Responsive image
博碩士論文 etd-0701114-203901 詳細資訊
Title page for etd-0701114-203901
論文名稱
Title
石墨烯及其奈米複合材料的生物醫學應用
Biomedical Applications of Graphene and Their nanocomposites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-17
繳交日期
Date of Submission
2014-08-05
關鍵字
Keywords
二氧化錫@石墨烯、生物醫學應用、石墨烯、生物感測器、基質輔助雷射脫附質譜儀、細菌生物膜、抗菌效果
Bacteria, MALDI-MS, GN-MALDI-MS, Graphene, SnO2@G, Antibacterial
統計
Statistics
本論文已被瀏覽 5753 次,被下載 101
The thesis/dissertation has been browsed 5753 times, has been downloaded 101 times.
中文摘要
在奈米科學的快速發展下,開啟了許多跨領域的研究工作,包含在生物、醫學等。當物質大小到達奈米尺寸,相較於巨觀物質,在物性及化性都會有很大
不同。日本學者田中耕一先生,以基質輔助雷射脫附游離質譜(MALDI-TOF-MS) 獲得諾貝爾化學獎,打開了在生物領域的大門,也在生物大分子分析上成為有力的分析工具。許多文獻中,也利用奈米材料結合MALDI-TOF-MS 的方法開發應用在生物醫學及生物感測中,包含細菌、真菌、細胞等。

(一)、石墨烯修飾上二氧化錫 (Graphene@SnO2)的合成和抗菌活性
石墨烯是一種單層的碳原子,這是一緊密包裝成的二維結構。它可以被廣泛應用於生化應用。石墨烯也可以與不同的奈米物質作結合,作為一種新穎的抗菌型奈米物質。
本章報導合成及抗菌活性的水溶性分散的二氧化錫(SnO2) 修飾在石墨烯 (Graphene) 奈米片,稱Graphene@SnO2。Graphene@SnO2先製備出來,然後用穿透式電子顯微鏡(Transmission Electron Microscopy)、紫外線光譜儀(UV)、傅立葉紅外光譜儀(FTIR)、拉曼光譜儀(Raman)和螢光光譜儀(Fluorescence)檢驗其性質。研究抗菌活性性質部分,先使用綠膿桿菌(Pseudomonas aeruginosa)和金黃色葡萄球菌(Staphylococcus aureus)分別作為革蘭式陰性菌和革蘭式陽性菌的對照組。使用光學性質(OD600)和平板計數方法(Plate counting methods)作為抗菌活性的評估和依據。結果顯示SnO2@Graphene比Graphene具有較高的毒性,高出1~3倍。利用Graphene做為複合式奈米材料的基板,發現Graphene可以抑制綠膿桿菌的抗菌效果高於金黃色葡萄球菌。因協同效應(Synergic effect)是兩者奈米物質組成後,有更強烈的抗菌效果,所以二氧化錫(SnO2)增加石墨烯的毒性對革蘭式陰性菌的抗菌效果達到3.6倍。使用TEM、Fluorescence和MALDI-MS來證實製備出的奈米材料和細菌細胞之間的相互作用。數據顯示,疏水性、靜電、凡得瓦力和氫鍵促成SnO2@Graphene奈米片黏附附著於細菌細胞上,阻斷細胞服用養分,進而導致細菌細胞死亡。未來我們期望此新穎的Graphene做為複合式奈米材料的基板能有效地應用於環境和生醫診斷中。

(二)、利用石墨烯奈米片介導MALDI-MS (GN-MALDI-MS)感測於快速、原位和早期細菌生物膜靈敏的檢測
生物膜是微生物積存在生物表面或非生物表面上的膜。簡單來說,是許多微生物細胞黏附在一起所形成的膜。生物膜最早出現於化石記錄中早期(~32.5億年前)和各種不同有機體古生菌與細菌繁衍及傳承的形式。生物膜的形成是古代原核生物能始終存在地球的一個原因,並且也是在不同生存環境生存的關鍵因素。生物膜結構複雜,且是一動態的系統。生物膜形成代表細菌成長的保護模式,使細菌細胞能在惡劣的環境中生存,也可以不斷分裂並拓展其範圍。生物膜的生存和繁殖機制的影響,是研究學者一直在關注的。無論是傳染病和致病菌的檢測,都會在此應用中說明及討論。
生物膜的組成為蛋白質和醣類(醣蛋白)的磷脂雙分子層,其形態上都呈現雙分子層的片層結構,厚度約5~10 nm。其組成成分主要是脂質和蛋白質,另有少量糖類通過共價鍵結合在脂質或蛋白質上。
此篇應用的研究去做整合:(1).鋁金屬和鈦金屬之細菌晶片具有低成本效益和快速熱處理的優點;(2).本研究製作的細菌晶片是多功能,其有附著的氧化物塗層,大部分的酸無法破壞;所以可以重複使用;(3).本細菌晶片可作為一生物感測器,將其浸入到細菌溶液;從溶液中可捕捉到細菌;並研究其短時間和長時間的變化;(4). 細菌晶片製作後,可以直接作為MALDI-MS plate,可快速、直接、靈敏於細菌生物膜的分析;(5).使用Epifluorescence micrographs(螢光顯微鏡), MALDI-MS (基質輔助雷射脫附質譜儀), Environmental scanning electron microscope (環境掃描式電子顯微鏡) 研究生物膜的生長狀況。最後,利用石墨烯(Graphene)增強MALDI-TOF-MS對於致病性細菌和海洋細菌生物膜(biofilm)的診斷;從中可以發現低濃度的石墨烯奈米片可以提早偵測致病菌的訊號。未來,可以利用石墨烯於MALDI-TOF-MS上,達到早期檢測的方法;並廣泛應用於生醫檢測上。
Abstract
(1) Synthesis and antibacterial activities of graphene decorated with stannous dioxide
We report the synthesis and antibacterial activity of water dispersible stannous dioxide (SnO2) modified with graphene (G) nanosheets. Nanomaterials of G and SnO2@G were prepared and then characterized by transmission electron microscopy (TEM), ultraviolet (UV) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman and fluorescence spectroscopy. The antibacterial activities were investigated using Pseudomonas aeruginosa and Staphylococcus aureus as model strains of Gram negative and Gram positive bacteria, respectively. The antibacterial activities were evaluated using optical density (OD600) and plate counting methods. The results indicated that SnO2@G displayed a higher cytotoxicity than G by 1–3 fold. The G-based nanomaterials inhibited the growth of P. aeruginosa more effectively than for S. aureus. SnO2 increased the cytotoxicity of G against Gram negative bacteria by 3.6 times due to the synergic effect. The interactions between the prepared nanomaterials and bacteria cells were evaluated using TEM, fluorescence spectroscopy and matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). The data revealed that there were many forces facilitating the SnO2@G nanosheets to adhere to bacteria cells, which block the cells from taking nutrients, and result in cell death. We expect that this novel G-based composite can be effectively applied in the future for environmental and clinical applications.
(2) Graphene nanosheet mediated MALDI-MS (GN-MALDI-MS) sensors for rapid, in situ and sensitive detection of incipient biofilm
Diagnosis is the first step to treatment, early detection of biofilm thus gains paramount importance. In the current study, a systematic study was conducted to trace the biofilm formation by Staphylococcus aureus and Vibrio alginolyticus on Aluminium, Titanium surfaces and surface modified counterparts with oxide films. The biofilm development on these four substrates has been studied from 1h- 2 month periods. Traditional MALDI-MS has been demonstrated as a potent tool for direct in situ detection of biofilms on material surfaces. In the subsequent part of the study the Graphene nanosheet mediated MALDI-MS (GN-MALDI-MS) approach using our inhouse synthesized Graphene nanosheets was combined with the traditional MALDI-MS study, to lower the LOD. Using this approach early detection of the biofilm was demonstrated to be 1h in case of titanium surfaces and 3h in case of Al surfaces. The results and discussion pertaining to these findings are presented in the following paper.
目次 Table of Contents
論文審定書............................................................................................................................... i
誌 謝 ......................................................................................................................................... ii
中文摘要 ................................................................................................................................ iv
英文摘要 ...................................................................................................................................vii
目錄 ........................................................................................................................................ ix
圖目錄 ..................................................................................................................................... xii
第一章 緒論................................................................................................................. 1
1.1 前言………………………………………………......…………………………….....1
1.2 奈米物質的簡介與應用............................................................................................ 1
1.3 基質輔助雷射脫附游離質法.................................................................................... 2
1.4 石墨烯輔助雷射脫附游離質譜法............................................................................ 3
1.5 微生物的檢測於MALDI-TOF-MS .......................................................................... 3
1.6 研究目標.................................................................................................................... 5
1.7 參考文獻 .................................................................................................................. 6
第二章 石墨烯修飾上二氧化錫 (Graphene@SnO2)的合成和抗菌活性....................... 14
2.1 前言......................................................................................................................... 14
2.1.1 介紹................................................................................................................. 14
2.2 實驗部分................................................................................................................. 15
2.2.1 儀器................................................................................................................. 15
2.2.2 藥品................................................................................................................. 17
2.2.3 Graphene的製備.............................................................................................. 17
2.2.4 製備二氧化錫(SnO2) ..................................................................................... 18
2.2.5 製備SnO2@Graphene複合材料..................................................................... 18
2.2.6 細菌細胞培養和細胞毒性試驗..................................................................... 20
2.2.7 平板計數法 (Plate counting method) ........................................................... 20
2.2.8 光密度測量(OD600) ..................................................................................... 20
2.2.9 穿透式電子顯微鏡(TEM) ............................................................................. 20
2.3 結果與討論..............................................................................................................22
2.3.1 Graphene和SnO2@Graphene的性質..............................................................22
2.3.2 Graphene和SnO2@Graphene的抗菌活性........................................................23
2.3.3奈米物質與細菌的交互作用...........................................................................28
2.3.4基質輔助雷射脫附游離質譜儀 (MALDI-MS)的分析於細菌細胞與奈米
物質的交互作用..........................................................................................................30
2.3.5 細胞毒性的機制..............................................................................................33
2.4 結論..........................................................................................................................37
2.5參考文獻....................................................................................................................37
第三章 利用石墨烯奈米片介導MALDI-MS (GN-MALDI-MS)感測於快速、原位和早期細
菌生物膜靈敏的檢測.................................................................................................51
3.1前言...........................................................................................................................51
3.1.2介紹...................................................................................................................52
3.2 實驗部分..................................................................................................................53
3.2.1 儀器..................................................................................................................53
3.2.2 藥品..................................................................................................................55
3.2.3 石墨烯的製備..................................................................................................56
3.2.4 金屬樣品的製備..............................................................................................57
3.2.5 金屬樣品的熱處理..........................................................................................58
3.2.6 細菌細胞培養和細胞毒性試驗......................................................................58
3.2.7 評估的捕獲效率/細菌生物膜傳感器的能力................................................59
3.2.8 評估四種細菌生物膜金屬片 (Aluminum bacterial biofilm chip, 500 °C
Aluminum bacterial biofilm chip, Titanium bacterial biofilm chip,1000 °C
Titanium bacterial biofilm chip) 做為MALDI靶板(target plate)於直接細菌生物
膜的分析......................................................................................................................60
3.3 結果與討論..............................................................................................................61
3.3.1 物理性質-金屬片............................................................................................61
3.3.2 (Aluminum chip, 500 °C Aluminum chip, Titanium chip,1000 °C Titanium
chip)四種金屬片性質..................................................................................................61
3.3.3 細菌生物膜的形成與觀察............................................................................65
3.3.4 表面螢光顯微鏡圖..........................................................................................66
3.3.5 環境掃描式電子顯微鏡(Environmental scanning electron microscope )
對生物膜的研究...........................................................................................................73
3.3.6 評估四種細菌生物膜金屬片 (Aluminum bacterial biofilm chip, 500 °C
Aluminum bacterial biofilm chip, Titanium bacterial biofilm chip,1000 °C Titanium
bacterial biofilm chip) 做為MALDI靶板(target plate)於直接偵測細菌生物膜的分
析..................................................................................................................................75
3.3.7 比較四個不同金屬表面的細菌生物膜所形成的能力(Aluminum bacterial
biofilm chip, 500 °C Aluminum bacterial biofilm chip, Titanium bacterial biofilm
chip,1000 °C Titanium bacterial biofilm chip)並做為MALDI靶板(target plate)於直
接細菌生物膜的分析.................................................................................................87
3.3.8 Graphene nanosheet mediated MALDI-MS (GN-MALDI-MS) .....................88
3.4 結論..........................................................................................................................94
3.5 參考文獻..................................................................................................................94
參考文獻 References
第一章 緒論

(1) Sun, D.; Yang, J.; Wang, X. “Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision” Nanoscale. 2010, 2, 287-92.
(2) Ke, Y.; Kailasa, S. K.; Wu, H. F.; Nawaz, M. “Surface modified TiO2 nanoparticles as affinity probes and as matrices for the rapid analysis of phosphopeptides and proteins in MALDI-TOF-MS” J. Sep. Sci. 2010, 33, 3400-3408.
(3) Hasan, N.; Wu, H. F.; Li, Y. H.; Nawaz, M. “Two-step on-particle ionization/enrichment via a washing- and separation-free approach: multifunctional TiO2 nanoparticles as desalting, accelerating, and affinity probes for microwave-assisted tryptic digestion of phosphoproteins in ESI-MS and MALDI-MS: comparison with microscale TiO2” Anal. Bioanal. Chem. 2010, 396, 2919-2929.
(4) Wu, H. F.; Agrawal, K.; Shrivas, K.; Lee, Y. H. “On particle ionization/enrichment of multifunctional nanoprobes: washing/separation-free, acceleration and enrichment of microwave-assisted tryptic digestion of proteins via bare TiO2 nanoparticles in ESI-MS and comparing to MALDI-MS” J. Mass. Spectrom. 2010, 45, 1402-1408.
(5) Abdelhamid, H. N.; B, S. Wu.; Wu, H. F. “Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: A novel approach for environmental and biomolecule analysis” Talanta. 2014, 126, 27-37.
(6) Abdelhamid, H. N.; Wu, H. F. “Multifunctional graphene magnetic nanosheet decorated with chitosan for hghly sensitive detection of pathogenic bacteria” J. Mater. Chem. B. 2013, 1 , 3950-3961.
(7) Abdelhamid, H. N.; Wu, H. F. “A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors” Anal. Chim. Acta. 2012, 751, 94-104.
(8) Shastri, L.; Kailasa, S. K.; Wu, H. F. “Nanoparticle-single drop microextraction as multifunctional and sensitive nanoprobes: Binary matrix approach for gold nanoparticles modified with (4-mercaptophenyliminomethyl)-2-methoxyphenol for peptide and protein analysis in MALDI-TOF MS” Talanta. 2010, 81, 1176-1182.
(9) Kailasa, S. K.; Wu, H. F. “One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS” Analyst. 2012, 137, 1629-1638.
(10) Shrivas, K.; Agrawal, K.; Wu, H. F. “Application of platinum nanoparticles as affinity probe and matrix for direct analysis of small biomolecules and microwave digested proteins using matrix-assisted laser desorption/ionization mass spectrometry” Analyst. 2011, 136, 2852-2857.
(11) Manikandan, M.; Hasan, N.; Wu, H.; F. “Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells” Biomaterials. 2013, 34, 5833-42.
(12) Slowing, I. I.; Trewyn, B. G.; Giri,S.; Lin, V. S. Y. “Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications” ADV FUNCT MATER. 2007, 17, 1225–1236.
(13) Amirfazli, A. “Nanomedicine: magnetic nanoparticles hit the target” Nat Nanotechnol. 2007, 2, 467-468.
(14) Gopal, J.; Hasan, N.; Wu, H. F. “Fabrication of titanium based MALDI bacterial chips for rapid, sensitive and direct analysis of pathogenic bacteria” Biosens. Bioelectron. 2013, 39, 57-63.
(15) Lee, C. H.; Gopal, J.; Wu, H. F. “Ionic solution and nanoparticle assisted MALDI-MS as bacterial biosensors for rapid analysis of yogurt” Biosens. Bioelectron. 2012, 31, 77-83.
(16) Ahmad, F.; Siddiqui, M. A.; Babalola, O. O.; Wu, H. F. “Biofunctionalization of nanoparticle assisted mass spectrometry as biosensors for rapid detection of plant associated bacteria” Biosens. Bioelectron. 2012, 35, 235-242.
(17) Gopal, J.; Narayana, J. L.; Wu, H. F. “TiO2 nanoparticle assisted mass spectrometry as biosensor of Staphylococcus aureus, key pathogen in nosocomial infections from air, skin surface and human nasal passage” Biosens. Bioelectron. 2011, 27, 201-206.
(18) Wang, L.; Luo, J.; Shan, S.; Crew, E.;Yin, J.; Zhong, C.J.; Wallek, B.; Wong, S.S. “Bacterial Inactivation Using Silver-Coated Magnetic Nanoparticles as Functional Antimicrobial Agents” Anal. Chem., 2011, 83, 8688–8695.
(19) Mahmoudi, M.; Serpooshan, V. Silver-Coated Engineered Magnetic Nanoparticles Are Promising for the Success in the Fight against Antibacterial Resistance Threat ACS Nano, 2012, 6, 2656–2664.
(20) Karas, M.; Hillenkamp, F. “Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons” Anal. Chem. 1988, 60, 2299- 2301.
(21) Karas, M.; Bahr, U.; Giessman, U. “Matrix-assisted laser desorption/ionization mass spectrometry” Mass Spectrom. Rev. 1991, 10, 335-337.
(22) Beavis, R. C.; Chait, B. T. “Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins” Rapid Commun. Mass Spectrom. 1989, 3, 432-435.
(23) Wei, J.; Buriak, J. M.; Siuzdak, G. “Desorption-ionization mass spectrometry on porous silicon” Nature. 1999, 399, 243-246.
(24) Kawasaki, H. ; Akira, T. ; Watanabe, T. ; Nozaki, K. ; Yonezawa, T. ; Arakawa, R. “Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins” Anal. Bioanal. Chem. 2009, 395, 1423–1431.
(25) Peterson, D. S. “ Matrix-free methods for laser desorption/ionization mass spectrometry” Mass Spectrom. Rev. 2007, 26, 19-34.
(26) Kuzema, P. A. “Small-molecule analysis by surface-assisted laser desorption/ionization mass spectrometry” Anal. Chem. 2011, 66, 1227-1242.
(27) Wu, H. F. ; Gopal, J. ; Abdelhamid, H.N. ; Hasan, N. “Quantum dot applications endowing novelty to analytical proteomics” Proteomics. 2012, 12, 2949–2961.
(28) Novoselov, K. S. ; Geim, A. K. ; Morozov, S. V. ; Jiang , D . ; Zhang, Y. ;Dubonos, S. V . ; Grigorieva, I. V. ; Firsov, A. A. “Electric field effect in atomically thin carbon films” Science. 2004, 306, 666–669
(29) Geim, A. K. “Graphene: Status and Prospects” Science. 2009, 324, 1530–1534.
(30) Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. “Graphene: The New Two-Dimensional Nanomaterial” Angew. Chem., Int. Ed. 2009, 48, 7752–7777.
(31) Akhavan, O. ; Ghaderi, E. “Toxicity of graphene and graphene oxide nanowalls against bacteria” ACS Nano. 2010, 4, 5731-5736.
(32) Hu, W. ; Peng, C. ; Luo, W. ; Lv, M. ; Li, X. ; Li, D. ; Huang, Q. ; Fan, C. “Graphene-based antibacterial paper” ACS Nano. 2010, 4 ,4317-23.
(33) K, Krishnamoorthy, K. ; Veerapandian, M. ; Zhang, L. H. ; Yun, K. ; Kim, S, J.
“Antibacterial Efficiency of Graphene Nanosheets against Pathogenic Bacteria via Lipid Peroxidation” J. Phys. Chem. C. 2012, 116 , 17280–17287.
(34) Mohanty, N.; Berry, V. “Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents” Nano Lett. 2008, 8, 4469–4476.
(35) Hong, W.; Bai, H.; Xu, Y.; Yao, Z.; Gu, Z.; Shi, G. “Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application In Biosensors” J. Phys. Chem. C. 2010, 114, 1822–1826.
(36) Choi, B. G.; Park, H. S.; Park, T. J.; Yang, M. H.; Kim, J. S.; Jang, S.-Y.; Heo, N. S.; Lee, S. Y.; Kong, J.; Hong, W. H. “Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors” ACS Nano 2010, 4, 2910–2918.
(37) Dong, X.; Cheng, J.; Wang, J. Li. Y. “Graphene as a novel matrix for the
analysis of small molecules by MALDI-TOF MS” Anal. Chem. 2010, 82,
6208–6214.
(38) Liu, Y.; Liu, J. Y.; Deng, C. H.; Zhang, X.M. “Graphene and graphene oxide: two idealchoices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference” Rapid Commun. Mass Spectrom. 2011, 25, 3223–3234.
(39) Shi, C.; Meng, J.; Deng, C. “Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS” Chem. Commun. 2012, 48, 2418-2420.
(40) Zhou, X.; Wei, Y.; He, Q.; Boey, F.; Zhang, Q.; Zhang, H. “Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin” Chem. Commun. 2010, 46, 6974-6976.
(41) Abdelhamid, H. N.; Wu, H. F. “A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors” Anal. Chim. Acta. 2012, 751, 94–104.
(42) Kawahara, K.; Tsuruda, K.; Morishita, M. Uchida. “Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions” M. Dent. Mater. 2000, 16, 452–455.
(43) Diep, B. A.; Carleton, H. A.; Chang, R. F.; Sensabaugh, G. F.; Perdreau, Remington. F. “Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus” J Infect Dis. 2006, 193, 1495–1503.
(44) Kumar, A.; Vemula, P. K.; Ajayan, P. M.; John, G. “Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil ” Nat Mater. 2008, 7, 236-241.
(45) Bao, Q.; Zhang, D.; Qi, P. “Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection ” J. Colloid Interface Sci. 2011, 360, 463–470.
(46) Neville, S. A.; Lecordier, A.; Ziochos, H.; Chater, M. J.; Gosbell, I. B, Maley, M. W.; van, Hal. SJ. “Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification” J Clin Microbiol. 2011, 49, 2980-4.
(47) Van, Veen. SQ.; Claas, E. C.; Kuijper, E. J. “High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories” J Clin Microbiol. 2010, 48, 900-907.


第二章 石墨烯修飾上二氧化錫 (Graphene@SnO2)的合成和抗菌活性

(1) Kumar, A. ;Vemula, P. K. ; Ajayan, P. M. ; John,G.. “Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil ” Nat Mater. 2008, 7, 236-241.
(2) Bao, Q. ; Zhang, D. ; Qi, P. “Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection ” J. Colloid Interface Sci. 2011, 360, 463–470.
(3) Wei, C. ; Lin, W. Y. ; Zainal, Z. ; Williams, N. E. ; Zhum, K. ; Kruzic, A. P. ; Smith, R. L. ; Rajeshwar, K. “Bactericidal Activity of TiO2 Photocatalyst in Aqueous Media: Toward a Solar-Assisted Water Disinfection System” Environ. Sci.Technol. 2002, 28, 934–938.
(4) Zhang, H. ; Chen, G. “Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method ” Environ. Sci. Technol. 2009, 43, 2905–2910.
(5) Ruparelia, J. P. ; Chatterjee, A. K. ; Duttagupta, S. P, Mukherji, S. “Strain specificity in antimicrobial activity of silver and copper nanoparticles ” Acta Biomater. 2008, 4, 707–716.
(6) Premanathan, M. ; Karthikeyan, K. ; Jeyasubramanian, K. ; Manivannan, G. “Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation ” Nanomed.: Nanotechnol., Biol. Med. 2011, 7, 184–192.
(7) Akhavan, O. ; Azimirad, R. ; Safad, S. ; Hasani, E. “ CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts ”J. Mater. Chem, 2011, 21, 9634–9640.
(8) Kim, Y.H. ; Lee, D.K. ; Cha, H.G. ; Kim, C.W. ; Kang, Y.S. “ Synthesis and Characterization of Antibacterial Ag−SiO2 Nanocomposite ” J. Phys. Chem. C. 2007, 111, 3629–3635.
(9) Niu, A. ; Han, Y. ; Wu, J. ; Yu, N. ; Xu, Q. “ Synthesis of One-Dimensional Carbon Nanomaterials Wrapped by Silver Nanoparticles and Their Antibacterial Behavior” J. Phys. Chem. C. 2010,114, 12728–12735.
(10) Brown, A. N. ; Smith, K. ; Samuels, T. A. ; Lu, J. ;Obare, S. O. ; Scott, M. E.
“ Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus ” Appl. Environ. Microbiol. 2012, 78, 2768– 2774.
(11) Veerapandian, M. ;Lim, S. K. ; Nam, H. M. ; Kuppannan, G. ; Yun, K. S. “ Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity ” Anal. Bioanal. Chem. 2010, 398, 867– 876.
(12) Dastjerdi, R. ; Montazer, M. “A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties” Colloids Surf., B. 2010, 79, 5–18.
(13) Novoselov, K. S. ; Geim, A. K. ; Morozov, S. V. ; Jiang , D . ; Zhang, Y. ;Dubonos, S. V . ; Grigorieva, I. V. ; Firsov, A. A. “Electric field effect in atomically thin carbon films” Science. 2004, 306, 666–669
(14) Liu, Z. ; Robinson, J. T. ; Sun, X. ; Dai, H. “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs” J. Am. Chem. Soc. 2008, 130, 10876–10877.
(15) Sun, X. ; Liu, Z. ; Welsher, K. ; Robinson, J. T. ; Goodwin, A. ; Zaric, S. ; Dai, H. “Nano-Graphene Oxide for Cellular Imaging and Drug Delivery” Nano Res. 2008, 1, 203– 212.
(16) Zhangm, L. ; Xia, J. ; Zhao, Q. ; Liu, L. ; Zhang, Z. “ Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs” Small. 2010, 6, 537–544.
(17) Jung, J. H. ; Cheon, D. S. ; Liu, F. ; Lee, K. B, Seo, T. S. “A graphene oxide based immuno-biosensor for pathogen detection” Angew. Chem., Int. Ed. 2010, 49, 5708–5711.
(18) Zhou, M. ; Zhai, Y. ; Dong, S. “Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide” Anal. Chem. 2009, 81,
5603–5613.
(19) Huang, Y.X. ; Dong, X.C. ; Liu, Y.X. ; Li, L.J. ; Chen, P. “ Graphene-based biosensors for detection of bacteria and their metabolic activities” J. Mater. Chem. 2011, 21, 12358–12362.
(20) Abdelhamid, H. N.; Wu, H. F. “ Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application” J. Mater. Chem. B. 2013, 1, 3950–3961.
(21) Akhavan, O. ; Ghaderi, E. ; Rahighi, R.“ Toward single-DNA electrochemical biosensing by graphene nanowalls” ACS Nano. 2012, 6, 2904–2916.
(22) Postma, H. W. Ch. “ Rapid sequencing of individual DNA molecules in graphene nanogaps ” Nano Lett. 2010, 10, 420–425.
(23) Yang, K. ; Zhang, S. ; Zhang, G. ; Sun, X. ; Lee, S.T. ; Liu, Z.
“ Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy ” Nano Lett. 2010, 10, 3318–3323.
(24) Ma, X.X. ; Tao, H.Q. ; Yang, K. ; Feng, L.Z. ; Cheng, L. ; Shi, X.Z. ; Li, Y.G. ; Guo, L . ; Liu, Z.A. “A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging” Nano Res. 2012, 5, 199– 212.
(25) Yang, K. ; Zhang, S. ; Zhang, G. ; Sun, X. ; Lee, S.T. ; Liu, Z. “ Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy” Nano Lett. 2010, 10, 3318–3323.
(26) Akhavan, O. ; Ghaderi, E. ; Emamy, H. “ Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy”
J. Mater. Chem. 2012, 22, 20626–20633.
(27) Akhavan, O. ; Ghaderi, E. ; Esfandiar, A.“ Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation” J. Phys. Chem. B. 2011, 115, 6279–6288.
(28) Liu, S.B. ; Zeng, T.H. ; Hofmann, M. ; Burcombe, E. ; Wei, J. ; Jiang, R.R. ; Kong, J. ; Chen, Y. “ Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress ”ACS Nano. 2011, 5, 6971– 6980.
(29) Chen, H. ; Muler, M.B. ; Gilmore, K. ; Wallace, G. ; Li, D. “Mechanically strong, electrically conductive, and biocompatible graphene paper” Adv. Mater. 2008, 20, 3557–3561.
(30) Agarwal, S. ; Zhou, X. ; Ye, F. ; He, Q. ; Chen, G. C. K. ; Soo, J. ; Boey, F. ; Zhang, H. ; Chen, P. “Interfacing live cells with nanocarbon substrates” Langmuir. 2010, 26, 2244– 2247.
(31) Hu, W. ; Peng, C. ; Luo, W. ; Lv, M. ; Li, X. ; Di, L. ; Huang, Q. ; Fan, C.
“ Graphene-based antibacterial paper” ACS Nano. 2010, 4, 4317–4323.
(32) Gurunathan, S. ; Han, J.W. ; Dayem, A.A. ; Eppakayala, V. ; Kim, J.H.
“Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa” Int. J. Nanomed. 2012, 7, 5901– 5914.
(33) Krishnamoorthy, K. ; Veerapandian, M. ; Zhang, L.H. ; Yun, K. ; Kim, S.J.
“Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation” J. Phys. Chem. C. 2012, 116, 17280– 17287.
(34) Akhavan, O. ; Ghaderi, E. “ Toxicity of graphene and graphene oxide nanowalls against bacteria” ACS Nano. 2010, 4, 5731– 5736.
(35) Park, S. ; Mohanty, N. ; Suk, J.W. ; Nagaraja, A. ; An, J. ; Piner, R.D. ; Cai, W. ; Dreyer, D.R. ; Berry, V. ; Ruoff, R.S. “Biocompatible, Robust Free‐Standing Paper Composed of a TWEEN/Graphene Composite ”Adv. Mater. 2010, 22, 1736–1740.
(36) Akhavan, O. ; Ghaderi, E. ; Emamy, H. ; Akhavan, F. “Genotoxicity of graphene nanoribbons in human mesenchymal stem cells ” Carbon. 2013, 54, 419–431.
(37) Akhavan, O. ; Ghaderi, E. ; Akhavan, A. “Size-dependent genotoxicity of graphene nanoplatelets in human stem cells” Biomaterials. 2012, 33, 8017–8025.
(38) Wu, M.C. ; Deokar, A.R ; Liao, J.H. ; Shih, P.Y. ; Ling, Y. C.
“Graphene-based photothermal agent for rapid and effective killing of bacteria ” ACS Nano. 2013, 7, 1281–1290.
(39) Akhavan, O. ; Ghaderi, E. “Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation ” J. Phys. Chem. C. 2009, 113, 20214–20220.
(40) Akhavan, O. ; Ghaderi, E.. ; Rahimi, K. “Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation ” J. Mater. Chem. 2012, 22, 23260–23266.
(41) Shen, J.F. ; Shi, M. ; Yan, B. ; Ma, H.W. ; Hu, Y.Z. ; Ye, M.X. “Facile synthesis and application of Ag-chemically converted graphene nanocomposite” Nano Res. 2010, 3, 339–349.
(42) Ma, J. ; Zhang, J. ; Xiong, Z. ; Yong, Y . ; Zhao, X.S. “ Preparation, characterization and antibacterial properties of silver-modified graphene oxide” J. Mater. Chem. 2011, 21, 3350–3352.
(43) Xu, W.P. ; Zhang, L.C. ; Li, J.P. ; Lu, Y. ; Li, H.H. ; Ma, Y.N. ; Wang, W.D. ; Yu, S.H “ Facile synthesis of silver@ graphene oxide nanocomposites and their enhanced antibacterial properties” J. Mater. Chem. 2011, 21, 4593– 4597.
(44) Cai, X. ; Lin, M. ; Tan, S. ; Mai, W. ; Zhang, Y. ; Liang, Z. ; Lin, Z . ; Zhang, X.
“ The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity” Carbon. 2012, 50, 3407–3415.
(45) Li, C. ; Wang, X. ; Chen, F. ; Zhang, C. ; Zhi, X. ; Wang, K. ; Cui, D. “ The antifungal activity of graphene oxide–silver nanocomposites” Biomaterials. 2013, 34, 3882–3890.
(46) Kavitha, T. ; Gopalan, A.I. ; Lee, K.P. ; Park, S.Y. “ Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids”
Carbon. 2012, 50, 2994–3000.
(47) Das, M.R. ; Sarma, P.K. ; Saikia, R. ; Kale, V.S. ; Shelke, M.V. ; Sengupta, P.
“Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity” Colloids Surf., B. 2011, 83, 16–22.
(48) Zhang, D. ; Liu, X. ; Wang, X. “Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties” J. Inorg. Biochem. 2011, 105, 1181–1186.
(49) Akhavan, O. ; Choobtashani, M. ;Ghaderi, E. “Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation” J. Phys. Chem. C. 2012, 116, 9653–9659.
(50) Wang, H. ; Liu, J. ; Wu, X. ; Tong, Z. ; Deng, Z. “ Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity” Nanotechnology. 2013, 24, 205102–205111.
(51) Meng, N. ; Zhang, S.Q. ; Zhou, N.L. ; Shen, J. “ Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide” Nanotechnology. 2010, 21, 185101–185112.
(52) Zhou, N.L. ; Meng., N. ; Ma, Y. C. ; Liao, X.M. ; Zhang, J. ; Li, L. ; Shen, J.
“ Evaluation of antithrombogenic and antibacterial activities of a graphite oxide/heparin–benzalkonium chloride composite” Carbon. 2009, 47, 1343–1350.
(53) Cai, X. ; Tan, S.Z. ; Lin, M.S. ; Xie, A. ; Mai, W.J. ; Zhang, X.J. ; Lin, Z.D. ; Wu, T. ; Liu, Y.L. “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability” Langmuir. 2011, 27, 7828– 7835.
(54) Wang, X. ; Yuan, N. Y. J. ; Wang, W. ; Tang, Y. ; Lu, C. ; Zhang, J. ; Shen, J.
“Antibacterial and anticoagulation properties of carboxylated graphene oxide–lanthanum complexes ”J. Mater. Chem. 2012, 22, 1673–1678.
(55) Lu, B. ; Li, T. ; Zhao, H. ; Li, X. ; Gao, C. ; Zhang, S . ; Xie, E. “Graphene-based composite materials beneficial to wound healing” Nanoscale. 2012, 4, 2978–2982.
(56) Wang, Y. ; Zhang, D. ; Bao, Q. ; Wu, J. ; Wan, Y. “Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide–drug intercalated layered double hydroxide hybrid films” J. Mater. Chem. 2012, 22, 23106–23113.
(57) Sreeprasad, T.S. ; Maliyekkal, M.S. ; Deepti, K. ; Chaudhari, K. ; Xavier, P.L. ; Pradeep, T. “Transparent, luminescent, antibacterial and patternable film forming composites of graphene oxide/reduced graphene oxide” ACS Appl. Mater. Interfaces. 2011, 3, 2643–2654.
(58) Santos, C.M. ; Tria, M. C. R. ; Vergara, R. ; Ahmed, F. ; Advincula, R.C . ; Rodrigues, D.F. “Antimicrobial graphene polymer (PVK-GO) nanocomposite films” Chem. Commun. 2011, 47, 8892–8894.
(59) Feng, L. ; Liu, Z. “Graphene in biomedicine: opportunities and challenges”
Nanomedicine. 2011, 6, 317–324.
(60) Su, D. ; Ahn, H.J. ; Wang, G. “SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance” Chem. Commun. 2013, 49, 3131–3133.
(61) Paek, S.M. ; Yoo, E. ; Honma, I. “Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure” Nano Lett. 2009, 9, 72–75.
(62) Li, F. ; Song, J.F. ; Yang, H. F. ; Gan, S. ; Zhang, Q. ; Han, D.X. ; Ivaska, A. ; Niu, L. “One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors” Nanotechnology. 2009, 20, 455602– 455608.
(63) Abdelhamid, H. N.; Wu, H. F. “Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(MALDI)-mass spectrometry” Talanta. 2013, 115, 442– 450.
(64) Hummers, W.S. ; Offeman, R.E. “Preparation of graphitic oxide” J. Am. Chem. Soc. 1958, 80, 1339.
(65) Abdelhamid, H. N.; Wu, H. F. “A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors” Anal. Chim. Acta. 2012, 751, 94–104.
(66) Si, Y. ; Samulski, E.T. “Synthesis of water soluble graphene” Nano Lett. 2008, 8, 1679–1682.
(67) Zhu, C. ; Guo, S. ; Fang, Y. ; Dong, S. “Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets” ACS Nano. 2010, 4, 2429–2437.
(68) Akhavan, O. ; Ghaderi, E. “Graphene nanomesh promises extremely efficient in vivo photothermal therapy” Small. 2013, 9, 3593– 3601.
(69) Gopal, J. ; Abdelhamid, H. N.; Hua, P, Y. ; Wu, H. F. “Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine” J. Mater. Chem. B. 2013, 1, 2463–2475.
(70) Abdelhamid, H. N.; Wu, H. F. “Synthesis and application of ionic liquid matrices (ILMs) for effective pathogenic bacteria analysis in matrix assisted laser desorption/ionization (MALDI-MS) ” Anal. Chim. Acta. 2013, 767, 104–111.
(71) Wu, H. F. ; Gopal, J. ; Abdelhamid, H.N. ; Hasan, N. “ Quantum dot applications endowing novelty to analytical proteomics ” Proteomics. 2012, 12, 2949–2961.
(72) Arnold, R.J. ; Karty, J.A. ; Ellington, A.D. ; Reilly, J.P. “Monitoring the growth of a bacteria culture by MALDI-MS of whole cells ” Anal. Chem. 1999, 71, 1990–1996.
(73) Liu, S. ; Zeng, T.H. ; Hofmann, M. ; Burcombe, E. ; Wei, J. ; Jiang, R. ; Kong, J. ; Chen, Y. “Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress ” ACS Nano. 2011, 5, 6971– 6980.
(74) Garza, K.M. ; Soto, K.F. ; Murr, L.E. “Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials ” Int. J. Nanomed. 2008, 3, 83–94.
(75) Liao, K.H. ; Lin, Y.S. ; Macosko, C.W. ; Haynes, C.L. “Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts” ACS Appl. Mater. Interfaces. 2011, 3, 2607–2615.
(76) Salas, E.C. ; Sun, Z. ; Lüttge, A. ; Tour, J.M. “Reduction of graphene oxide via bacterial respiration” ACS Nano. 2010, 4, 4852–4856.
(77) Akhavan, O. ; Ghaderi, E. “Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner” Carbon. 2012, 50, 1853–1860.
(78) Abdelhamid, H. N.; Wu, H. F. “Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application” J. Mater. Chem. B. 2013, 1, 6094–6106.
(79) Abdelhamid, H. N. “ Applications of Nanomaterials and Organic Semiconductors for Bacteria & Biomolecules analysis/biosensing using Laser Analytical Spectroscopy” M.Sc. thesis, National Sun-Yat Sen University, ROC, July 2013.


第三章 利用石墨烯奈米片介導MALDI-MS (GN-MALDI-MS)感測於快速、原位和早期細菌生物膜靈敏的檢測

(1) Jefferson, K. K.“What drives bacteria to produce a biofilm” FEMS Microbiol Lett. 2004, 236, 163-173.
(2) Hall, Stoodley. L. ; Costerton , J. W. ; Stoodley , P.“Bacterial biofilms: from the natural environment to infectious diseases” Nat Rev Microbiol. 2004, 2, 95-108.
(3) Lindsay, D. ; von, Holy. A.“Bacterial biofilms within the clinical setting: what healthcare professionals should know” J Hosp Infect. 2006, 64, 313-25.
(4) Consterton, J. W. ; Stewart, P.S. ; Greenberg, E.P. “Bacterial biofilms: a common cause of persistent infections” Science. 1999, 284, 1318-22.
(5) Davies, D. G. ; Parsek, M. R. ; Pearson, J. P. ; Iglewski, B. H. ; Costerton, J. W. ; Greenberg, E. P.“The involvement of cell-to-cell signals in the development of a bacterial biofilm” Science. 1998, 280, 295-8.
(6) Munson, E. L. ; Diekema, D. J. ; Beekmann, S. E. ; Chapin, K. C. ; Doern, G. V. “Detection and treatment of bloodstream infection: laboratory reporting and antimicrobial management” J. Clin. Microbiol. 2003, 41, 495–49
(7) Ray, P. C. ; Khan, S. A. ; Singh, A. K. ; Senapati, D. ; Fan, Z. “Nanomaterials for targeted detection and photothermal killing of bacteria” Chem. Soc. Rev. 2012, 41, 3193–3209.
(8) Fux, C. A. ; Stoodley, P. ; Hall, Stoodley. L. ; Costerton, J. W. “Bacterial biofilms: a diagnostic and therapeutic challenge” Expert Rev Anti Infect Ther. 2003, 1, 667-683.
(9) Stankovich, S. ; Dikin, D. A. ; Dommett, G. H. ; Kohlhaas, K. M. ; Zimney, E. J. ; Stach, E. A. ; Piner, R. D. ; Nguyen, S. T. ; Ruoff, R. S. “Graphene-based composite materials” Nature. 2006, 442, 282-286.
(10) Geim, A. K. “Graphene: Status and Prospects” Science. 2009, 324, 1530–1534.
(11) Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. “Graphene: The New Two-Dimensional Nanomaterial” Angew. Chem., Int. Ed. 2009, 48, 7752–7777.
(12) Akhavan, O. ; Ghaderi, E. “Toxicity of graphene and graphene oxide nanowalls against bacteria” ACS Nano. 2010, 4, 5731-5736.
(13) Hu, W. ; Peng, C. ; Luo, W. ; Lv, M. ; Li, X. ; Li, D. ; Huang, Q. ; Fan, C. “Graphene-based antibacterial paper”ACS Nano. 2010, 4 ,4317-23.
(14) Krishnamoorthy, K. ; Veerapandian, M. ; Zhang, L.H. ; Yun, K. ; Kim, S.J.
“Antibacterial Efficiency of Graphene Nanosheets against Pathogenic Bacteria via Lipid Peroxidation” J. Phys. Chem. C. 2012, 116, 17280–17287.
(15) Mohanty, N.; Berry, V. “Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents” Nano Lett. 2008, 8, 4469–4476.
(16) Hong, W.; Bai, H.; Xu, Y.; Yao, Z.; Gu, Z.; Shi, G. “Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application In Biosensors” J. Phys. Chem. C. 2010, 114, 1822–1826.
(17) Choi, B. G.; Park, H. S.; Park, T. J.; Yang, M. H.; Kim, J. S.; Jang, S.-Y.; Heo, N. S.; Lee, S. Y.; Kong, J.; Hong, W. H. “Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors” ACS Nano. 2010, 4, 2910–2918.
(18) Iwase, T.; Uehara, Y.; Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. “Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization” Nature. 2010, 465, 346–349.
(19) Singhal, D.; Foreman, A.; Jervis, Bardy. J.; Wormald, P. J. “Staphylococcus aureus biofilms : Nemesis of endoscopic sinus surgery ” Laryngoscope. 2011, 121 ,1578–1583.
(20) Noguchi, T.; Hwang, D. F.; Arakawa, O.; Sugita, H.; Deguchi, Y.; Shida, Y.; Hashimoto, K. “Vibrio alginolyticus, a tetrodotoxin-producing bacterium, in the intestines of the fish Fugu vermicularis vermicularis” Marine Biology.1987, 94, 625–630.
(21) Gopal, J.; Hasan, N.; Wu, H. F. “Fabrication of titanium based MALDI bacterial chips for rapid, sensitive and direct analysis of pathogenic bacteria” Biosens Bioelectron. 2013, 39, 57-63.
(22) Hummers, W.S. ; Offeman, R.E. “Preparation of graphitic oxide” J. Am. Chem. Soc. 1958, 80, 1339.
(23) Abdelhamid, H. N.; Wu, H. F. “ A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors” Anal. Chim. Acta. 2012, 751, 94–104.
(24) Gopal, J. ; Muraleedharan, P. ;Sarvamangala, H. ; George, R.P. ;Dayal, R.K. ;Tata, B.V.R. ; Khatak, H.S. ; Natarajan, K.A. “Biomineralisation of manganese on titanium surfaces exposed to seawater” Biofouling. 2008, 24, 275-82.
(25) Muraleedharan, P. ;Gopal, J. ; George, R. P. ; Khatak, H.S. “Photocatalytic bactericidal property of an anodized Ti6Al4V alloy” Current Science. 2003, 84, 1-3.
(26) Kim, T.K. ; Lee, M.N. ; Lee, S.H. ; Park, Y.C. ; Jung, C.K. ; Boo, J.H. “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification” Thin Solid Films. 2005, 475, 171-177.
(27) Donlan, R. M. “Biofilms: microbial life on surfaces” Emerg Infect Dis. 2002, 8, 881-90.
(28) Fux, C. A. ; Costerton, J. W. ; Stewart, P. S. ; Stoodley, P. “Survival strategies of infectious biofilms” Trends Microbiol. 2005, 13, 34-40.
(29) Danilatos, G. D. “Foundations of environmental scanning electron-microscopy” Adv Electron El Phys. 1988, 71, 109–250.
(30) Alhede M, Qvortrup K, Liebrechts R, Høiby N, Givskov M, Bjarnsholt T. “Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition” FEMS Immunol Med Microbiol. 2012, 65, 335-42.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code