Responsive image
博碩士論文 etd-0701114-104442 詳細資訊
Title page for etd-0701114-104442
論文名稱
Title
一具有延伸本體之新型鰭式電晶體在單電晶體動態隨機存取記憶體之應用
A New Extended Body FinFET for 1T-DRAM Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-08-04
關鍵字
Keywords
可程式規劃窗、鰭式電晶體、單電晶體動態隨機存取記憶體、閘極引致汲極漏電流機制、延伸本體區
1T-DRAM, FinFET, Extended Body Region, GIDL Mechanism, Programming Window
統計
Statistics
本論文已被瀏覽 5745 次,被下載 128
The thesis/dissertation has been browsed 5745 times, has been downloaded 128 times.
中文摘要
在本篇論文中,我們提出了一具有延伸本體之新型鰭式電晶體(Extended Body Fin Shape Field Effect Transistor, EB-FinFET),並應用在單電晶體動態隨機存取記憶體(One Transistor Dynamic Random Access Memory, 1T-DRAM)。由於微縮會使得電荷儲存區的不足,本論文使用延伸本體的方式擴大儲存區域,並將其應用在具有高積集密度的鰭式電晶體。延伸本體區不僅能當作額外儲存區,更能使得自身架構穩固且可以減少角落效應並協助散熱。在本論文裡,會探討延伸本體的高度變化對元件特性之影響。在基本電性上,相對於傳統的鰭式電晶體,EB-FinFET會有37.5 %之驅動電流提升;在記憶體特性方面,不論使用撞擊游離機制或是閘極引致漏電流機制,與傳統的鰭式電晶體相比,可程式規劃窗(Programming Window, PW)分別有74.39 %和65.53 %的提升;資料保存時間(Data Retention Time, RT)也分別有3.88 %和7 %的延長;不僅如此,在高溫下,比起傳統FinFET之可程式規劃窗44.39 %的衰退,EB-FinFET只有27 %的衰退,可見其具有較好的溫度抵抗性。由以上延伸本體帶來的優點,EB-FinFET具有潛力且不失為一項極佳的解決方案。
Abstract
In this paper, we propose a new extended body FinFET (EB-FinFET) for one transistor dynamic random access memory (1T-DRAM) application. As the device scales down, 1T-DRAM faces the challenge of an insufficient storage region. We use the extended body to enlarge the stored charge region and apply for the high integrated FinFET structure. Extended body region not only can be an additional stored region but also can make the structure firm, and even suppresses the corner effect to help to dissipate heat. We investigate how extended body height affects the electrical characteristics in the paper. In the basic electrical characteristic, EB-FinFET has a higher drain current and the increasing of the current is about 37.5 % which compared with conventional FinFET. In the part of the memory characteristics, whether the impact ionization (I.I.) or gate induced drain leakage (GIDL) mechanism, programing windows are improved about 74.39 % and 65.53 % which compared with conventional FinFET, respectively. Both those of data retention times are also improved about 3.88 % and 7 %, respectively. Besides, EB-FinFET shows great thermal immunity for programming window. Compared to 44.39 % degradation for FinFET, EB-FinFET degrades only 27 %. In terms of above-mentioned advantages of extended body, the proposed EB-FinFET can become a promising candidate for future memory application.
目次 Table of Contents
論文審定書………………………………………………………………………………i
英文論文審定書………………………………………………………………………...ii
致謝……………………………………………………………………………………..iii
摘要……………………………………………………………………………………..iv
Abstract………………………………..…………….…………………………………...v
第一章 導論 1
1.1 研究背景 1
1.2 論文回顧 4
1.3 動機 11
第二章 操作原理 12
2.1 物理機制探討 12
2.1.1 浮體效應(Floating Body Effect, FBE) 12
2.1.2 短通道效應(Short Channel Effect, SCE) 13
2.1.3 角落效應(Corner Effect)和自我加熱效應(Self-Heating Effect) 14
2.2 操作原理 15
2.2.1 撞擊游離機制 15
2.2.2 閘極引致汲極漏電流機制 16
2.2.3 寄生雙極性介面電晶讀取體機制 18
第三章 元件製作 21
3.1 模擬元件 21
3.2 元件實作 24
第四章 研究方法與結果討論 26
4.1 研究方法 26
4.2 電性探討 29
4.2.1 元件架構說明 29
4.2.2 輸入特性曲線 32
4.2.3 輸出特性曲線 35
4.3 記憶體特性探討 37
4.3.1 可程式規劃視窗 (Programming Window, PW) 37
4.3.2 資料保存時間 (Data Retention Time, RT) 50
4.3.3 撞擊游離機制與閘極引致漏電流機制的比較 53
4.3.4 微縮化探討 (Scalability) 59
4.3.5 元件容忍度 (Endurance) 61
4.3.6 干擾抵抗性 (Disturbance) 64
4.4 元件實作結果與量測 66
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 70
參考文獻 71
附錄 – 偏壓最佳化 77
論文著述 85
個人得獎 86
參考文獻 References
[1] S. Inoue, K. Hieda, A. Nitayama, F. Horiguchi, and F. Masuoka, “A spread stacked capacitor (SSC) cell for 64 Mbit DRAMs,” in IEDM Tech. Dig., Dec. 1989, pp. 31–34.
[2] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Second Edition, Cambridge University Press, 2009.
[3] C.-Y. Lee, C.-S. Lai, C.-M. Yang, and D. H.-L. Wang, “Dependence of DRAM Device Performance on Passivation Annealing Position in Trench and Stack Structures for Manufacturing Optimization,” IEEE Trans. Semiconductor Manufacturing , vol. 25, no. 4, pp. 657–663, Nov. 2012.
[4] Y.-H. Wu, C.-M. Chang, C.-Y. Wang, C.-K. Kao, C.-M. Kuo, A. Ku, and T. Huang, “Augmented Cell Performance of NO-Based Storage Dielectric by N2O-Treated Nitride Film for Trench DRAM,” IEEE Electron Device Lett., vol. 29, no. 2, pp. 149–151, Feb. 2008.
[5] H. Sunami, “The Role of the Trench Capacitor in DRAM Innovation,” IEEE Solid-State Circuits Society Newsletter, vol. 13, pp. 42–44, 2008.
[6] M. Kawano, N. Takahashi, Y. Kurita, K. Soejima, M. Komuro, and S. Matsui, “Three-Dimensional Packaging Technology for Stacked DRAM With 3-Gb/s Data Transfer,” IEEE Trans. Electron Devices, vol. 55, no. 7, pp. 1614–1620, Jul. 2008.
[7] Y. Kurita, S. Matsui, N. Takahashi, K. Soejima, M. Komuro, M. Itou, and M. Kawano, “Vertical Integration of Stacked DRAM and High-Speed Logic Device Using SMAFTI Technology,” IEEE Trans. Advanced Packaging, vol. 32, no. 3, pp. 657–665, Aug. 2009.
[8] H. Miki, M. Kunitomo, R. Furukawa, T. Tamaru, H. Goto, S. Iijima, Y. Ohji, H. Yamamoto, J. Kuroda, T. Kisu, and I. Asano, “Leakage-current mechanism of a tantalum-pentoxide capacitor on rugged Si with a CVD-TiN plate electrode for high-density DRAMs,” in VLSI Symp. Tech. Dig., Jun. 1999, pp. 99–100.
[9] T.-S. Chao, W.-M. Ku, H.-C. Lin, D. Landheer, Y.-Y. Wang, and Y. Mori, “CoTiO3 High-K Dielectrics on HSG for DRAM Applications,” IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2200–2204, Dec. 2004.
[10] R. Agaiby, P. Hofmann, D. Zhou, M. Kerber, J. Heitmann, U. Schroeder, E. Erben, and L. Oberbeck, “First Insight Into the Lifetime Acceleration Model of High-k ZrO2/SiO2/ZrO2 Stacks for Advanced DRAM Technology Nodes,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 340–342, Apr. 2009.
[11] H.-J. Wann and C. Hu, “A Capacitorless DRAM Cell on SOI Substrate,” in IEDM Tech. Dig., Dec. 1933, pp. 635–638.
[12] S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI Capacitor-less 1T-DRAM Concept,” in Proc. IEEE Int. SOI Conf., Oct. 2001, pp. 153–154.
[13] E. Yoshida and T. Tanaka, “A design of a capacitorless 1T-DRAM cell using gate-induced drain leakage (GIDL) current for low-power and high-speed embedded memory,” in IEDM Tech. Dig., Dec. 2003, pp. 37.6.1–37.6.4.
[14] E. Yoshida, and T. Tanaka, “A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692–697, Apr. 2006.
[15] J.-W. Han, S.-W. Ryu, S.-J. Choi, and Y.-K. Choi, “Gate-Induced Drain-Leakage (GIDL) Programming Method for Soft-Programming-Free Operation in Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 2, pp. 189–191, Feb. 2009.
[16] S.-J. Choi, J.-W. Han, C.-J. Kim, S. Kim, and Y.-K. Choi, “Improvement of the Sensing Window on a Capacitorless 1T-DRAM of a FinFET-Based Unified RAM,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3228–3231, Dec. 2009.
[17] E.X. Zhang, D.M. Fleetwood, M.L. Alles, R.D. Schrimpf, F.E. Mamouni, W. Xiong, S. Cristoloveanu, “Effects of fin width on memory windows in FinFET ZRAMs,” Solid-State Electronics, vol. 54, Is. 10, pp. 1155–1159, Oct. 2010.
[18] S. Okhonin, M. Nagoga, E. Carman, R. Beffa, and E. Faraoni, “New Generation of Z-RAM,” in IEDM Tech. Dig., Dec. 2007, pp. 925–928.
[19] S. Okhonin, M. Nagoga, C.-W. Lee, J.-P. Colinge, A. Afzalian, R. Yan, N. D. Akhavan, W. Xiong, V. Sverdlov, S. Selberherr, and C. Mazure, “Ultra-scaled Z-RAM cell,” in Proc. IEEE Int. SOI Conf., 2008, pp. 157–158.
[20] J.-W. Han, D.-I. Moon, D.-H. Kim, and Y.-K. Choi, “Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 1108–1110, Oct. 2009.
[21] S.-J. Choi, J.-W. Han, D.-I. Moon, and Y.-K. Choi, “Analysis and Evaluation of a BJT-Based 1T-DRAM,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 393–395, May 2010.
[22] D.-I. Moon, S.-J. Choi, J.-W. Han, S. Kim, and Y.-K. Choi, “Fin-Width Dependence of BJT-Based 1T-DRAM Implemented on FinFET,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 909–911, Sep. 2010.
[23] M. Aoulaiche, N. Collaert, R. Degraeve, Z. Lu, B. D. Wachter, G. Groeseneken, M. Jurczak, and L. Altimime, “BJT-Mode Endurance on a 1T-RAM Bulk FinFET Device,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1380–1382, Dec. 2010.
[24] H. Jeong, K.-W. Song, I. H. Park, T.-H. Kim, Y. S. Lee, S.-G. Kim, J. Seo, K. Cho, K. Lee, H. Shin, J. D. Lee, and B.-G. Park, “A New Capacitorless 1T DRAM Cell: Surrounding Gate MOSFET with Vertical Channel (SGVC Cell),” IEEE Trans. on Nanotechnology, vol. 6, no. 3, pp. 352–357, May 2007.
[25] M. Lee, T. Moon, and S. Kim, “Floating Body Effect in Partially Depleted Silicon Nanowire Transistors and Potential Capacitor-Less One-Transistor DRAM Applications,” IEEE Trans. on Nanotechnology, vol. 11, no. 2, pp. 355–359, Mar. 2012.
[26] E. Yoshida, T. Miyashita, and T. Tanaka, “A Study of Highly Scalable DG-FinDRAM,” IEEE Electron Device Lett., vol. 26, no. 9, pp. 655–657, Sep. 2005.
[27] M. G. Ertosun, H. Cho, P. Kapur, and K. C. Saraswat, “A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 615–617, Jun. 2008.
[28] J.-W. Han, S.-W. Ryu, C. Kim, S. Kim, M. Im, S. J. Choi, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “A Unified-RAM (URAM) Cell for Multi-Functioning Capacitorless DRAM and NVM,” in IEDM Tech. Dig., Dec. 2007, pp. 929–932.
[29] S.-W. Ryu, J.-W. Han, C.-J. Kim, S.-J. Choi, S. Kim, J.-S. Kim, K. H. Kim, J.-S. Oh, M.-H. Song, G.-S. Lee, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Refinement of Unified Random Access Memory,” IEEE Trans. Electron Devices, vol. 56, no. 4, pp. 601–608, Dec. 2009.
[30] S.-W. Ryu, J.-W. Han, C.-J. Kim, and Y.-K. Choi, “Investigation of Isolation-Dielectric Effects of PDSOI FinFET on Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3232–3235, Dec. 2009.
[31] D.-I. Moon, J.-Y. Kim, J.-B. Moon, D.-O. Kim, and Y.-K. Choi, “Evolution of Unified-RAM: 1T-DRAM and BE-SONOS Built on a Highly Scaled Vertical Channel,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 60–65, Jan. 2014.
[32] K.-W. Song, H. Jeong, J.-W. Lee, S. I. Hong, N.-K. Tak, Y.-T. Kim, Y. L. Choi, H. S. Joo, S. H. Kim, H. J. Song, Y. C. Oh, W.-S. Kim, Y.-T. Lee, K. Oh, C. Kim, “55 nm capacitor-less 1T DRAM cell transistor with non-overlap structure,“ in IEDM Tech. Dig., Dec. 2008, pp. 1–4.
[33] G. Giusi and G. Iannaccone, “Junction Engineering of 1T-DRAMs,” IEEE Electron Device Lett., vol. 34, no. 3, pp. 408–410, Mar. 2013.
[34] J.-W. Han, S.-W. Ryu, S. Kim, C.-J. Kim, J.-H. Ahn, S.-J. Choi, K. J. Choi, B. J. Cho, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Energy Band Engineered Unified-RAM (URAM) for Multi-Functioning 1T-DRAM and NVM,” in IEDM Tech. Dig., Dec. 2008, pp. 1–4.
[35] J.-W. Han, S.-W. Ryu, C.-J. Kim, S.-J. Choi, S. Kim, J.-H. Ahn, D.-H. Kim, K. J. Choi, B. J. Cho, J.-S. Kim, K. H. Kim, G.-S. Lee, J.-S. Oh, M.-H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “Energy-Band-Engineered Unified-RAM (URAM) Cell on Buried Si1−yCy Substrate for Multifunctioning Flash Memory and 1T-DRAM,” IEEE Trans. Electron Devices, vol. 56, no. 4, pp. 641–647, Apr. 2009.
[36] J. S. Shin, H. Bae, J. Jang, D. Yun, J. Lee, E. Hong, D. H. Kim, and D. M. Kim, “A Novel Double HBT-Based Capacitorless 1T DRAM Cell With Si/SiGe Heterojunctions,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 850–852, Jul. 2011.
[37] S. Lee, J. S. Shin, J. Jang, H. Bae, D. Yun, J. Lee, D. H. Kim, and D. M. Kim, “A Novel Capacitorless DRAM Cell Using Superlattice Bandgap-Engineered (SBE) Structure With 30-nm Channel Length,” IEEE Trans. on Nanotechnology, vol. 10, no. 5, pp. 1023–1030, Sep. 2011.
[38] K.-S. Shim, I.-Y. Chung, and Y. J. Park, “A BJT-Based Heterostructure 1T-DRAM for Low-Voltage Operation,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 14–16, Jan. 2012.
[39] J. S. Shin, H. Choi, H. Bae, J. Jang, D. Yun, E. Hong, D. H. Kim, and D. M. Kim, “Vertical-Gate Si/SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 134–136, Feb. 2012.
[40] P. Tang, R. Huang, and D. Wu, “Performance Improvement of Capacitorless Dynamic Random Access Memory Cell with Band-Gap Engineered Source and Drain,” Jpn. J. Appl. Phys., vol. 49, pp. 04DD02-1–04DD02-3, Apr. 2010.
[41] A. Pal, A. Nainani, S. Gupta, and K. C. Saraswat, “Performance Improvement of One-Transistor DRAM by Band Engineering,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 29–31, Jan. 2012.
[42] J.-T. Lin, K.-D. Huang, and B.-T. Jheng, “Performances of a Capacitorless 1T-DRAM Using Polycrystalline Silicon Thin-Film Transistors With Trenched Body,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1222–1225, Nov. 2008.
[43] W. Lee and W. Y. Choi, “A Novel Capacitorless 1T DRAM Cell for Data Retention Time Improvement,” IEEE Trans. on Nanotechnology, vol. 10, no. 3, pp. 462–466, May 2011.
[44] J.-T. Lin, P.-H. Lin, Y.-C. Eng, and Y.-R. Chen, “Novel Vertical SOI-Based 1T-DRAM With Trench Body Structure,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1872–1877, Jun. 2013.
[45] T. Yamada, Y. Nakajima, T. Hanajiri, and T. Sugano, “Suppression of Drain-Induced Barrier Lowering in Silicon-on-Insulator MOSFETs Through Source/Drain Engineering for Low-Operating-Power System-on-Chip Applications,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 260–267, Jan. 2013.
[46] M. Poljak, V. Jovanović, and T. Suligoj, “SOI vs. Bulk FinFET: Body Doping and Corner Effects Influence on Device Characteristics,” in Proc. Electro. Conf., MELECON, May 2008, pp. 425–430.
[47] A. Nazarov, J.-P. Colinge, F. Balestra, J.-P. Raskin, F. Gamiz, and V.S. Lysenko, Semiconductor-On-Insulator Materials for Nanoelectronics Applications, Springer Science, pp. 393–421, 2011.
[48] Sentaurus User’s Manual, ver. H-2013.03, Synopsys, Inc.
[49] G. Giusi, “Physical insights of body effect and charge degradation in floating-body DRAMs,” Solid-State Electronics, vol. 95, pp. 1–7, May 2014.
[50] N. Collaert, M. Aoulaiche, M. Rakowski, A. Redolfi, B. D. Wachter, J. V. Houdt, and M. Jurczak, “Optimizing the Readout Bias for the Capacitorless 1T Bulk FinFET RAM Cell,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1377–1379, Dec. 2009.
[51] M. Aoulaiche, A. Bravaix, E. Simoen, C. Caillat, M. Cho, L. Witters, P. Blomme, P. Fazan, G. Groeseneken, and M. Jurczak, “Endurance of One Transistor Floating Body RAM on UTBOX SOI,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 801–805, Mar. 2014.
[52] W. Zhang, J. G. Fossum, and L. Mathew, “The ITFET: A Novel FinFET-Based Hybrid Device,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2335–2343, Sep. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code