMO_15min.---------------------------------------------84
Table 4-3-1:It is obtain best fitting of experimental data with theoretical model by
taking suitable parameters.----------------------------------------------------100
Table 4-3-2:The fitting result for the complex magneto-impedance of the LBMO_
2min films by classic electromagnetic model, under room temperature.
------------------------------------------------------------------------------------101
Table 4-3-3: It is obtain best fitting of experimental data with theoretical model by
taking suitable parameters.---------------------------------------------------103
參考文獻 References
[1] Prinz G A and Hathaway K, Phys. 48 (4) 24 (1995)
[2] S. Jin, T. H. Tiefel, M. Me Cormak, R. A. Fastnacht, R. Ramesh and L. H. Chen,
Sci. 264, 413 (1994).
[3] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett.
71 2331 (1993).
[4] P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Phys. Rev. Lett. 75, 3336(1995).
[5] Y. Tokura, Y. Tomioka, H. Kuwahara, A. Asamitsu, Y. Moritomo, M. Kasai, J.
Appl. Phys. 79 288(1996).
[6] M.Yamaguchi, J.N.Burgharz, and T.Sato, J. Trans. of Mag. Soc. Japan, vol. 2, pp. 355-357,( 2002).
[7] J.M. Daughton, IEEE Trans. Magn. 36 2773 (2000).
[8] P.P. Freitas, F. Silva, N.J. Oliveira, L.V. Melo, L. Costa and N. Almeida, Sens.
and Act. A 81, 2 (2000).
[9] Prize G A, Sci. 282 1660(1998).
[10] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S,
Roukes M L, Chtchelkanova A Y and Treger D M, Sci. 294 1488(2001).
[11] Awschalom D D, Flatte M E and Samarth N, Sci. Am. 284 67(2002).
[12] J. De Boeck and G. Borghs, Phys World April. 27 (1999).
[13] S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Riche, and R. B. Beyers, J. Appl.
Phys. 85, 5828 (1999).
[14] S. Tehrani, J.M. Slaughter, E. Chen, M. Durlan, J. Shi and M. DeHerrera, IEEE
Trans. Magn. 35 2814 (1999).
[15] A.V. Pohm, J.S.T. Huang, J.M. Daughton, D.R. Krahn and V. Mehra, IEEE
Trans. Magn. 24 3117 (1988).
[16] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dan, and F. Petroff, Phys.
Rev. Lett. 61 2472(1988).
[17] K.Chahara,T.Ohno,M.Kasai,Y.Kozono, Appl. Phys. Lett. 63,1990(1993).
[18] Urshibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y, Phys.
Rev. B 51 14103(1995).
[19] Tomioka Y, Asamitus A, Kuwahara H, Moritoma Y and Tokura Y, Phys. Rev. B
53 R1689(1996).
[20] G. H. Jonker and J. H. Van Santen, Physica Utrecht. 16, 337(1950).
[21] J. E. O. Wollen and W. C. Koehler, Phys. Rev. 100, 545 (1955).
[22] J. H. Van Santen and G. H. Jonker , Phys. 16, pp. 599-600 (1950).
[23] J. Volger, Phys. 20, 49 (1954).
[24] Ju H L, Kwon C, Li Q, Green R L and Venkatesan T, Appl. Phys. Lett. 65 2108
(1994).
[25] Parkin S S P, Annu. Rev. Mater. Sci. 25 357 (1995).
[26] Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y., Matsui, Y., Phys. Rev. B 51,
3297 (1995).
[27] P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett.75, 3336
(1995).
[28] R.S. Beach, A.E. Berkowitz, Appl. Phys. Lett. 64 3652 (1994).
[29] L.V. Panina, K. Mohri, Appl. Phys. Lett. 65 1189 (1994).
[30] M. Knobel, M. Vazquez, M.L. Sanchez, A. Hernando, J. Magn. Magn. Mater.
169, 89 (1997).
[31] M. Knobel, M.L. Sanchez, C. Gomez-Polo, A. Hernando, P. Marın, M. Vazquez,
J. Appl. Phys. 79, 1646 (1995).
[32] H.Q. Guo, H. Kronmuller, T. Dragon, Z.H. Cheng, B.G. Shen, J. Appl. Phys. 89
514 (2001).
[33] R.L. Sommer, C.L. Chien, Appl. Phys. Lett. 67 3346 (1995).
[34] K.C. Mendes, F.L.A. Machado, L.G. Pereira, S.M. Rezende, F.C. Montenegro,
M.V.P. Altoe, F.P. Missell, J. Appl. Phys. 79 6555 (1996).
[35] R. Valenzuela, M. Knobel, M. Vazquez, A. Hernando, J. Appl. Phys. 78 5189
(1995).
[36] C. M. Fu, M. L. Lin, S. K. Hsu, and Z. H. Wen, J. Magn. Magn. Mater. 209, 151
(2000).
[37] Y. Tokura, Y. Tomioka, H. Kuwahara, A.Asamitsu, Y.Moritomo, M. Kasai, J.
Appl. Phys. 79 288 (1996).
[38] M. Dominguez, S.M. Bhagat, S.E. Lofland, L.S. Ramachandran, G.C. Xiong, H.L.
Ju, T. Venkatesan, R.L. Greene, Europhys. Lett. 32 349 (1995).
[39] V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, J. Appl. Phys. 83 2866 (1998).
[40] Y. Tokura, Y. Tomioka, H. Kuwahara, A.Asamitsu, Y.Moritomo, M. Kasai, J.
Appl. Phys. 79 288 (1996).
[41] S. Song and F. Placido, Journal of Statistical mechanics.(2004)
[42] C. M. Fu, K. S. Hsu, M. L. Lin, and Z. H. Wen, J. Magn. Magn. Mater. 209, 154
( 2000).
[43] J.D. Jackkson, Classical Electrodynamics, Wiley, New York, 1975.
[44] C. Zener, Phys. Rev. 82 403(1951).
[45] P.W. Anderson, H. Hasegawa, Phys. Rev. 100 675(1955).
[46] P.G. deGennes, Phys. Rev. 118 141(1960).
[47] A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74 5144(1995).
[48] R.E. Camley, J. Barnas, Phys. Rev. Lett. 63, 664 (1989).
[49] J. Barnas, A. Fuss, R.E. Camley, P. Grünberg, W. Zinn, Phys. Rev. B 42 8110
(1990).
[50] L.G. Pereira, J.L. Duvail, D.K. Lottis, J. Appl. Phys. 88 4772 (2000).
[51] A. Barthélémy, A. Fert, Phys. Rev. B 43, 13124 (1991).
[52] B. Dieny, P. Humbert, V.S. Speriosu, S. Metin, B.A. Gurney, P. Baumgart, H.
Lefakis, Phys. Rev. B 45 806 (1992).
[53] W. Heisenberg, Z. Physik, 49 619 (1928).
[54] J. B. Goodenough, J. Appl. Phys. 81 5330 (1997).
[55] P. W. Anderson and H. Hasegawa, Phys. Rev. 100 675 (1955).
[56] X. Y. Li, A. Gupta, Gangxiao and G. Q. Gong, Appl. Phys. Lett. 71 1124
(1997).
[57] L. Sheng, D. Y. Xing, D. N. Seng and C. S. Ting, Phys. Rev. Lett. 79 1710
(1995).
[58] J. P. Zhou, J. T. McDevitt, J. S. Zhou, H. Q. Yin, J. B. Goodenough, Y. Gim, and Q. X. Jia, Appl. Phys. Lett. 75 1146 (1999).
[59] Young, San-Lin, “Study of the magnetotransport behavior and electrical
properties in the colossal magnetoresistance materials La0.7- X Ln X Pb0.3Mn1- y
MeyO3”. National Sun Yat-sen University (2002).
[60] C. Mitra, P. Raychaudhuri, J. John, S. K. Dhar, A. K. Nigam, and R. Pinto, J.
Appl. Phys. 89 524 (2001).
[61] Millis A J, Nature 392 147(1998).
[62] Mahesh R and Itoh M Aust, J. Phys. 52 235(1999).
[63] H. Hwang, S-W. Cheong, N. P. Ong, B. Batlogg, Phys. Rev. Lett. 77
2041(1996).
[64] N. D. Mathur, G. Burnell, S. P., Isaac, T. J. Jackson, B. –S. Teo, J. L.
MacManus-Driscoll, L. F.Cohen, J. E. Evetts and M. G. Biamire, Nature 387 266
(1997)
[65] S. P. Isaac, N. D. Mathur, J. E. Evetts and M. G. Blamire, Appl. Phys. Lett. 72
2038(1998)
[66] C. Kwon, Q. X. Jia, Y. Fan, M. F. Hundley, D. W. Reagor, J. Y. Coulter and D.
E. Peterson, Appl. Phys. Lett. 72 486(1998)
[67] Y. Lu, X. W. Li, G. Q. Gong, G. Xiao, A. Gupta, P. Lecoeur, J. Z. Sun, Y. Y.
Wang and V. P. Dravid, Phys. Rev. B 54 R8357(1996)
[68] J. Z. Sun, Phys C 350 215(2001)
[69] M-H. Jo, N. D. Mathur, J. E. Evetts and M. G. Blamire, Appl. Phys. Lett. 77
3803(2000)
[70] M-H. Jo, N. D. Mathur, J. E. Evetts and M. G. Blamire, Phys. Rev. B 61
R14905(2000)
[71] D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Feild and P. R. Duncombe, Appl.
Phys. Lett. 75 995(1999)
[72] Z.C. Xia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zhang, J. Tang, L. Liu, S. Liu, G.
Peng, D.W. Niu, L. Chen, Q.H. Zheng, Z.H. Fang and C.Q. Tang Solid State
Comm. 128 291(2003)
[73] S. Valencia, O. Castañ o, J. Fontcuberta, B. Martínez and Ll. Balcells, J. Appl.
Phys. 94 2524(2003)
[74] Ll. Balcells, A. E. Carrillo, B. Martinez and J. Fontcuberta, Appl. Phys. Lett. 74
4014(1999)
[75] J. Inoue, J. Phys. D 31 643(1998).
[76] C.-H. Yan, Z.-G. Xu, T. Zhu, Z.-M. Wang, F.-X. Cheng, Y.-H. Huang and C.-S.
Liao, J. Appl. Phys. 87 5588(2000)
[77] Q. Huang , J. Li, X.J. Huang, C.K. Ong and X. S. Gao, J. Appl. Phys. 90
2924(2001).
[78] J. Nogues, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999).
[79] Hwang H Y, Cheong S W, Ong N P and Batlogg B, Phys. Rev. Lett. 77
2041(1996).
[80] A.K. Jonscher, Dielectric relaxation in solids, Chelsea Dielectrics Press, London
(1983).
[81] J. Fleig, Solid State Ion., 131 117 (2000).
[82] J. Abrantes, J. Labrincha and J. Frade, Mater. Res. Bull., 35 727 (2000).
[83] M. Vollmann, R. Hagenbeck and R. Waser, J. Am. Ceram. Soc., 80 2301 (1997).
[84] E. Carrasco, M.T. Gonzalez, K.L. Garcia, I. Betancourt, E. Amano, R.Valenzuela,
Rev. Mex. Fis. 45 115(1999).
[85] Knobel*, K.R. Pirota, J. Magn. Magn. Mater. 242–245 33–40 (2002).
[86] H. Chou, C. B, Wu, F. P. Yun, Z. H. Zhang and W. K. Chu, Appl. Phys. Lett. 91,
242505 (2007).
[87] Agilent HP4980A operation manual.
[88] Y.Moritomo ,Y.Tomioka, A .Asamitsau and Y.Tokura,Phys.Rev.B, 51
3297(1995).
[89] Joao C.C. Abrantes, Joao A. Labrincha and Jorge R. Frade, Mater Res Bull,
35,727-740 (2000).
[90] S. Saha and S. B. Krupanidhi, J. Appl. Phys. 87 2 (2000).
[91] H. Chou, S.J. Sun, M.N. Ou, T.C. Wu, H.L. Kao, G.L. Huang, L.Horng,C.C.
Chie, D.C. Yan e, M.T. Hong f, Y.C. Yu g, Thin Solid Films(2006).
[92] S.G. Song , Z. Ling and F. Placido , Mater Res Bull 40, 1081-1093(2005).
[93] S Song and F Placido, J. Stat. Mech. P10018(2004).
[94] A. Pelaiz-Barranco, M. P. Gutierrez-Amador, A. Huanosta, R. Valenzuela,Appl.
Phys. Lett. 73 2039(1998).
[95] R. Gangopadhyay, A. De and S. Das, J. Appl. Phys. 74 2363 (2000).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.118.250
論文開放下載的時間是 校外不公開

Your IP address is 3.138.118.250
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code