Responsive image
博碩士論文 etd-0701115-122009 詳細資訊
Title page for etd-0701115-122009
論文名稱
Title
雙晶晶界對純鎳機械性質影響的研究
Effect of Twin Boundary on Mechanical Properties of Electrodeposited Ni
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-07
繳交日期
Date of Submission
2015-08-01
關鍵字
Keywords
電鍍、背向散射電子繞射、退火、穿透式電子顯微鏡、熱穩定性、雙晶、機械性質
twin, thermal stability, annealing, mechanical properties, electron backscattering diffraction (EBSD), transmission electron microscopy (TEM), electrodeposition technique
統計
Statistics
本論文已被瀏覽 5683 次,被下載 763
The thesis/dissertation has been browsed 5683 times, has been downloaded 763 times.
中文摘要
本研究利用直流電鍍製備三種具有高雙晶密度的純鎳鍍層:<110>//ND (A鍍層)、<210>//ND (B鍍層)及<211> // ND (C鍍層)。探討高雙晶密度對其機械性質與熱穩定性的影響。上述三種鍍層的完鍍厚度均高於1.2 mm,截取厚度為1 mm的鍍層製成拉伸試片,以拉伸試驗探討其機械性質,利用背向散射電子繞射分析鍍層之晶粒徑與晶界特性,利用穿透式電子顯微鏡分析退火前後與變形前後的微觀組織特徵,最後分析在200 oC ~ 500 oC退火後鍍層的硬度變化。
顯微組織分析結果顯示,A和B鍍層的平均晶粒徑約為0.4 μm,Σ3雙晶晶界佔高角度晶界的比例均超過50 %,經過退火後,兩鍍層平均晶粒徑與雙晶晶界比例幾乎沒有變化。C鍍層晶粒徑較大,約為0.8 μm,Σ3雙晶晶界佔高角度晶界的比例亦約為50 %,且在退火後晶粒徑與雙晶晶界比例亦均維持不變。
拉伸試驗結果顯示,雖然A和B鍍層平均晶粒徑相同,但是A鍍層抗拉強度與總伸長量均較B鍍層高,A鍍層抗拉強度可達950 MPa,總伸長量為12.6 %,B鍍層抗拉強度約800 MPa,總伸長量僅8.2 %。此外,C鍍層抗拉強度為905 MPa,僅略低於A鍍層,但是二者晶粒徑相差兩倍。此外,C鍍層總伸長量只有A鍍層的一半。A鍍層在退火後抗拉強度下降15 %,總伸長量卻提升50 %達到18 %。B鍍層退火後抗拉強度下降25 %、C鍍層退火後抗拉強度下降15 %,但是兩鍍層總伸長量皆幾乎沒有改變。進一步分析各鍍層加工硬化率,發現A鍍層的加工硬化率最高,C鍍層次之,B鍍層最差。
從TEM影像觀察,B鍍層完鍍階段的差排密度最高,C鍍層次之,A鍍層最低。因此B鍍層顯微組織中觀察到大量差排糾結於晶粒內部,出現類似晶胞的組織。過多的完鍍差排可能是造成B鍍層試片在低應變量時加工硬化率低於其他兩組鍍層的原因。A鍍層完鍍時差排密度最低,所以變形初期加工硬化率最高。觀察各組試片拉伸變形後的組織發現,A鍍層中差排大部分累積於雙晶晶界上,僅少部分分布在晶粒內部。此外,TEM高解析影像發現在A鍍層的雙晶晶界上有許多b ⃑ = 1/3<111>的差排,以及在雙晶晶界兩側存在b ⃑ = 1/6<211>的部分差排,顯示A鍍層的雙晶晶界可以有效的吸收滑移面上的差排,使材料持續塑性變形,因而擁有較佳的加工硬化率與伸長率。
在熱穩定性方面,由退火溫度與硬度的相關性得知,A鍍層和B鍍層分別在300 oC及350 oC退火後,硬度降至完鍍時的一半,而C鍍層在500 oC退火後仍然維持完鍍時硬鍍的七成,說明C鍍層具最佳的熱穩定性。
Abstract
In this study, three nickel platings, A B and C, having high density of twin boundaries were prepared by electrodeposition technique. The effects of twin boundary (TB) on mechanical properties and thermal stability were studied.
The three platings were deposited to 1.2 mm thick or more, and then cut to 1 mm thick for tensile test. Electron backscattering diffraction (EBSD) was used to analyze grain size and grain boundary properties. Transmission electron microscopy (TEM) was used to analyze the microstructure of the as-deposit samples and the annealed samples prior to deformation, and the deformation microstructure. The thermal stability of the platings were studied according to the hardness variation by using microhardness test after annealing.
EBSD results showed that the average grain size of plating A and B was 0.4 μm. About 50 % of the high angle grain boundaries (HAGBs) were twin boundaries. After the platings were annealed, the average grain size and the fraction of TB did not change. Plating C had larger grains of about 0.8 μm in average, and the fraction of TB was also 50%. The average grain size and the TB fraction kept at the same values after annealing.
Tensile test results showed that both the tensile strength and total elongation of plating A were higher than those of, plating B, though both platings have the same grain size. The tensile stress and total elongation of B plating were 800 MPa and 8.2%. The tensile stress of C plating was 905 MPa, slightly lower than that of plating A, but the average grain size of plating C was two times larger than that of plating A. However, the total elongation of plating B was only a half of that of plating C. After annealing, the tensile stress of all platings decreased 15 – 25%. The total elongation of plating A increased 50%, however, cohere as that of platings B and C did not change. The work hardening rate curve of the platings showed that plating A had the highest work hardening rate, followed by plating C, and plating B exhibit the lowest value.
TEM observation indicated that the dislocation density of plating B was the highest in the three platings, followed by plating C, and A group had the lowest value. A large number of tangled dislocations and dislocation cells in the grain interiors were observed in plating B which corresponded to the low work hardening rate of plating B at low strain. The dislocation density of A plating was the lowest, so its work hardening rate was the highest. After deformation, high density of dislocations were accumulated at the twin boundaries of plating A. High resolution micrograph showed that were many b ⃑ = 1/3<111> dislocations were formed at the twin boundaries, and b ⃑ = 1/6<211> partial dislocations were observed close to the twin boundaries. This showed that the twin boundaries of plating A could allow dislocations to slip across the boundaries to sustain funther plastic deformation.
For thermal stability, the hardnesses of both plating A and plating B decrease rapidly on annealing at 300 oC – 350 oC. However, the hardness of plating C remained at 70% of the as-deposite value after annealing at 500 oC. Accordingly, plating C exhibits the best thermal stability.
目次 Table of Contents
論文審定書 i
誌 謝 ii
摘 要 iii
Abstract v
總目錄 viii
表目錄 xii
圖目錄 xiii
第一章 前言 1
第二章 基礎理論與文獻回顧 3
2.1 電鍍原理 3
2.1.1 法拉第定律 3
2.1.2 電鍍參數 3
2.1.3 脈衝電鍍 4
2.2 晶體方向分析 5
2.2.1 電子背向散射繞射 (Electron Back-Scattered Diffraction,EBSD) 5
2.3 共位晶格與晶界工程 6
2.3.1 共位晶格晶界 7
2.3.2 Brandon criterion 8
2.3.3 晶界工程 8
2.3.3.1 鎳基耐腐蝕合金 8
2.3.3.2 高溫超合金 9
2.3.3.3 鉛蓄電池電極 9
2.3.4 雙晶的形成 10
2.3.4.1退火雙晶 10
2.3.4.2 成長雙晶 11
2.4 晶粒尺寸與雙晶結構對機械性質的影響 13
2.4.1 Nanocrystalline 13
2.4.2 Ultra-Fine Crystalline 14
2.4.2.1 奈米雙晶結構對機械強度的影響 14
2.4.2.2 奈米雙晶結構對延展性的影響 15
2.5 差排與疊差在雙晶結構中的行為 16
2.5.1 可移動的 Shockley 部分差排 16
2.5.2 固定在雙晶晶界上的差排 16
2.5.3 終結在雙晶晶界的疊差 16
2.5.4 穿透差排 17
2.6 材料之熱穩定性 17
2.6.1 奈米材料之熱穩定性 17
2.6.2 具奈米雙晶結構之超細晶材料的熱穩定性 18
2.7 雙晶與集合組織 18
2.7.1 <110>//ND集合組織 18
2.7.2 <210>//ND集合組織 19
2.7.3 <211>//ND集合組織 19
2.8. 過去電鍍鎳層機械性質之研究 19
第三章 實驗方法 21
3.1 電鍍製程 21
3.1.1 <110>//ND集合組織鍍層 21
3.1.2 <210>//ND集合組織鍍層 21
3.1.3 <211>//ND集合組織鍍層 22
3.1.4 <100>//ND集合組織鍍層 22
3.2 試片加工與退火處理 22
3.3 X光繞射分析 23
3.4 機械性質分析 23
3.5 背向散射電子繞射分析 23
3.6 穿透式電子顯微鏡分析 24
3.7 熱穩定性分析與微硬度量測 24
第四章 實驗結果 25
4.1 X光繞射分析 25
4.2 拉伸試驗 25
4.2.1 A組與AA組試片 25
4.2.2 B組與BA組試片 26
4.2.3 C組與CA組試片 26
4.2.4 D組與DA組試片 26
4.3 背向散射電子繞射分析 26
4.3.1 A組與AA組試片 27
4.3.2 B組與BA組試片 28
4.3.3 C組與CA組試片 29
4.4 穿透式電子顯微鏡( TEM )分析 30
4.4.1 A組與AA組試片 30
4.4.2 B組與BA組試片 32
4.4.3 C組與CA組試片 34
4.5 破斷面分析 35
4.5.1 A組與AA組試片 35
4.5.2 B組與BA組試片 35
4.5.3 C組與CA組試片 36
4.6 熱穩定性分析 36
第五章 討論 37
5.1 鍍層集合組織 37
5.2 機械性質分析 37
5.2.1 強度 38
5.2.1.1 晶粒徑 38
5.2.1.2 雙晶間距 39
5.2.1.3 差排密度 40
5.2.1.4 織構強化 40
5.2.1.5 綜合討論 41
5.2.2 均勻伸長量 41
5.2.2.1 加工硬化率 42
5.2.2.2 拉伸後差排分布 43
5.2.2.3 完鍍差排密度 44
5.2.2.4 雙晶間距 44
5.2.3 頸縮後伸長量 45
5.2.3.1 破斷面分析 45
5.2.3.2 大小晶粒分布比例 45
5.2.4 缺陷分析 46
5.2.5 比較銅與鎳的機械性質 47
5.3 熱穩定性分析 48
第六章 結論 49
參考文獻 50
參考文獻 References
[1] F. Hargreaves, and R.J. Hill, Work-softening and a Theory of Intercrystalline Cohesion, J. Inst. Met., 41 ( 1929 ) 257.
[2] M.L. Kronberg, and F.H. Wilson, Secondary Recrystallization in Copper, Trans. TMS-AIME, 185 ( 1949 ) 501.
[3] K.T. Aust, and J.W. Rutter, Grain Boundary Migration in High-purity Lead and Dilute Lead-Tin Alloys, Trans. AIME, 215 ( 1959 ) 119.
[4] D. Brandon, The Structure of High-angle Grain Boundaries, Acta Metall., 14 (1966) 1479.
[5] T. Watanabe, An Approach to Grain Boundary Design for Strong and Ductile Polycrystals, Res Mech., 11 (1984) 47.
[6] V.P. Swaminathan, and P. Lowden, Gas Turbine Blade Life Assessment and Repair Guide, EPRI, GS-6544 (1989) 204.
[7] R.S. Bartocci, Hot Corrosion Problems Associated with Gas Turbines, ASTM, 421 (1967) 169.
[8] G.S. Was, V. Thaveeprungsriporn, and D.C. Crawford, Grain Boundary Misorientation Effects on Creep and Cracking in Ni-based Alloys, JOM, 50 (1998) 44.
[9] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 304 (2004) 422.
[10] S. Okuda, M. Kobiyama, T. Inami, and S. Takamura, Thermal Stability of Nanocrystalline Gold and Copper Prepared by Gas Deposition Method, Scripta Mater., 44 (2001) 2009.
[11] X. Zhang, and A. Misra, Superior Thermal Stability of Coherent Twin Boundaries in Nanotwinned Metals, Scripta Mater., 66 (2012) 860.
[12] 黃彥親,鎳在多晶銅及黃銅基板上電鍍磊晶成長的研究,國立中山大學材料與光電科學學系碩士論文,(2013)。
[13] 侯映君,電鍍參數對鎳在多晶銅基板上電鍍磊晶成長的研究,國立中山大學材料與光電科學學系碩士論文,(2014)。
[14] H. Alimadadi, A.B. Fanta, M.A.J. Somers, and K. Pantleon, Columns Formed by Multiple Twinning in Nickel Layers—An Approach of Grain Boundary Engineering by Electrodeposition, Appl. Phys. Lett., 103 (2013) 031918.
[15] N. Atanassov, S.T. Vitkova and S.T. Rashkov, Electrocrystallization of Nickel Coatings with <211> Texture, Surf. Technol., 13 (1981) 215.
[16] J. Bockris, and D.M. Drazic, Electro-chemical Science, 1st ed., London, Taylor and Francis, (1972).
[17] M. Ghaemi, and L. Binder, Effects of Direct and Pulse Current on Electrodeposition of Manganese Dioxide, J. Power Sources, 111 (2002) 248.
[18] A. Marlot, P. Kern, and D. Landolt, Pulse Plating of Ni–Mo Alloys from Ni-rich Electrolytes, Electrochim. Acta, 48 (2002) 29.
[19] K.M. Yin, S.L. Jan, and C.C. Lee, Current Pulse with Reverse Plating of Nickel-Iron Alloys in a Sulphate Bath, Surf. Coat. Technol., 88 (1997) 219.
[20] V. Randle, and O. Engler, Introduction to Texture Analysis, 1st ed., London, CRC Press, (2000).
[21] 黃宏勝、林麗娟,FE-SEM/CL/EBSD分析技術簡介,工業材料雜誌,201期,(2003),第 99 頁。
[22] R. Abbaschian, L. Abbaschian, and R.E.R. Hill, Physical Metallurgy Principles, 4th ed., Stamford, Cengage Learning, (2009).
[23] C.L. Briant, C.B. Carter, and E. L. Hall, Interfacial Engineering for Optimized Properties, Material Research Society Conference Proceeding, Pittsburgh, July 1997, vol. 458.
[24] E.M. Valeriote, J.S. Scklarchuk, and M.S. Ho, Proceedings of Symposium on Advances in Lead-Acid Batteries, New Orleans, 1984, vol. 84.
[25] H. Alimadadi, Grain Boundary Engineering of Electrodeposited Thin Films, A Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor, Philosophy Technical University of Denmark, 2012.
[26] R.L. Fullman and J.C. Fisher. Formation of Annealing Twins During Grain Growth, J. Appl. Phys., 22 (1951) 1350.
[27] H. Gleiter, The Formation of Annealing Twins, Acta Metall., 17 (1969) 1421.
[28] M.A. Meyers and L.E. Murr, A Model for the Formation of Annealing Twins in FCC Metals and Alloys, Acta Metall., 26 (1978) 951.
[29] S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath, Formation of Annealing Twins in FCC Crystals, Acta Mater., 45 (1997) 2633.
[30] J.B. de Cusminsky, The Role of Stacking Fault Energy in Metal Electrodeposition, Scripta Metall., 10 (1976) 1071.
[31] N.Y.C. Yang, T.J. Headley, J.J. Kelly, and J.M. Hruby, Metallurgy of High Strength Ni-Mn Microsystems Fabricated by Electrodeposition, Scripta Mater., 51 (2004) 761.
[32] B. Wu, C. Schuh, and P. Ferreira, Nanostructured Ni-Co Alloys with Tailorable Grain Size Twin Density, Metall. Mater. Trans. A, 36 (2005) 1927.
[33] T.H.V. Setty, and H. Wilman, The Structure of Silver Electrodeposited from the Argentocyanide Bath on to Silver (110), (100) and (111) Faces, Trans. Faraday Soc., 51 (1955) 984.
[34] S. Rashkov, D.S. Stoichev, and I. Tomov, Influence of Current Density and Temperature on the Morphology and Preferred Orientation of Electrodeposited Copper Coatings, Electrochim. Acta, 17 (1972) 1955.
[35] C.R. Hall, and S.A.H. Fawzi, On the Occurrence of Multiply Twinned Particles in Electrodeposited Nickel Films, Philos. Mag. A, 54 (1986) 805.
[36] N. Hasen, Hall–Petch Relation and Boundary Strengthening, Scripta Mater., 51 (2004) 801.
[37] R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, and B. Baudelet, The Hall-Petch Relation in Submicro-grained Al-1.5% Mg Alloy, Scripta Metal. Mater., 27 (1992) 855.
[38] A.W. Thompson, Yielding in Nickel as a Function of Grain or Cell Size, Acta Metall., 23 (1975) 1337.
[39] C.C. Koch, D.G. Morris, K. Lu, and A. Inoue, Ductility of Nanostructured Materials, MRS Bull., 24 (1999) 54.
[40] M.D. Merz, and S.D. Dahlgren, Tensile Strength and Work Hardening of Ultra Fine‐grained High‐purity Copper, J. Appl. Phys., 46 (1975) 3235.
[41] A.M. Hodge, Y.M. Wang, and J.T.W. Barbee, Mechanical Deformation of High-Purity Sputter-deposited Nano-twinned Copper, Scripta Mater., 59 (2008) 163.
[42] X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, and R.G. Hoagland, High-strength Sputter-deposited Cu Foils with Preferred Orientation of Nanoscale Growth Twins, Appl. Phys. Lett., 88 (2006) 173116.
[43] Z.S. You, L. Lu, and K. Lu, Tensile Behavior of Columnar Grained Cu with Preferentially Oriented Nanoscale Twins, Acta Mater., 59 (2011) 6927.
[44] M. Dao, L. Lu, Y.F. Shen, and S. Suresh, Strength, Strain-rate Sensitivity and Ductility of Copper with Nanoscale Twins, Acta Mater., 54 (2006) 5421.
[45] J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, and J.P. Hirth, Detwinning Mechanisms for Growth Twins in Face-centered Cubic Metals, Acta Mater., 58 (2010) 2262.
[46] Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn, Interactions Between Non-screw Lattice Dislocations and Coherent Twin Boundaries in Face-centered Cubic Metals, Acta Mater., 56 (2008) 1126.
[47] L. Lu, Z.S. You and K. Lu, Work Hardening of Polycrystalline Cu with Nanoscale Twins, Scripta Mater., 66 (2012) 837.
[48] L. Lu, X. Chen, X. Huang, K. Lu, Revealing the Maximum Strength in Nanotwinned Copper, Science, 323 (2009) 607.
[49] E. Ma and Y.M. Wang, Strain Hardening and Large Tensile Elongation in Ultrahigh-strength Nano-twinned Copper, Appl. Phys. Lett., 85 (2004) 4932.
[50] S. Okuda, M. Kobiyama, T. Inami, and S. Takamura, Thermal Stability of Nanocrystalline Gold and Copper Prepared by Gas Deposition Method, Scripta Mater., 44 (2001) 2009.
[51] M. Kobiyama, T. Inami, and S. Okuda, Mechanical Behavior and Thermal Stability of Nanocrystalline Copper Film Prepared by Gas Deposition Method, Scripta Mater., 44 (2001) 1547.
[52] X. Zhang, O. Anderoglu, R.G. Hoagland, and A. Misra, Nanoscale Growth Twins in Sputtered Metal Films, JOM, 60 (2008) 75.
[53] Y. Zhao, T.A. Furnish, M.E. Kassner, and A.M. Hodge, Thermal Stability of Highly Nanotwinned Copper : The Role of Grain Boundaries and Texture, J. Mater. Res., 27 (2012) 3049.
[54] S. Pathak , M. Guinard , M.G.C. Vernooij, B. Cousin , Z. Wang , J. Michler, and L. Philippe, Influence of Lower Current Densities on the Residual Stress and Structure of Thick Nickel Electrodeposits, Surf. Coat. Technol., 205 (2011) 3651.
[55] C. Cayron, Multiple Twinning in Cubic Crystals: Geometric/Algebraic Study and its Application for the Identification of the Σ3n Grain Boundaries, Acta Crystallogr. Sect. A: Found. Crystallogr., 63 (2007) 11.
[56] N. Atanassov, S.T. Vitkova and S.T. Rashkov, Electrocrystallization of Nickel Coatings with <211> Texture, Surf. Technol., 13 (1981) 215.
[57] S.H. Goods, J.J. Kelly, A.A. Talin, J.R. Michael, and R. Watson, Electrodeposition of Nickel From Low Temperature Sulfamate Electrolytes Part II : Properties and Structure of Electrodeposits, J. Electrochem. Soc, 153 (2006) C325.
[58] F. Ebrahimi, G.R. Bourne, M.S. Kelly and T.E. Matthews, Mechanical Properties of Nanocrystalline Nickel Produced by Electrodeposition, Nanostruct. Mater., 11 (1999) 343.
[59] I. Matsui, Y. Takigawa, T. Uesugi and K. Higashi, Influence of Bath Composition on Tensile Ductility in Electrodeposited Bulk Nanocrystalline Nickel, Mater. Trans., 52 (2011) 142.
[60] Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, and A. Hamza, Effects of Annealing and Impurities on Tensile Properties of Electrodeposited Nanocrystalline Ni, Scripta Mater., 51 (2004) 1023.
[61] J. Amblard, I. Epelboin, M. Froment, and G. Maurin, Inhibition and Nickel Electrocrystallization, J. Appl. Electrochem., 9 (1979) 233.
[62] 林新為,顯微組織對電鍍鎳與鎳鈷合金機械性質影響之研究,國立中山大學材料與光電科學學系碩士論文,(2013)。
[63] 高偉鳴,雙峰晶粒徑分布對電鍍鎳機械性質影響之研究,國立中山大學材料與光電科學學系碩士論文,(2012)。
[64] T.G. Nieh and J.Wadsworth, Hall–Petch Relation in Nanocrystalline Solids, Scripta Metall. Mater., 25 (1991) 955.
[65] W. D. Callister, Materials Science and Engineering, 8th Ed., John Wiley & Sons, (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code