Responsive image
博碩士論文 etd-0701113-153125 詳細資訊
Title page for etd-0701113-153125
論文名稱
Title
耐汞菌株的篩選與特性分析
Isolation and Characteristic Analysis of Mercury Resistant Bacteria
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-16
繳交日期
Date of Submission
2013-08-01
關鍵字
Keywords
即時定量聚合酶連鎖反應、汞還原酶、變性梯度膠體電泳、汞、merA 基因
merA gene, real time PCR, mercuric reductase, DGGE, mercury
統計
Statistics
本論文已被瀏覽 5668 次,被下載 0
The thesis/dissertation has been browsed 5668 times, has been downloaded 0 times.
中文摘要
本省南部某污染場址同時有五氯酚、汞、戴奧辛等污染問題,對生態環境有很大的傷害,也危及鄰近居民的身體健康。因此本研究針對該場址汞污染,開發生物復育法,以現地微生物來進行處理。因為污染場址現地的汞污染濃度高達50 ppm,因此在篩選菌種方面,設計篩選所使用的培養基含有60ppm的汞離子 (Hg2+),在分離到耐汞菌株之後,再利用對merA gene專一的primers以PCR檢測是否帶有merA gene。其次,再進行16 S rDNA比對鑑定出所篩出菌株的菌種。本研究篩選出三株菌,編號分別為B37、A45與A46。菌種鑑定B37為Enterobacter cloacae、A45與A46均為Pseudomonas sp.,且此三菌株均具有merA gene。因污染場址鄰近海岸鹽度較高,需評估菌株耐鹽性,經過測試此三菌株對於海水鹽度 (3.5%) 具有耐受性,且最高都能耐受100 ppm汞濃度。以RT-PCR與real time PCR檢測,發現三菌株的merA gene都能夠被10 ppm汞離子所誘導表現。汞離子去除批次實驗,發現在60 ppm汞濃度下,在NB、PMM、LB培養基中分別以A45、三菌混合、B37組別處理效果最好,12天後分別可以揮發掉54.4%、89.0%、88.6%的汞離子,顯示此三株菌可以作為未來生物復育之候選菌。
Abstract
A combination of PCP, mercury and dioxin polluted site in Southern Taiwan causes great damage to the natural environment and endangers the health of nearby residents. The goal of this study is to isolate mercury resistant microorganisms from the polluted site and develop an in situ bioremediation technique. Because the concentration of mercury pollution in the polluted site is about 50 ppm, the medium used to isolate bacteria was designed to contain 60 ppm mercury ion. After mercury-resistant bacteria were isolated, PCR specific primers were applied to detect whether the bacteria contain merA gene or not. Identification of bacteria were based on their 16S rDNA sequences. In this study, three bacteria were isolated, designated as B37, A45 and A46. Species identification showed that B37 was closely related to Enterobacter cloacae while A45 and A46 were associated with Pseudomonas sp.. All three bacterial strains were also confirmed to grow well in 100 ppm Hg2+ media as well as under seawater salinity (3.5%). RT-PCR and real time PCR analysis revealed that the expression of merA gene could be induced by 10 ppm mercury ion in all 3 bacterial strains. Mercury ion removal batch studies exhibited that A45 strain in NB medium, combination of 3 strains in PMM medium, and B37 strain in LB mediums possessed the best treatment effect. After 12 days of incubation, 54.4%, 89.0% and 88.6% of mercury ions could be removed respectively. This study shows that these three bacterial strains are useful candidates in future bioremediation.
目次 Table of Contents
審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1汞簡介 3
2.2 汞化合物對人體的危害 6
2.2.1 元素汞對健康的影響 6
2.2.2 有機汞對健康的影響 8
2.2.3 無機汞對健康的影響 10
2.3汞污染的處理 11
2.3.1固定法 11
2.3.2熱處理法 11
2.3.3 微生物處理 12
2.4 mer gene組的調控 13
2.5 菌株的篩選鑑定與特性測試 15
2.5.1分子生物技術鑑定菌株 15
2.5.2細菌16S核糖體核糖核酸 (Ribosomal RNA, rRNA) 於菌種鑑定及分類上的應用 16
2.5.3 DGGE (Denaturing gradient gel electrophoresis) 變性梯度膠體電泳 17
2.5.4 merA gene的檢測 19
2.5.5 反轉錄聚合酶連鎖反應 (Reverse transcription PCR, RT-PCR) 19
2.5.6 即時定量聚合酶連鎖反應 (Real time PCR, Q-PCR) 20
2.6 微生態系統研究 (microcosm study) 21
第三章 實驗材料與方法 22
3.1菌株的篩選方法 22
3.2 菌株DNA的萃取 22
3.3檢測merA gene 23
3.4 DGGE (Denaturing gradient gel electrophoresis) 25
3.4.1 供DGGE使用所需準備的16S rDNA片段 25
3.4.2 DGGE操作方法 26
3.5 Clone library製作 28
3.6菌種與merA基因鑑定 30
3.6.1菌種鑑定所需的16S rDNA片段 31
3.6.2 16S rDNA clone 檢測 32
3.6.3 merA gene clone檢測 33
3.7 耐汞菌特性測試 33
3.7.1耐鹽度的測試 33
3.7.2耐汞能力測試 34
3.7.3 生化測試 34
3.7.4 merA gene表現 38
3.7.4.1 RNA的抽取 38
3.7.4.2 核糖核酸反轉錄 (RNA reverse transcription) 39
3.7.4.3反轉錄聚合酶連鎖反應 (Reverse transcription PCR, RT-PCR) 40
3.7.4.4即時定量聚合酶連鎖反應 (Real time PCR, Q-PCR) 40
3.8 菌株還原揮發汞離子能力測試 42
3.9 汞消化萃取與檢測方法 43
第四章 結果與討論 45
4.1可還原汞離子菌株篩選 45
4.1.2 耐汞菌株篩選 45
4.1.2 檢測merA gene 45
4.1.3以DGGE刪除重覆的菌株 46
4.1.4 菌株merA gene sequences定序比對 47
4.1.5 菌株16S rDNA sequences定序比對菌種鑑定 48
4.2 耐汞菌特性測試 49
4.2.1 耐鹽度的測試 49
4.2.2 耐汞能力測試 52
4.2.3 菌株生化測試 54
4.2.4 菌種merA gene之表現 55
4.2.4.1以反轉錄聚合酶連鎖反應 (Reverse transcription PCR, RT-PCR) 分析merA gene之表現 55
4.2.4.2 以即時定量聚合酶連鎖反應 (Real time PCR, Q-PCR) 分析merA gene之表現 57
4.2.5 菌株還原揮發汞離子能力測試 58
第五章 結論與建議 64
參考文獻 67
圖表 77
參考文獻 References
行政院勞工委員會GHS化學品全球調和制度(2010)危害物質危害數據資料。2013年07月19日,取自http://ghs.cla.gov.tw/CHT/intro/search.aspx?cssid=3。
行政院環境保護署環境檢驗所(2006)水中汞檢測方法-冷蒸氣原子吸收光譜法 (NIEA W330.52A)。2013年07月19日,取自http://www.niea.gov.tw/niea/WATER/W33052A.htm。
行政院環境保護署(2012)五氯酚 (Pentachlorophenol)。2013年07月19日,取自http://www.epa.gov.tw/ch/aioshow.aspx?busin=324&path=1900&guid=0f113f7e-801a-4195-9845-8af0aab8e48e&lang=zh-tw。
行政院環境保護署(2012)汞製品簡介。2013年07月19日,取自http://ivy4.epa.gov.tw/hgbat/PublicPage/P01.htm。
徐統(2009)汞。科學發展436:60-65。
李福臨(2012)16S rRNA基因序列比對在國人細菌鑑定上之應用現況。生物資源保存及研究簡訊 90:2-6。
李錦地、王松賓(1978)汞在台灣的使用情形及其污染之防治,科學月刊 108:63-65。
邢德峰、任南琪、宋佳秀、曲敏、徐香玲(2006)不同16S rDNA靶序列對DGGE分析活性污泥群落的影響。環境科學27:1424-1428。
林海龍、李偉光、閆險峰、任南琪(2011)中藥廢水污泥群落結構解析中PCR-DGGE引物的選擇與評價。環境科學32:1505-1510。
勞工安全衛生研究所(2009)物質安全資料表。2013年07月19日,取自http://www.iosh.gov.tw/publish.aspx?cnid=25。
黃煥彰(2002)失落的記憶 ─ 台鹼安順廠的污染,看守台灣季刊 4:80-87。
楊琬渝(2008)重油分解菌之分離鑑定與降解能力探討。國立中山大學生物科學系碩士論文。
劉鎮宗(1995)汞對生態環境的影響。科學月刊 301:41-46。
鄭森雄、許鐘榮(1977)水俁病。科學月刊 87:37-42。
Applied Biosystems. (2001) Primer Express® Applications-Based Primer Design Software Applications Tutorials.
Amann RI, Ludwig W, Schleifer KH. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-69.
ATSDR (The Agency for Toxic Substances and Disease Registry). (1999) Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Barkay T, Miller SM, Summers AO. (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27: 355-384.
Banchuen, T. (2002) A microcosm-based investigation into oxidized nitrogen removal in the hypolimnetic waters of the Occoquan Reservoir of Northern Virginia. Master's thesis, Virginia Polytechnic Institute and State University, Virginia.
Bano N and Hollibaugh JT. (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68: 505-518.
Belliveau BH and Trevors JT. (1989) Mercury resistance and detoxification in bacteria. Appl Organomet Chem 3: 283-294.
BIO-RAD. (1996) THE DCODE™ UNIVERSAL MUTATION DETECTION SYSTEM. Bio-Rad Laboratories.
Bizily SP, Rugh CL, Summers AO, Meagher RB. (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Nati Acad Sci USA 96: 6808-6813.
Broussard LA, Hammett-Stabler CA, Winecker RE, Ropero-Miller JD. (2002) The toxicology of mercury. Lab Med 33: 614-625.
Brown NL, Stoyanov JV, Kidd SP, Hobman JL. (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27: 145-163.
Bustin SA. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25: 169-193.
Busto Y, Cabrera X, Tack FMG, Verloo MG. (2011) Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry. J Hazard Mater 186: 114-118.
Cappuccino JG and Sherman N. (2008) Microbiology: A Laboratory Manual 8th ed. USA: Benjamin/Cummings Publishing Company.
Chadhain SMN, Schaefer JK, Crane S, Zylstra GJ, Barkay T. (2006) Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment. Environ Microbiol 8: 1746 - 1752.
Champier L, Duarte V, Michaud-Soret I, Cove`s J. (2004) Characterization of the MerD protein from Ralstonia metallidurans CH34: a possible role in bacterial mercury resistance by switching off the induction of the mer operon. Mol Microbiol 52: 1475-1485.
Chang JS, Hong J, Ogunseitan OA, Olson BH. (1993) Interaction of mercuric ions with the aacterial growth medium and its effects on enzymatic reduction of mercury. Blotechnol Prog 9: 526-532.
Chang JS and Law WS. (1998) Development of microbial mercury detoxification processes using mercury-hyperresistant strain of pseudomonas aeruginosa pu21. Biotechnol Bioeng 57: 464-470.
Conner JC. (1990) Chemical Fixation and Solidification of Hazardous Wastes. New York: Van Nostrand Reinhold.
Compeau GC and Bartha R. (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50: 498-502.
Dean JD, Goodwin PH, Hsiang T. (2002) Comparison of relative RT-PCR and northern blot analyses to measure expression of b-1, 3-glucanase in Nicotiana benthamiana infected with Colletotrichum destructivum. Plant Mol Biol Rep 20: 347-356.
Essa AMM, Macaskie LE, Brown NL. (2005) A new method for mercury removal. Biotechnol Letts 27: 1649-1655.
Farmer 3rd JJ, Davis BR, Hickman-Brenner FW, McWhorter A, Huntley-Carter GP, Asbury MA, Riddle C, Wathen-Grady HG, Elias C, Fanning GR. (1985) Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21: 46-76.
Feldman C. (1974) Preservation of dilute mercury solutions. Anal Chem 46: 99-102.
Fernández-Delgado M, Contreras M, García-Amado MA, Gueneau P, Suárez P. (2007) Occurrence of Proteus mirabilis associated with two species of Venezuelan oysters. Rev Inst Med trop S Paulo 49: 355-359.
Fox B and Walsh CT. (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J Biol Chem 257: 2498-2503.
Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR. (1980) The phylogeny of prokaryotes. Science 209: 457-463.
Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J. (2005) Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 3: 733-739.
Goldberg L. (1996) A history of pest control measures in the anthropology collections, national museum of natural history, Smithsonian Institution. JAIC 35: 23-43.
Greenwood MR and Clarkson TW. (1970) Storage of mercury at submolar concentrations. Am Znd Hyg Assoc J 31: 250-251.
Hansen CL ZG, Martin D, Williams JW. (1984) Bacterial removal of mercury from sewage. Biotechnol Bioeng 26: 1330-1333.
Harnett G and Effler SW. (1996) Limnological and Engineering Analysis of a Polluted Urban Lake: Prelude to Environmental Management of Onondaga Lake. New York: Springer.
Hugh R and Leifson E. (1953) The taxonomic significance of fermentative versus oxidative Gram-negative bacteria. J Bacteriol 66: 24-26.
Luo P, Hu CQ, Zhang LP, Ren CH, Shen Q. (2007) Effects of DNA extraction and universal primers on 16S rRNA gene-based DGGE analysis of a bacterial community from fish farming water. Chin J Oceanol Limnol 25: 310-316.
Jackson WJ and Summers AO. (1982) Biochemical characterization of HgCl2-inducible polypeptides encoded by the mer operon of plasmid R 100. J Bacteriol 151: 962-970.
Jensen S and Jernelöv A. (1969) Biological methylation of mercury in aquatic organisms. Nature 223: 753-754.
Jenne EA and Avotins P. (1975) The time stability of dissolved mercury in water samples-I. literature review. J Environ Qual 4: 427-431.
Jin X, Yue S, Wells KS, Singer VL. (1994) SYBR™ Green I: a new fluorescent dye optimized for detection of picogram amounts of DNA in gels. Biophys J 66: A159.
Kiyono M, Sone Y, Nakamura R, Pan-Hou H, Sakabe K. (2009) The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett 583: 1127-1131.
Kulkarni RD and Summers AO. (1999) MerR cross-links to the α, β, and σ70 subunits of RNA polymerase in the preinitiation complex at the merTPCAD promoter. Biochemistry 38: 3362-3368.
ITRC. (1998) Technical Guidelines for On-Site Thermal Desorption of Solid Media and Low Level Mixed Waste Contaminated with Mercury and/or Hazardous Chlorinated Organics Final Report, ITRC Work Team of Low Temperature Thermal Desorption, Washington, DC.
Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82: 6955-6959.
Leach J.(1960) The reaction of thiol and disulphide groups with mercuric chloride and methylmercuric iodide. J Aust Chem SOC 13: 520-546.
Liebert CA WJ, Smith T, Summers AO. (1997) Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 63: 1066-1076.
Machtelinckx T, van Leeuwen T, Van De Wiele T, Boon N, De Vos W, Sanchez J-A, Nannini M, Gheysen G, De Clercq P. (2012) Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC Microbiology 12: Suppl 1, S9.
Manson MJ, Rauch M, Gilmore MS. (2008) The commensal microbiology of the gastrointestinal tract. Adv Exp Med Biol 635: 15-28.
Misra TK. (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27: 4-16.
Mitra S. (1986) Mercury in the ecosystem: its dispersion and pollution today. Switzerland: Trans Tech Publications.
Moore MJ, Distefano MD, Zydowsky LD, Cummings RT, Walsh CT. (1990) Organomercurial lyase and mercuric ion reductase: nature’s mercury detoxification catalysts. Acc Chem Res 23: 301-308.
Morris MI, Sams RJ, Gillis G, Helsel RW, Alperin ES, Geisler TJ, Groen A, Root D. (1995) Bench- and pilot-scale demonstration of thermal desorption for removal of mercury from the Lower East Fork Poplar Creek floodplain soils. Internal Report No. CONF-950216-129. Oak Ridge, TN: Martin Marietta Energy Systems.
Muyzer G, Dewaal EC, Uitterlinden AG. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rRNA. Appl Environ Microbiol 59: 695-700.
Myers RM, Maniatis T, Lerman LS. (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155: 501-527.
Myers RM, Fischer SG, Lerman LS, Maniatis T. (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13: 3131-3145.
Ni’Bhriain NN, Silver S, Foster TJ. (1983) Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. J Bacteriol 155: 690-703.
Noyes OR, Hamdy MK, Muse LA. (1976) Control of mercury pollution. J Toricol Environ Health 1: 409-420.
Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus HH. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178: 5636-5643.
NTP (National Toxicology Program) (1993) Toxicology and carcinogenesis studies of mercuric chloride (CAS No. 7487-94-7) in F344 rats and B3C3F1 mice (gavage studies). NTP Technical Report Series No. 408. National Toxicology Program, U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.
Oaks JA. (1999) Nails and Railroad Tie Preservation. Archeology and Forensics Laboratory, University of Indianapolis 3: 19-75.
Okino S, Iwasaki K, Yagi O, Tanaka H. (2000) Development of a biological mercury removal-recovery system. Biotechnol Lett 22: 783-788.
Permina EA, Kazakov AE, Kalinina OV, Gelfand MS. (2006) Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 6: 49-60.
Piao H and Bishop PL. (2006) Stabilization of mercury-containing wastes using sulfide. Environ Pollut 139: 498-506.
Pitts KE and Summers AO. (2002) The roles of thiols in the bacterial organomercurial lyase (MerB). Biochemistry 41: 10287.
Prapagdee B, Kuekulvong C, Mongkolsuk S. (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4: 330-337.
Qvarfort-Dahlman I. (1975) On some phosphate equilibria. VI. The systems Hg(I)- and Hg(II)-phosphoric acid in 3 M NaClO4. Chemica Scripta 8: 112.
Ramamoorthy S and Kushner DJ. (1975) Binding of mercuric and other heavy metal ions by microbial growth media. Microb Ecol 2: 162-176.
Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72: 2765-2774.
Rieser LA, Bishop P, Suidan MT, Piao H, Fauche RA, Zhang J, Randall P. (2001) Stabilization and Testing of Mercury Containing Wastes: Borden Catalyst EPA/600/R-02/019 U.S EPA National Risk Management Research Laboratory/Office of Research and Development, Cincinnati/Ohio.
Rojas LA, Yáñez C, González M, Lobos S, Smalla K, Seeger M. (2011) Characterization of the metabolically modified heavy metal-resistant cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6: 1-10.
Schaefer JK YJ, Reinfelder JR, Cardona T, Ellickson KM, Tel-Or S, Barkay T. (2004) Role of the bacterial organomercury lyase (merB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environ Sci Technol 38: 4304-4311.
Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: Comparison of endpoint and real-time methods Anal Biochem 285: 194-204.
Sheffield VC, Cox DR, Lerman LS, Myers RM. (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86: 232–236.
Silver S and Phung LT. (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32: 587-605.
Singer VL, Lawlor TE, Yue S. (1999) Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutation Research 439: 37-47.
Skurnik D, Ruimy R, Ready D, Ruppe E, Bernède-Bauduin C, Djossou F, Guillemot D, Pier GB, Andremont A. (2010) Is exposure to mercury a driving force for the carriage of antibiotic resistance genes?. J Med Microbiol 59: 804-807.
Stackebrandt E and Goebel BM. (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846-849.
Stiles ME and Ng LK. (1981) Biochemical characteristics and identification of Enterobacteriaceae isolated from meats. Appl Environ Microbiol 41: 639.
Tennant SM, Skinner NA, Joe A, Robins-Browne RM. (2005) Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence. Infect Immun 73: 6860-6867.
Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung CY, Yue S, Singer VL. (1999) Characterization of SYBR® Gold nucleic acid gel stain: a dye optimized for use with 300- nm ultraviolet transilluminators. Anal Biochem 268: 278-288.
Ullrich SM, Tanton TW, Abdrashitova SA. (2001) Mercury in the aquatic environment: a review of factors affecting methylation". Crit Rev Environ Sci Tech 31: 241.
USEPA (US Environmental Protection Agency). (2013) Mercury. Retrieved July 19, 2013, from http://www.epa.gov/mercury/index.html.
Vaughan EE, Schut F, Heilig HGHJ, Zoetendal EG, de Vos WM, Akkermans ADL. (2000) A molecular view of the intestinal ecosystem. Curr Issues Intest Microbiol 1: 1-12.
von Canstein H, Li Y, Wagner-Dobler I. (2001) Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation. Biotechnol Bioeng 74: 212-219.
Wagh AS, Singh D, Jeong SY. (2000) Mercury stabilization in chemically bonded phosphate ceramics, Invited paper presented at EPA’s Workshop on Mercury Products, Processes, Waste, and the Environment: Eliminating, Reducing and Managing Risks, Baltimore.
Woese CR and Fox GE. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74: 5088-5090.
Woese CR. (1987) Bacterial evolution. Microbiol Rev 51: 221-271.
Zhang W, Chen L, Liu D. (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93: 1305-1314.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.131.168
論文開放下載的時間是 校外不公開

Your IP address is 3.133.131.168
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code