Responsive image
博碩士論文 etd-0701113-151214 詳細資訊
Title page for etd-0701113-151214
論文名稱
Title
具不同陣列微圓柱之微渠道的λDNA水力拉伸特性分析
λDNA Hydrodynamics Stretching in Microchannels with Different Micropillar Arrays
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-08-01
關鍵字
Keywords
DNA分子、水力拉伸、μLIF、螢光顯微鏡、μPIV、電滲流
DNA molecules, μLIF, electroosmotic flow, fluorescence microscope, μPIV, hydrodynamic stretching
統計
Statistics
本論文已被瀏覽 5737 次,被下載 881
The thesis/dissertation has been browsed 5737 times, has been downloaded 881 times.
中文摘要
本研究主要為具有微圓柱之微渠道,在電動驅動流下的流場情形,其微圓柱型式為平形式和交錯式兩種,微圓柱大小為直徑20 μm、30 μm和40 μm三種,最後加入λDNA分子觀察拉伸情形。整個實驗以微質點影像測速儀(Micrometer resolution particle image velocimetry, μPIV)觀測流場速度分布和計算流場應變率,以雷射誘發螢光(Laser induced fluorescence, μLIF)檢測因焦耳熱效應產生之流場溫度分布,以螢光顯微鏡(Fluorescence microscope, FM)觀測DNA分子拉伸影像。實驗中微渠道以光微影製程製出,將經氧化電漿的PDMS渠道上部與底部接合,通入工作流體後,於兩端加入電場驅動,其中工作流體為1×TBE,配置黏度分別為1、20和60 cP之緩衝溶液,電場強度使用5、8、10、15、20和25 kV/m。最後經由實驗得到校正速度、流場流動情形和DNA分子在微圓柱渠道拉伸情形等等。
Abstract
In this study, electrokinetic-driven flow in microchannels with different types and sizes of micropillars was observed. There were parallel and staggered micropillars in types and 20 μm, 30 μm and 40 μm in diametral sizes. At last stretched λDNA was also observed. We utilized micrometer resolution particle image velocimetry (μPIV) to observe and calculate the field of velocity. And the field of temperature caused joule heating effect was detected by laser induced fluorescence (μLIF). Used fluorescence microscope (FM) recorded the image of DNA molecules. In the experiment, microchannels were produced by photo lithogrophy process which composed of two slices of PDMS after UV/Ozone. And different viscosities and intensity of electric field in 1 x TBE buffer solution were performed to gain corrected velocity, flow field, stretched DNA in microchannels with micropillars and so on.
目次 Table of Contents
目 錄 i
表 目 錄 iii
圖 目 錄 iv
符號說明 vi
中文摘要 ix
Abstract x
第一章 序論 1
1-1 前言 1
1-2 DNA分子結構與性質 1
1-3 微機電系統與生醫晶片 3
1-4 背景與目的 4
1-5 文獻回顧 7
第二章 實驗系統與設備 15
2-1 μPIV及μLIF系統 15
2-2 全內反射顯微鏡 16
2-3 製程設備 17
2-4 其他實驗週邊設備 19
第三章 實驗方法及步驟 24
3-1 微流道設計與製程 24
3-2 工作流體配製 27
3-3 μPIV、μLIF和FM量測系統建立及原理 27
3-4 實驗量測參數 30
第四章 理論分析 45
4-1 校正速度理論 45
4-2 DNA分子流變學拉伸理論 46
4-3 無因次參數分析 47
第五章 誤差分析 51
第六章 結果與討論 55
6-1 校正速度量測 56
6-2 不同y位置速度量測 59
6-3 流場向量分析 62
6-4 DNA分子螢光可視化分析 64
6-5 DNA無因次參數分析 70
第七章 結論與建議 96
7-1 結論 96
7-2 建議與改進 97
參考文獻 98
附錄 A 109
參考文獻 References
1. P. G. De Gennes, 1974, "Coil-stretch Transition of Dilute Flexible Polymers under Ultrahigh Velocity Gradients," Journal of Chemical Physics, Vol. 60, pp. 5030-5042.
2. T. T. Perkins, S. Quake, D. Smith, and S. Chu, 1994, "Relaxation of a Single DNA Molecule Observed by Optical Microscopy," Science, Vol. 264, pp. 822-826.
3. T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, 1995, "Stretching of a Single Tethered Polymer in a Uniform Flow," Science, Vol. 268, pp. 83-87.
4. T. T. Perkins, D. Smith, and S. Chu, 1994, "Direct Observation of Tube-like Motion of a Single Polymer Chain," Science, Vol. 264, pp. 819-822.
5. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, 1996, "DNA: an Extensible Molecule," Science, Vol. 271, pp. 792-794.
6. T. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, 1996, "The Elasticity of a Single Supercoiled DNA Molecule," Science, Vol.271, pp. 1835-1837.
7. C. Gosse, and D. Wirtz, 2000, "Magnetic Tweezers for DNA Micromanipulation," Review of Scientific Instruments, Vol. 71, pp. 4561-4570.
8. S. B. Smith, L. Finzi, and C. Bustamante, 1992, "Direct Mechanical Measurements of The Elasticity of Single DNA Molecules by Using Magnetic Beads," Science, Vol. 258, pp. 1122-1126.
9. Y. Lin, S. X. Cheng , J. J. Wang, B. Lei, Z. L. Zhang and D. W. Pang, 2007, "Measuring Radial Young’s Modulus of DNA by Tapping Mode AFM," Chinese Science Bulletin, Vol. 52, pp. 3189-3192.
10. T. F. Chan, C. Ha, A. Phong, D. Cai, E. Wan, L. Leung, P. Y. Kwok, and M. Xiao, 2006, "A Simple DNA Stretching Method for Fluorescence Imaging of Single DNA Molecules," Nucleic Acids Research, Vol. 34, pp.e113.
11. J. H. Kim, W. X. Shi, and R. G. Larson, 2007, "Methods of Stretching DNA Molecules Using Flow Fields," Langmuir, Vol. 23, pp. 755-764.
12. P. K. Wong, Y. K. Lee, and C. M. Ho, 2003, "Deformation of DNA Molecules by Hydrodynamic Focusing," Journal of Fluid Mechanics, Vol. 497, pp. 55-65.
13. R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, 1997, "Hydrodynamics of a DNA Molecule in a Flow Field," Physical Review E, Vol. 55, pp. 1794-1797.
14. D. E. Smith, H. P. Babcock, and S. Chu, 1999, "Single Polymer Dynamics in Steady Shear Flow," Science, Vol. 283, pp. 1724-1727.
15. E. C. Lee and S. J. Muller, 1999, "Flow Light Scattering Studies of Polymer Coil Conformation in Solutions in Extensional Flow," Macromolecules, Vol. 32, pp. 3295-3305.
16. P. S. Doyle, B. Ladoux, and J. L. Viovy, 2000, "Dynamics of a Tethered Polymer in Shear Flow," Physical Review Letters, Vol. 84, pp. 4769-4772.
17. S. S. Hsieh, J. H. Liou, 2009, "DNA Molecules Dynamics in Converging-diverging Microchannels," Biotechnology and Applied Biochemistry, Vol. 52, pp. 29-40.
18. J. P. Rothstein, G. H. McKinley, 1999, "Extensional Flow of a Polystyrene Boger Fluid Through a 4:1:4 Axisymmetric Contraction/Expansion," Journal of Fluid Mechanics, Vol. 86, pp. 61-88.
19. P. J. Shrewsbury, S. J. Muller, and D. Liepmann, 2001, "Effect of Flow on Complex Biological Macrcmolecules in Microfluidic Devices," Biomedical Microdevices, Vol. 3, pp. 225-238.
20. P. J. Shrewsbury, D. Liepmann, and S., J. Muller, 2002, "Concentration Effects of a Biopolymer in a Microfluidic Device," Biomedical Microdevices, Vol. 4, pp. 17-26.
21. T. T. Perkins, D. E. Smith, and S. Chu, 1997, "Single Polymer Dynamics in an Elongational Flow," Science, Vol. 276, pp. 2016-2021.
22. D. E. Smith and S. Chu, 1998, "Response of Flexible Polymers to a Sudden Elongational Flow," Science, Vol. 281, pp. 1335-1340.
23. Y.-J. Juang, S. Wang, X. Hu, and L. J. Lee, 2004, "Dynamics of Single Polymers in a Stagnation Flow Induced by Electrokinetics," Physical Review Letters, Vol. 93, pp. 268105 (4pp).
24. S. S. Hsieh, C. H. Liu, and J. H. Liou, 2007, "DNA Molecules Dynamics in a Cross-slot Microchannel," Measurement Science & Technology, Vol. 18, 2907-2915.
25. A. G. Balducci, J. Tang, and P. S. Doyle, 2008, "Electrophoretic Stretching of DNA Molecules in Cross-slot Nanoslit Channels," Macromolecules, Vol. 41, pp. 9914-9918.
26. M. C. Williams, I. Roouzina, and V. A. Bloomfield, 2002, “Thermodynamics of DNA Interactions from Single Molecule Stretching Experiments,” Accounts of Chemical Research, Vol. 35, pp. 159-166.
27. K. Inatomi, S. Izuo, S. Lee, H. Ohji, and S. Shiono, 2003, “Electrophoresis of DNA in Micro-pillars Fabricated in Polydimethylsiloxane,” Microelectronic Engineering, Vol. 70, pp. 13-18.
28. G. C. Randall and P. S. Doyle, 2004, "Electrophoretic Collision of a DNA Molecule with an Insulating Post," Physical Review Letters, Vol. 93, pp. 058102 (4pp).
29. X. Xuan, B. Xu, D. Sinton, and D. Li, 2004, “Electroosmotic Flow with Joule Heating Effects,” Lab on a Chip, Vol. 4, pp. 230-236
30. S. Jeong, S. K. Park, J. K. Chang, and S. H. Kang, 2005, "Ultra-sensitive Real-time Single-DNA Molecules Detection at a Fused-silica/Water Interface Using TIRFM Technique," Bulletin of the Korean Chemical Society, Vol. 26, pp. 979-982.
31. G. Y. Tang D. Yan, C. Yang, H. Q. Gong, and J. C. Ghai, 2006, “Assessment of Joule Heating and Its Effects on Electroosmotic Flow and Electrophoretic Transport of Solutes in Microfluidic Channels,” Electrophoresis, Vol. 27, pp. 628-639.
32. Y. C. Chan, Y. K. Lee, and Y. Zohar, 2006, “High-throughput Design and Fabrication of an Integrated Microsystem with High Aspect-ratio Sub-micron Pillar Arrays for Free-solution Micro Capillary Electrophoresis,” Journal of Micromechanics Microengineering, Vol. 16, pp. 699-707.
33. Y. C. Chan, Y. K. Lee, and Y. Zohar, 2007, “Pillar Size Effect on DNA Electrophoresis in Microchips with Sub-micron Pillar Arrays,” Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, pp. 413-416.
34. B. Yang, V. R. Dukkipati, D. Li, B. L. Cardozo, and S. W. Pang, 2007, "Stretching and Selective Immobilization of DNA in SU-8 Micro- and Nanochannels," Journal of Vacuum Science & Technology B, Vol. 25, pp. 2352-2356.
35. N. P. Teclemariam, V. A. Beck, E. S. G. Shaqfeh, and S. J. Muller, 2007, “Dynamics of DNA Polymers in Post Arrays: Comparison of Single Molecule Experiments and Simulations,” Macromolecules, Vol. 40, pp. 3848-3859.
36. S. Dasgupta, A. A. S. Bhagat, M. Horner, I. Papautsky, and R. K. Banerjee, 2008, “Effects of Applied Electric Field and Microchannel Wetted Perimeter on Electroosmotic Velocity,” Microfluidics and Nanofluidics, Vol. 5, pp. 185-192.
37. K. Yamashita , M. Miyazaki, Y. Yamaguchi, M. P. Briones , H. Nakamura , and H. Maeda, 2008, "Direct Circular Dichroism Spectra Measurement of Stretching Long-strand DNA in a Tapering Microchannel," Chemical Engineering Journal, Vol. 135, pp. S288-S291.
38. L. M. Fu, J. H. Wang, W. B. Luo, and C. H. Lin, 2009, “Experimental and Numerical Investigation into the Joule Heating Effect for Electrokinetically Driven Microfluidic Chips Utilizing Total Internal Reflection Fluorescence Microscopy,” Microfluidics and Nanofluidics, Vol. 6, pp. 499-507.
39. M. Reuter, D. T. F Dryden, 2010, "The Kinetics of YOYO-1 Intercalation into Single Molecules of Double-stranded DNA," Biochemical and Biophysical Research Communications, Vol. 403, pp. 225-229.
40. C.U. Murade, V. Subramaniam, C. Otto, and M. L. Bennink, 2010, “Force Spectroscopy and Fluorescence Microscopy of dsDNA-YOYO-1 Complexes: Implicatios for the Structure of dsDNA in the Overstretching,” Nucleic Acids Research, Vol. 38, pp. 3423-3431.
41. W. Wang, Y. C. Chan and Y. K. Lee, 2011, “Biased Reptation Model with Electroosmosis for DNA Electrophoresis in Microchannels with a Sub-micron Pillar,” Journal of Micromechanics and Microengineering, Vol. 21, pp. 085031 (11pp).
42. G. Yu, A. Kushwaha, J. K. Lee, E. S. G. Shaqfeh, and Z. Bao, 2011, “The Shear Flow Processing of Controlled DNA Tethering and Stretching for Organic Molecular Electronics,” ACS Nano, Vol. 5, pp. 275-282.
43. S. S. Hsieh, J. H. Chen, and C. F. Tsai, 2013, “DNA Molecule Stretching Through Thermoelectrophoresis and Thermal Convection in a Heated Converging-diverging Microchannel,” Nanoscale Research Letters, Vol. 8, pp. 1-13.
44. Y. Kim, K. S. Kim, K. L. Kounovsky, R. Chang, G. Y. Jung, J. J. d. Pablo, K. Jo, and D. C. Schwartz, 2011, “Nanochannel Confinement: DNA Stretch Approaching Full Contour Length,” Lab on a Chip. Vol. 11, pp. 1721-1729.
45. G. Juarez and P. E. Arratia, 2011, “Extensional Rheology of DNA Suspensions in Microfluidic Devices,” Soft Matter, Vol. 7, pp. 9444-9452.
46. P. Gross, N. Laurens, L. B. Oddershede, U. Bockelmann, E. J. G. Peterman, and G. J. L. Wuite, 2011, ”Quantifying How DNA Stretches, Melts and Changes Twist Under Tension,” Nature Physics, Vol. 7, 731-736.
47. S. S. Hsieh, C. Y. Lin, C. F. Huang, and H. H. Tsai, 2004, "Liquid Flow in a Microchannel," Journal of Micromechanics and Microengineering, Vol. 14, pp. 436-445.
48. S. S. Hsieh, H. C. Lin, and C. Y. Lin, 2006, "Electroosmotic Flow Velocity Measurements in a Square Microchannel," Colloid and Polymer Science, Vol. 284, pp. 1275-1286.
49. S. S. Hsieh, and T. K. Yang, 2008, "Electroosmotic Flow in Rectangular Microchannels with Joule Heating Effects," Journal of Micromechanics and Microengineering, Vol. 18, pp. 025025 (11pp).
50. D. Ross, M. Gaitan, and L. E. Locascio, 2001, “Temperature Measurement in Microfluidic Systems Using a Temperature-dependent Fluorescent Dye,” Analytical Chemistry, Vol. 73, pp. 4117-4123.
51. H. J. Kim and K. D. Kihm, 2001, “Application of a Two-color Laser Induced Fluorescence(LIF) Technique for Temperature Mapping,” Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Vol. HTD, pp. 24411 (7pp).
52. H. Wang and Y. Wang, 2009, “Measurement of Water Flow Rate in Microchannels Based on the Microfluidic Particle Image Velocimetry,” Measurement, Vol.42, pp.119-126.
53. X. Xuan, D. Sinton, and D. Li, 2004, “Thermal End Effects on Electroosmotic Flow in a Capillary,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 3145-3157.
54. R. G. Larson, H. Hu, D. E. Smith, and S. Chu, 1999, “Brownian Dynamics Simulations of a DNA Molecule in an Extensional Flow Field,” Journal of Rheology, Vol. 43(2), pp. 267-304.
55. R. E. Teixeira, 2005, “Single Molecule Studies of Flexible Polymers Under Shear and Mixed Flow,” PhD Thesis, Stanford University.
56. X. Hu, 2006, “Simulations of Single Molecular Dynamics in Hydrodynamic and Electrokinetic Flows,” Electronic Thesis or Dissertation, OhioLINK Electronic Theses and Dissertations Center, Ohio State University.
57. R. G. Larson, 2005, "The Rheology of Dilute Solutions of Flexible Polymers: Progress and Problems," Journal of Rheology, Vol. 49, pp. 1-70.
58. F. Kreith and M. S. Bohn, 2001, PRINCIPLES OF HEAT TRANSFER, 6th ed., Brooks/Cole, Michigan, pp. 445-450.
59. G. C. Randall and P. S. Doyle, 2005, " DNA Deformation in Electric Fields: DNA Driven Past a Cylindrical," Macromolecules, Vol. 38, pp. 2410-2418.
60. J. S. Hur and E. S. G. Shaqfeh, 2000, ”Brownian Dynamics Simulations of Single DNA Molecules in Shear Flow,” Journal of Rheology, Vol. 44, pp. 713-742.
61. J. R. Taylor, 1997, AN INTRODUCTION TO ERROR ANALYSIS, University Science Books, Sausalito, California, pp. 97-100.
62. S. Dasgupta, A. A. S. Bhagat, M. Horner, I. Papautsky and R. K. Banerjee, 2008, “Effects of Applied Electric Field and Microchannel Wetted Perimeter on Electroosmotic Velocity,” Microfluidics and Nanofluidics, Vol. 5, pp. 185-192.
63. D. Maynes and B. W. Webb, 2003, “Fully-developed Thermal Transport in Combined Pressure and Electro-osmotically Driven Flow in Microchannels,” Journal of Heat Transfer-transactons of the ASME, Vol. 125, pp. 889-895.
64. A. Siria, A. L. Biance, C. Ybert and L. Bocquet, 2012, “A Flux Monitoring Method for Easy and Accurate Flow Rate Measurement in Pressure-driven Flows,” Lab on a Chip, Vol. 12, pp. 872-875.
65. D. Sinton and D. Li, 2003, “Electroosmotic Velocity Profiles in Microchannels,” Colloids and Surfaces A-Physicochemical and Engineering Aspects, Vol. 222, pp. 273-283.
66. Y. Berdichevsky, J. Khandurina, A. Guttman, and Y.-H. Lo, 2004, “UV/ozone Modification of Poly(Dimethylsiloxane) Microfluidic Channels,” Sensors and Actuators B-Chemical, Vol. 97, pp. 402-408.
67. I. Hoek, F. Tho, and W. M. Arnold, 2010, “Sodium Hydroxide Treatment of PDMS Based Microfluidic Devices,” Lab on a Chip, Vol. 10, pp. 2283-2285.
68. W. Lei, W. Jiankang, and C. Bo, 2009, “Analytic Solution of Liquid Flow in Rectangular PDMS-GLASS Microchannel with Wall Slip,” Applied Mathematical Sciences, Vol. 3, pp. 2195-2214.
69. C. Choi, K. J. A. Westin, and K. S. Breuer, 2003, “Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels,” Physics of Fluids, Vol. 15, pp. 2897-2902.
70. Y. Ren and D. Stein, 2008, “Slip-enhanced Electrokinetic Energy Conversion in Nanofluidic Channels,” Nanotechnology, Vol. 19, pp. 195707 (6pp).
71. L. Fang, H. Hu, and R. G. Larson, 2005, “DNA Configurations and Concentration in Shearing Flow near a Glass Surface in a Microchannel,” Journal of Rheology, Vol. 49(1), pp. 127-138.
72. J. J. Benitez, et al., 2012, “Microfluidic Extraction, Stretching and Analysis of Human Chromosomal DNA from Single Cells,” Lab on a Chip, Vol. 12, pp. 4848-4854.
73. A. Sischka, et al., 2005, “Molecular Mechanisms and Kinetics between DNA and DNA Binding Ligands,” Biophysical Journal, Vol. 88, pp. 404-411.
74. A. R. Klotz, 2011, “Statics and Dynamics of DNA in a Network of Nanofluidic Entropic Traps,” McGill University Libraries, Department of Physics, Master of Science, Physics-Molecular.
75. R. M. Robertson, S. Laib, and D. E. Smith, 2006, “Diffusion of Isolated DNA Molecules: Dependence on Length and Topology,” Proceedings of the National Academy of Science of the United States of America, Vol. 103, pp.7310-7314.
76. E. P. Kartalov, 2004, “Single-molecule Detection and DNA Sequencing-by-synthesis,” California Institute of Technology.
77. J. Tang and P. S. Doyle, 2007, "Electrophoretic Stretching of DNA Molecules Using Microscale T Junctions," Applied Physics Letters, Vol. 90, pp. 224103 (3pp).
78. K. J. Morton, et al., 2008, “Hydrodynamic Metamaterials: Microfabricated Arrays to Steer, Refract, and Focus Streams of Biomaterials,” Proceedings of the National Academy of Science of the United States of America, Vol. 105, pp. 7434-7438.
79. J. Ou, J. Cho, D. W. Olson, and K. D. Dorfman, 2009, “DNA Electrophoresis in a Sparse Ordered Post Array,” Physical Review E, Vol. 79, pp. 061904 (4pp).
80. L. Fang, C.-C. Hsieh, and R. G. Larson, 2007, “Molecular Imaging of Shear-induced Polymer Migration in Dilute Solutions near a Surface,” Macromolecules, Vol. 40, pp. 8490-8499.
81. A. Balducci and P. S. Doyle, 2008, “Conformational Preconditioning by Electrophoresis of DNA Through a Finit Obstacle Array,” Macromolecules, Vol. 41, pp. 5485-5492.
82. 黃彥祥, 2003, "DNA分子在漸縮微渠道中流動的拉伸及動態特性," 國立交通大學機械工程學系碩士論文.
83. 伍秀菁, 汪若文, 林美吟, 2003, "微機電系統技術與應用," 國科會精密儀器發展中心出版.
84. D. Sinton, C. E. Canseco, L. Ren, and D. Li, 2002, “Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels,” Journal of Colloid and Interface Science, Vol. 254, pp. 184-189.
85. Z. F. Wang, Y. X. Wu, and K. Puttachat, 2009, “Electroosmosis Flow (EOF) Mobility Measurement in Polymer Micro Channels,” SIMTech Technical Reports, Vol. 10, pp. 186-190.
86. M. C. Morales, H. Lin, and J. D. Zahn, 2011, “Continuous Microfluidic DNA and Protein Trapping and Concentratino by Balancing Transverse Electrokinetic Forces,” 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Vol. 1, pp. 1451-1453.
87. L.-S. Michal and E. Yuval, 2013, “Beyond Sequencing: Optical Mapping of DNA in the Age of Nanotechnology and Nanoscopy,” Current Opinion in Biotechnology, Vol. 24, pp. 1-9.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code