Responsive image
博碩士論文 etd-0701113-144919 詳細資訊
Title page for etd-0701113-144919
論文名稱
Title
應用數值方法模擬斜面海堤在不同消波配置之越波量
Numerical Simulation of Wave Overtopping Rate at Sloping seawalls with Different Configurations of Wave Dissipators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-18
繳交日期
Date of Submission
2013-08-05
關鍵字
Keywords
消波配置、傾斜堤、越波、Flow 3D
sloping seawall, Flow 3D, dissipator, wave overtopping
統計
Statistics
本論文已被瀏覽 5736 次,被下載 466
The thesis/dissertation has been browsed 5736 times, has been downloaded 466 times.
中文摘要
實驗室水槽試驗法及類神經網路法已被廣泛運用於波浪溯升與越波研究;但水槽試驗不僅所需成本與時間較多,也較易造成比尺效應;而類神經網路法,其訓練組資料亦多採用水槽試驗結果。不同於往昔的推導經驗公式,本研究嘗試以理論架構為基礎的數學式應用數值方法,Flow 3D模組,針對傾斜海堤搭配不同變因模擬越波量;模擬變因包含1:0.5~1:8共16組堤體坡度、堤上之消波塊單雙層及拋石單雙層等不同組合比例及離岸潛堤之6組堤頂寬度、6組堤頂水深及8組堤體所在水深。
由Flow 3D模擬之水槽試驗驗證結果,得知在(1)定量性質方面,Flow 3D模擬越波量與CLASH之水槽資料驗證差異約5%越波量;而相較於本實驗室水槽試驗結果則減少約19%越波量,可謂有良好之吻合;(2)定性性質方面,以Flow 3D模擬越堤相關過程圖之波形、溯升、溯降及越波等與實際水槽試驗過程相對應,有良好之相似性;因此推論Flow 3D可應用於本研究之後續越波量項目。
以Flow 3D模擬多種傾斜堤與潛堤變因得到以下結論:(1)在光滑無消波工之海堤應優先考慮1:4.5~1:8之坡度;(2)比較消波塊鋪設於堤腳及全鋪面結果發現,全鋪面效果較佳,並以雙層全鋪面所消減之波能較多;(3)拋石消波需探討整體之粗糙度情形方可討論越波情形;(4)綜合不同消波工搭配之模擬結果,以坡度1:8堤面5噸雙層全鋪面消波塊之越波量最小;(5)由模擬潛堤之多組變因搭配4組不同尖銳度波浪之結果,顯示堤高波高比越大,越波量則越小;頂寬波高比越大,越波量越小;潛堤所在水深越深,則碎波位置離堤體越遠,越波量越小。
Abstract
Laboratory experiments and neural network method have been widely applied to the research on wave run-up and overtopping. The former is often costly and time consuming, as well as subject to scale effect; while the latter requires better training data for achieving good results. Unlike empirical methods established in the past, this research project adopts a theoretical framework integrated with a numerical method, Flow 3D, and focuses on modeling wave overtopping rate on a sloping and bermed seawall with several different dissipators. The front slopes investigated are within the range of 1:0.5~1:8(16 cases in all), for a sloping seawall with the Link blocks in single or double layers, ripraps in single or double layers and a submerged detached breakwater with 6 cases of top width in 6 cases of top depth and 8 types of water depth for submerged breakwater.
The outcome of verifying experimental results using Flow 3D is presented in two aspects: (1) Qualitatively, using difference of wave overtopping rate between Flow 3D modeling and CLAH data base within about 5 %; and difference of wave overtopping rate between Flow 3D results and laboratory experiments conducted in NSYSU about 19 %, thus indicating the model results of Flow 3D agree well with the results of laboratory experiments; (2) Quantitatively, using the waveforms of model results from Flow 3D and the experimental results. Based on these comparisons, it infers that Flow 3D can be adopted and applied to the present project.
Wave overtopping modeling using Flow 3D on a sloping seawall with various wave absorbing arrangements yield the following findings: (1) The slope of a smooth seawall should be within 1:4.5~1:8; (2) Link blocks on entire fronting slope are better than blocks on the toe only; and double layers of blocks are effective for reducing maximum wave energy; (3) To reduce wave energy on ripraps, the integral roughness should be taken into account; (4) On overall performance using different placements of dissipators for reducing overtopping, seawall with slope 1:8 with 5 tons of Link blocks in double layers on the entire front slope is the best; (5) Amongst the 4 different wave steepness tested for wave overtopping rate Q, it is found that Q reduces as SH/HS and SB/HS increase (SH: height of seawall; HS: wave height; SB: crown width), as well as deeper location for a submerged breakwater.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 1
1.3 本文組織 2
第二章文獻回顧 3
2.1 溯升與越波 3
2.2 越波相關研究 4
2.3 越波量估算 5
2.3.1 歐盟越波手冊 5
2.3.2 類神經網路 7
2.3.3越波量公式 11
2.4 Flow 3D相關研究 14
第三章 Flow 3D數值模式 15
3.1 軟體簡介 15
3.2 基本理論 15
3.2.1 Navier-Stokes 之控制方程式 15
3.2.2 Flow 3D控制方程式 16
3.3 體積函數法VOF (Volume of Fluid) 17
3.4 自由網格法FAVOR (Fraction Area/Volume Obstacle Representation) method 18
3.5紊流模式RNG k- ε(Renormalization Group) 19
3.6 網格處理法 20
3.7 數值離散方法與穩定收斂 22
3.8 Flow 3D操作流程 22
第四章 以Flow 3D驗證既有案例 36
4.1模式設定 36
4.1.1 基本設定 (General) 37
4.1.2 物理模組 (Physics) 38
4.1.3流體 (Fluids) 38
4.1.4網格及幾何 (Meshing & Geometry) 39
4.1.5 輸出設定 (Output) 41
4.1.6 數值解析 (Numerics) 41
4.2平均越波量之計算方法 42
4.3 CLASH資料庫驗證 43
4.4南星計畫縮尺水槽試驗驗證 49
第五章 實際案例模擬及應用 57
5.1 傾斜堤配置因子 57
5.1.1 傾斜堤前坡對越波量之影響 60
5.1.2 傾斜堤消波塊擺放方式對越波量之影響 62
5.1.3 傾斜堤塊石覆面層配置對越波量之影響 64
5.1.4 模擬傾斜堤越波之綜合比較 65
5.2 傾斜堤搭配潛堤的越波量探討 69
5.2.1 堤高波高比(SH /HS)與越波量(q)及溯升高(R)相關性 71
5.2.2 頂寬波高比(SB/HS)與越波量(q)及溯升高(R)相關性 73
5.2.3 潛堤位置對越波量之影響觀察 75
第六章 結論與建議 76
6.1結論 76
6.2 建議 78
參考文獻 79
參考文獻 References
1. 王瀚德(2002)小波理論與類神經網路應用於潮汐之預測與補遺。國立中山大學海洋環境及工程研究所碩士論文。
2. 王育崇(2012)孤立內波與結構物互制作用。國立高雄海洋科技大學海事資訊科技研究所碩士論文。
3. 何俊燐(2008)以類神經網路預測直立堤波浪越波量之研究。國立中興大學土木工程研究所碩士論文。
4. 柳騫璘(2011)波浪作用於海堤面之波流特性研究。國立中興大學土木工程研究所碩士論文。
5. 涂盛文、許文鴻、劉正琪(1999)「多目標離岸潛堤之研究」。第二十一屆海洋工程研討會論文集。
6. 郭金棟(2004)海岸保護。科技圖書股份有限公司,初版。
7. 馬煒倫(2011)潛堤與海堤間波流場特性之數值模擬。國立中興大學土木工程研究所碩士論文。
8. Ahrens, J.P. and Martin, F.T., (1978). Irregular Wave Runup and Overtopping. , ASCE, Vol. 104, pp.439-442.
9. Battjes, J.A., (1974). Surf similarity, Proceedings of 14th Coastal Engineering Conference, Copenhagen, Denmark, American Society of Civil Engineers, New York, pp.466-480.
10. Besley, P. (1999) Overtopping of seawalls-design and assessment manual. Environment Agency Bristol, R & D Technical Report W 178.
11. Bradbury, A.P. and Allsop, N.W.H., (1988). Hydraulic effects of breakwater crown walls. Breakwater 88’ Conference, ICE, Eastbourne.
12. CLASH (http://www.clash.ugent.be/)
13. De Waal, J.P. and van der Meer, J.W., (1992). Wave runup and overtopping on coastal dikes. ASCE, Proc. ICCE, Venice, Italy, Ch. 134, pp. 1758-1771.
14. EAK: 2002 Empfehlungen des Arbeitsausschusses Kustenschutzwerke. Die Kuste. H. 65.
15. Goda, Y., (1970). A synthese of breaker indices. Trans. Japan Soc. Civil Engrs., Vol. 2, Part 2, pp.227-230.
16. Goda, Y. and Abe, Y., (1968). Apparent Coefficient of Partial Reflection of Finite Amplitude Waves. Report of the Port and Harbour Research Institue, Vol.7, No. 3.
17. Garcia, N., Lara, J.L. and Losada, I.J., (2004). 2-D numerical analysis of near-field flow at low-crested permeable breakwaters. Coastal Engineering, 51, pp. 991-1020.
18. Hunt, I.A.jr., (1959). Design of seawalls and breakwaters. Journal of the Waterways and Harbors Division, Proc. ASCE, Vol.85 WW3, USA.
19. Iwagaki, Y., Shima, A. and Inoue, M., (1965). Effects of wave height and sea water level on wave overtopping and wave run-up. Coast. Engrg. In Japan, 8, pp. 141-151.
20. Iglesias, G., Diz-Lois, G., and Taveira Pinto, F., (2010). Artificial intelligence and headland-bay beaches. Coastal Engineering, 57:(2):176-183.
21. Kikkawa, H., Shiigia, H., and Kono, T., (1968). Fundamental study of wave overtopping on levees. Coastal Eng. in Japan, Vol.11, pp.107-115.
22. Miche, R., (1951). Le pouroir reflechissant des ouvrages maritimes exposes a laction de la houle, Ann. Des Ponts et chausses. 121e Annee, pp.285-319.
23. Mizuguchi, M., (1993). Wave overtopping rate over a vertical wall and reflection coefficient. Coastal Eng. in Japan, Vol.36, pp.37-47.
24. Marzenna, S., (2003). Forecast of storm surge by means of artificial neural network. Journal of Sea Research, Vol.49, pp. 317-322.
25. Owen, N.W., (1980). Design of seawalls allowing for wave overtopping. Report No. Ex924, Hydraulic Research, Wallingford.
26. Overtopping Manual (2007): EurOtop. Wave overtopping of sea defences and related structures. Assessment manual. EA-Environmental Agency, UK; ENW-Expertise Netwerk Waterkeren, NL; KFKI-Kuratorium für Forschung im Küsteningenieurwesen, DE.
27. Pozueta, B., Van Gent, M.R.A, and Van den Boogaard, H., (2004). Neural network modeling of wave overtopping at coastal structures. ASCE, proc. 29th ICCE, Lisbon, Portugal (in press).
28. Rivero, F.J., Arcilla, S. and Gironella, A., (1998). Large-scale Hydrodynamic Experiments in Submerged Breakwaters. Proc., Coast. Dyn. ’97, ASCE, 754-762.
29. Sibul, O. J., (1955).Flow over Structure by Wave Action. Trans .A. G. U., Vol. 36, No. 1, pp. 61-69.
30. Takada, A., (1970). On relations among wave run-up, overtopping and reflection. Proc. Japan Soc. Civil Eng, No. 182, pp.19-30.
31. Tsai, C.P., Lee, T.L., Yang, T.J., Hsu, Y.J., (2005). Back-propagation neural networks for prediction of storm surge. Structural and Environmental Engineering. Civil-comp Press, Vol.11, pp.589-596.
32. Umeyama, M., (1993). Wave overtopping on vertical boundary and water-surface displacement. J. WatWay, Port, Coastal & Ocean Eng, 119(3), pp.243-260.
33. Van der Meer, J. W., Briganti, R., Wang, B. & Zanuttigh, B. & Kramer, M., (2003). Oblique wave transmission over low-crested structures. ASCE, Proc. Coastal Structures, Portland, Oregon, pp. 567-579.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code