Responsive image
博碩士論文 etd-0701113-133413 詳細資訊
Title page for etd-0701113-133413
論文名稱
Title
體感輔助策略對於學習成效之影響 - 以基礎光學原理為例
The Effects of Embodiment-based Learning Strategy on Learning Performance of Fundamental Optics Experiments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-27
繳交日期
Date of Submission
2013-08-15
關鍵字
Keywords
科技增強學習、自然科學學習、體感式學習、具身認知、扎根認知、學習成效
Embodied cognition, Gesture-based technology, Natural science learning, Embodiment-Based Learning, Learning performance
統計
Statistics
本論文已被瀏覽 5777 次,被下載 0
The thesis/dissertation has been browsed 5777 times, has been downloaded 0 times.
中文摘要
根據具身認知(Embodied Cognition)之主張,認知是由環境、肢體狀態和腦內認知模型模擬所組成認知的中心表徵。如基礎光學的實驗中,透過肢體操作實驗器具幫助學習者建構知識,便是一種結合環境、肢體與認知的過程。現階段多媒體學習教材雖然模擬了「實驗操作過程」,但透過鍵盤與滑鼠來進行實驗操作的方式,卻缺乏「學習者肢體與實驗環境的感受」。以透鏡實驗為例,目前學習者僅能移動滑鼠游標控制光源的位置或使用鍵盤快速鍵改變透鏡的種類等兩種方式來與學習教材進行互動,仍缺乏讓學習者能夠透過肢體來實際參與類似真實實驗環境之感受,使得滑鼠成為「腦內認知模型」與「肢體和環境感受」間的中介物,降低了肢體和環境直接互動對於認知建構的輔助。因此本研究設計了體感輔助策略,提供學習者使用多媒體教材時也能親自動手實作,利用模擬的實驗環境來讓學習者的肢體實際參與並結合腦內認知模型共同建構基礎光學知識。例如在透鏡實驗中觀察光源相對透鏡位置與所成像之變化,學習者透過肢體動作直接控制實驗中光源的移動,而非透過滑鼠或鍵盤進行操控。為了驗證本策略的效果,本研究設計了一個實驗性基礎光學學習活動,以國小五年級學生作為「體感式學習組」與「鍵鼠操作學習組」的對象。研究結果顯示體感式學習組學習者的基礎光學折射與透鏡之學習成效分數顯著高於鍵鼠操作學習組的學習者。然而認知負荷量表的結果顯示兩組之間並無顯著的認知負荷差異,本研究推判體感科技比起傳統鍵盤滑鼠操控,使用者在短時間內對於體感科技的熟悉程度較低,為造成認知負荷差異不顯著的主因,但認知負荷差異不顯著的結果也顯現出此種新式的學習可以快速的被學習者所接受。
Abstract
Theories of embodied cognition argue that modal simulations in the brain, bodily states, environment and situated actions are composed of central representations in cognition. Based on embodied cognition, body movements of performing natural science experiments can provide learners with authentic perceptual information for better knowledge construction. At present, the way of using a mouse/keyboard to conduct virtual experiments just reproduces physical experimental procedures on a PC. However, it lacks for utilizing environment and body as external information to help brain constructing knowledge during the experimental process. For example, learners interact with multimedia content of fundamental optics experiments by using conventional controllers like moving a mouse or pressing a hot key. Though, the controller has intervened between learner’s external bodily perceptions and internal knowledge schema but the operation of controller itself does not benefit to learner’s cognitive process. To cope with this problem, a Embodiment-based learning strategy is designed to provide hands-on practices by learners” gestures so that they can interact with the content directly. Through the developed system, fundamental optics knowledge can be constructed using schematization of modal simulations in the brain, bodily states, environment and situated actions. To evaluate the effectiveness of the proposed strategy, K-5 students are equally divided into “Embodiment-based learning group” and “Keyboard-mouse-based learning group” for an experiment. Two variables, learning performance and cognitive load, are assessed to evaluate how well learners learned and how much burden learners undertake.
目次 Table of Contents
論文審定書 I
論文提要 II
致謝 III
摘要 IV
Abstract V
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 、緒論 1
第一節 、研究背景與動機 2
第二節 、研究目的 3
第三節 、研究問題 4
第二章 、文獻探討 6
第一節 、體感式學習(Embodiment-based Learning ) 6
第二節 、扎根認知 9
第三節 、實驗室學習與互動式多媒體教材 11
第四節 、認知負荷 13
第三章 、系統設計 16
第一節 、體感式學習組之系統架構 16
第二節 、體感式學習組之系統學習內容與介面 17
第三節 、鍵鼠操作組之系統架構 23
第四節 、鍵鼠操作學習組之系統內容與介面 24
第四章 、研究方法 25
第一節 、研究架構與變數之操作型定義 25
第二節 、研究假說 26
第三節 、學習流程 27
第四節 、實驗設計 28
第五節 、研究工具 33
第六節 、資料分析方式 35
第五章 、結果與討論 36
第一節 、資料蒐集 36
第二節 、前測與後測結果分析 37
第三節 、認知負荷分析 39
第四節 、實驗觀察指標與系統記錄檔 41
第五節 、綜合討論 42
第六章 、結論 46
第一節 、研究發現 46
第二節 、研究貢獻 47
第三節 、研究限制 47
第四節 、未來研究 48
參考文獻 50
附錄一、學習成效衡量:光學概念問卷 54
附錄二、認知負荷量表(Cognitive Load) 57
附錄三、折射探究活動學習單 59
附錄四、透鏡探究活動學習單 60
附錄五、實驗觀察指標 62
參考文獻 References
Alias, N. A. (2012). Design of a motivational scaffold for the malaysian e-Learning environment Educational Technology & Society, 15(1), 137-151.
2. Amadieu, F., Mariné, C., & Laimay, C. (2011). The attention-guiding effect and cognitive load in the comprehension of animations. Computers in Human Behavior, 27(1), 36-40. doi: 10.1016/j.chb.2010.05.009
3. Anastopoulou, S., Sharples, M., & Baber, C. (2011). An evaluation of multimodal interactions with technology while learning science concepts. British Journal of Educational Technology, 42(2), 266-290. doi: 10.1111/j.1467-8535.2009.01017.x
4. Andújar, J. M., Mejías, A., & Márquez, M. A. (2011). Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. IEEE Transactions on Education, 492-500. doi: 10.1109/TE.2010.2085047
5. Antle, A. N., Corness, G., & Droumeva, M. (2009). What the body knows: Exploring the benefits of embodied metaphors in hybrid physical digital environments. Interacting with Computers, 21(1-2), 66-75. doi: 10.1016/j.intcom.2008.10.005
6. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-660.
7. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645. doi: 10.1146/annurev.psych.59.103006.093639
8. Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716-724. doi: 10.1111/j.1756-8765.2010.01115.x
9. Bellotti, F., Berta, R., De Gloria, A., & Ozolina, A. (2011). Investigating the added value of interactivity and serious gaming for educational TV. Computers & Education, 57(1), 1137-1148. doi: 10.1016/j.compedu.2010.11.013
10. Chang, C.-Y., Chien, Y.-T., Chiang, C.-Y., Lin, M.-C., & Lai, H.-C. (2012). Embodying gesture-based multimedia to improve learning. British Journal of Educational Technology. doi: 10.1111/j.1467-8535.2012.01311.x
11. Chao, K.-J., Huang, H.-W., Fang, W.-C., & Chen, N.-S. (in press). Embodied play to learn: exploring Kinect-facilitated memory performance. British Journal of Educational Technology. doi: 10.1111/bjet.12018
12. Decety, J., & Grezes, J. (2006). The power of simulation: imagining one's own and other's behavior. Brain Research, 1079(1), 4-14. doi: 10.1016/j.brainres.2005.12.115
13. England, E., & Finney, A. (2011). Interactive media—What’s that? Who’s involved? ATSF White Paper—Interactive Media UK—©2002/2011 ATSF 1-12.
14. Gardner, H. E. (1993). Multiple intelligences: The theory in practice. New York, NY: Basic Books.
15. Gerjets, P., Scheiter, K., & Cierniak, G. (2009). The scientific value of cognitive load theory: A research agenda based on the structuralist view of theories. Educational Psychology Review, 21(1), 43-54. doi: 10.1007/s10648-008-9096-1
16. Goldman, A. I. (2006). Simulating minds:The philosophy, psychology, and neuroscience of mindreading. New York, NY: Oxford University Press.
17. Hao, Y., Hong, J.-C., Jong, J.-T., Hwang, M.-Y., Su, C.-Y., & Yang, J.-S. (2010). Non-native Chinese language learners' attitudes towards online vision-based motion games. British Journal of Educational Technology, 41(6), 1043-1053. doi: 10.1111/j.1467-8535.2009.01050.x
18. Howison, M., Trninic, D., Reinholz, D., & Abrahamson, D. (2011). The mathematical imagery trainer-from embodied interaction to conceptual learning. In G. Fitzpatrick, C. Gutwin, B. Begole, W. A. Kellogg & D. Tan (Eds.), Proceedings of ACM Conference on Human Factors in Computing Systems (CHI 2011) (pp. 1989-1998). Vancouver, Canada: Association for Computing Machinery, ACM.
19. Macedonia, M., Muller, K., & Friederici, A. D. (2011). The impact of iconic gestures on foreign language word learning and its neural substrate. Human Brain Mapping, 32(6), 982-998. doi: 10.1002/hbm.21084
20. Mann, S. (2001). Intelligent Image Processing. Canada: Wiley-IEEE Press.
21. Mann, S. (2007). Natural interfaces for musical expression: physiphones and a physics-based organology. In C. Parkinson & E. Singer (Eds.), Proceedings of NIME-07: 7th international conference on New interfaces for musical expression (pp. 118-123). New York, NY: Association for Computing Machinery, ACM.
22. Mishra, S., & Sharma, R. C. (2005). Interactive multimedia in education and training. India: Idea Group Publishing.
23. Mohler, J. L. (2001). Using interactive multimedia technologies to improve student understanding of spatially-dependent engineering concepts. In R. Strongin, J. Ketkov & S. Rotkov (Eds.), Proceedings of GraphiCon'2001 (pp. 292-300). Nizhny Novgorod, Russia: ACM Siggraph.
24. Norman, D. A. (1980). Twelve issues for cognitive science. Cognitive Science, 4, 1-32.
25. Paas, F. G. W. C. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429-434.
26. Rambusch, J., & Ziemke, T. (2005). The role of embodiment in situated learning. In Bruno G. Bara, Lawrence Barsalou & M. Bucciarelli (Eds.), Proceedings of Annual Conference of the Cognitive Science Society (pp. 1803-1808). Stresa, Italy: Lawrence Erlbaum Associates.
27. Raymond W. Gibbs, J. (2005). Embodiment and cognitive science. New York, NY: Cambridge University Press.
28. Sweller, J., Merrienboer van, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296.
29. Westera, W. (2011). On the changing nature of learning context: Anticipating the virtual extensions of the world. Educational Technology & Society, 14(2), 201-212.
30. White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1-100.
31. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.192.247.144
論文開放下載的時間是 校外不公開

Your IP address is 44.192.247.144
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code