Responsive image
博碩士論文 etd-0701113-004909 詳細資訊
Title page for etd-0701113-004909
論文名稱
Title
升溫速率對非方向性電磁鋼片集合組織的影響
Effect of Heating Rate on the Development of Annealing Texture in Nonoriented Electrical Steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-21
繳交日期
Date of Submission
2013-08-01
關鍵字
Keywords
背向電子繞射、再結晶、非方向性電磁鋼片、集合組織
electron backscattered diffraction (EBSD), nonoriented electrical steels (NOES), recrystallization, texture
統計
Statistics
本論文已被瀏覽 5696 次,被下載 233
The thesis/dissertation has been browsed 5696 times, has been downloaded 233 times.
中文摘要
本研究旨在探討退火升溫速率對非方向性電磁鋼片再結晶集合組織演化的影響,以0.5 ℃/s與15 ℃/s升溫速率分別在590~900 ℃區間進行熱處理。並以再結晶分率與平均晶粒徑為基準,討論升溫速率對再結晶以及晶粒成長階段集合組織的影響。
  完全再結晶結果顯示,不同升溫速率的平均晶粒徑與再結晶集合組織相似,更近一步發現在兩升溫速率條件之下,再結晶各階段的集合組織演化幾乎相同。推論升溫速率不影響再結晶集合組織的演化,而是由冷軋之微結構所定。利用背向電子繞射(electron backscattered diffraction, EBSD)取向影像顯微術(orientation imaging microscopy, OIM)觀察初期再結晶大多成核於γ-fiber變形晶粒內,且γ-fiber變形晶粒內高角晶界密度相對大於α-fiber,顯示在γ-fiber上的成核影響了後續集合組織的演化。
  晶粒成長階段的巨觀集合組織顯示,慢速升溫條件的Goss隨著平均晶粒徑增加產生快速下降之現象。然而,從EBSD OIM統計數據仍難以歸納出慢速升溫條件Goss快速下降之原因,值得後續深入探討。
Abstract
In this study, two heating rates, 0.5 ℃/s and 15 ℃/s, are applied to the annealing process in the production of nonoriented electrical steels (NOES). The effect of heating rate on the texture evolution is analyzed based on the recrystallized fraction in the recrystallization stage and the grain size in the grain growth stage.
At the stage of recrystallization, no significant difference is found on the fully-recrystallized texture and the average grain size obtained by the two heating rates. Moreover, the results of macrotexture analysis reveal that the evolution of recrystallized texture is similar on both of the heating rate conditions. It is proposed that the heating rate, in the range of 0.5 ℃/s to 15 ℃/s, might not affect the evolution of the recrystallized texture, which is mainly determined by the cold-rolled microstructure. The orientation image mapping (OIM) of electron backscattered diffraction (EBSD) indicates that the density of high angle boundary in the deformed γ-fiber grains is more intensive than in the deformed α-fiber grains, and most of the new grains nucleate at the deformed γ-fiber matrixes. Accordingly, it is suggested that the recrystallized nuclei in the deformed γ-fiber grains might be the key to the annealing texture.
At the stage of grain growth, with an increase of average gain size, the Goss component {011}<100> decreases more faster in the condition of 0.5 ℃/s. However, the EBSD data obtained in this study cannot explain this phenomenon. It appears to be worthy of future investigation.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 vi
第一章、前言 1
第二章、文獻回顧 2
2.1 非方性向電磁鋼片 2
2.1.1 電磁鋼片的特性與分類 2
2.1.2 基本磁化原理 [5] 2
2.1.3 電磁鋼片的電磁特性 3
2.2 集合組織 5
2.2.1 極圖(pole figure) 5
2.2.2 Euler space與結晶方位分佈函數 (orientation distribution function, ODF) 5
2.2.3微觀集合組織分析(microtexture) 6
2.2.4 電子背向散射繞射(EBSD)的原理 6
2.2.5 取向影像顯微術(Orientation Imaging Microscopy, OIM) 7
2.3回復 8
2.4再結晶成核機制與模型 9
2.5 鋼鐵材料的集合組織演化 11
2.5.1 低碳鋼常見的軋延與再結晶集合組織 11
2.5.2冷軋延集合組織 11
2.5.3再結晶集合組織的演化理論 11
2.5.4方向性成核理論 12
2.5.5方向性成長理論 13
2.6升溫速率相關文獻 15
第三章、實驗步驟 17
3.1 實驗材料 17
3.2 試片製程 17
3.3 分析方式 17
3.3.1 金相觀察 17
3.3.2 硬度分析 18
3.3.3 XRD極圖量測與集合組織ODF分析 18
3.3.4 EBSD微觀集合組織分析 19
第四章、實驗結果 21
4.1 退火軟化曲線與再結晶分率 21
4.2升溫速率對微結構演變的影響 22
4.2.1 熱軋退火與冷軋試片的微結構 22
4.2.2不同退火升溫速率的微結構變化 22
4.3 巨觀集合組織 23
4.3.1 再結晶各階段集合組織的演變 23
4.3.2 以溫度為基準,比較兩種升溫速率的集合組織 23
4.3.3 以再結晶分率與晶粒徑為基準,比較兩種升溫速率的集合組織 24
4.4 微觀集合組織的觀察 27
4.4.1 再結晶的不均勻性與成核位置 27
4.4.2 晶粒群聚成團現象 27
第五章、討論 28
5.1 升溫速率對再結晶溫度的探討 28
5.2 升溫速率影響平均晶粒徑的探討 29
5.3 升溫速率對再結晶集合組織的探討 30
5.4 升溫速率對晶粒成長階段集合組織的探討 32
5.4.1 晶粒尺寸的分佈 32
5.4.2 結晶方位分佈位置 33
第六章、結論 34
第七章、參考文獻 35
參考文獻 References
1. J. T. Park and J. A. Szpunar, “Evlution of recrystallization texture in nonoriented electrical steels,” Acta Meterialia, 51(2003) 3037.
2. J. T. Park, J. A. Szpunar and S. Y. Cha, “Effect of heating rate on the development of annealing texture in nonoriented electrical steels,” ISIJ International, 43 (2003) 1661.
3. J. Wang, J. Li, X. F. Wang, J. J. Tian, C. H. Zhang and S. G. Zhang, “Effect of heating rate on microstructure evolution and magnetic properties of cold rolled non-oriented electrical steel,” Iron and Steel Reserch, 17(2010).
4. F. Emren, U. Von Schlippenbach and K. Lücke, “Investigation of the development of the recrystallization texture in deep drawing steels by ODF analysis,” Acta materialia, 34(1986).
5. 張六文、黃議興,“非方向性電磁鋼片的冶金原理與發展趨勢”,財團法人中鋼集團教育基金會與中國鑛冶工程協會,25 (1990)。
6. 侯春看、張六文,“電磁鋼片”,財團法人中鋼集團教育基金會與中國鑛冶工程學會,(2007)。
7. B. D. Cullity, “Introduction to Magnetic Materials,” Addison-Wesley Publishing Company, (1972).
8. T. D. Yensen and N. A. Ziegler, “Effect of carbon, oxygen and grain-sze on the magnetic properties of iron silicon alloys,” Transcations ASM, 24(1936).
9. C. W. Chen, “Magnetism and Metallurgy of Soft Magnetic Materials,” North-Holland, Amsterdam, The Netherlands, (1997).
10. L. Kestens and S. Jacobs. “Texture control during the manufacturing of nonoriented electrical steels.” Texture, Stress, and Microstructure, Hindawi Publising Corporation, (2008).
11. V. Randle and O. Engler, “Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping,” CRC press, (2000).
12. 黃宏勝、林麗娟,“FE-SEM/CL/EBSD分析技術簡介”,工業材料雜誌,201(2003) 99.
13. 楊平,“電子背散射衍射技術與其應用”,冶金工業出版社,(2000) 112.
14. F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena,” Pergamon Press, Oxford, (1995).
15. H. Hu, in: L. Himmel, “Recovery and Recrystallization of Metals,” Wiley, New York, (1963).
16. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Juul Jensen, M. E. Kassner, W. E. King , T. R. McNelley , H. J. McQueen and A. D. Rollett, “Current issues in recrystallization: a review,” Materials Science and Engineering A, 238(1997) 219.
17. P. R. Rios, F. Sicilinao Jr, H. R. Z. Sandim, R. L. Plaut and A. F. Padilha, “Nucleation and growth during recrystallization,” Materials Research, 8(2005) 225.
18. P. A. Beck and P. R. Sperry, “Strain induced grain boundary migration in high purity aluminum,” Journal of applied physics, 21 (1950) 150.
19. W. G. Burgers, “Über den Zusammenhang zwischen Deformationsvorgang und Rekristallisationstextur bei Aluminium,” Zeitschrift für Physik, 67 (1931) 605.
20. R. L. Every and M. Hatherly, “Oriented nucleation in low-carbon steels,” Texture, 1(1974) 183.
21. Y. Hu, V. Randle and T. Irons, “Macrotexture and microtexture evolution in cold rolled non-oriented electrical steel sheets during annealing,” Materials Science and Technology, 22(2006) 1333.
22. K. Ushioda, H. Ohsone, and M. Abe: in Proc. 6th Int. Conf. on “Textures of materials,” ISIJ International, 2(1981).
23. C. R. Barrett, Transactions of the Metallurgical Society of AIME. 137(1940) 128.
24. G. Ibe and K. Lücke, in Recrystallizaton, Grain Growth and Textures, ASM, Metals Park, (1966) 434.
25. U. Von Schlippenbach and K. Lücke: in Proc. 8th Int. Conf. on “Textures of materials,” Metallurgical Society of AIME, 861(1998).
26. H. Magnusson, D. Juul Jensen and B. Hutchinsson, “Growth rates for different texture components during recrystallization of IF steel,” Scripta Materialia, 44(2001) 435.
27. D. Muljono, M. Ferry, D. P. Dunne, “Influence of heating rate on anisothermal recrystallization in low and ultra-low carbon steels,” Materials Science and Engineering A, 303 (2001).
28. R. L. Higginson and C. M. Sellars, “Worked Examples in Quantitative Metallography,” Maney Publishinng, (2003).
29. 林俊宏、巫淑宇、高伯威、張六文,「熱軋製程對非方向性電磁鋼片集合組織之影響」,中國礦冶工程學會100年年會。
30. R. K. Ray, J. J. Jonas and R. E. Hook, “Cold Rolling and Annealing Textures in Low Carbon and extra low carbon steels,” International Materials Reviews, 39(1994).
31. J. T. Park and J. A. Szpunar, “Texture development during grain growth in nonoriented electrical steels,” ISIJ International, 45(2005).
32. H. E. Arntz, W. Jäniche, V. D. Eisenhüttenleute, “Steel: A Handbook for Materials Research and Engineering,” Springer-Verlag, Berlin, 2 (1993) 503.
33. F. J. Humphreys, “Review grain and subgrain characterization by electron backscatter diffraction,” Journal of Materials Science, 36 (2001) 3833.
34. B. F. Decker and D. Harker, “Recrystallization in rolled copper,” Transcations AIME, 188(1950).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code