Responsive image
博碩士論文 etd-0701116-113329 詳細資訊
Title page for etd-0701116-113329
論文名稱
Title
降升壓電池電源模組串聯運轉之隔離機制探討
Investigation on Isolation Mechanism for Serial Buck-Boost Battery Power Modules
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
51
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-20
繳交日期
Date of Submission
2016-08-15
關鍵字
Keywords
降升壓式轉換器、隔離機制、電池、諧振、電池電源模組
buck-boost converter, resonance, isolation, battery power module (BPM), Battery
統計
Statistics
本論文已被瀏覽 5683 次,被下載 397
The thesis/dissertation has been browsed 5683 times, has been downloaded 397 times.
中文摘要
由電池與降升壓轉換器組成之電池電源模組(Battery Power Module, BPM)在電池電源系統中可獨立運作。當電池發生異常、電量耗盡或充飽時,無需中斷系統,僅需將開關導通或截止,即可將電池從BPM中隔離。然而,電池從BPM隔離的過程中,轉換器上之電感與電容會產生震蕩,將增加轉換器上元件的電壓與電流應力,同時造成輸出電壓的驟升與驟降。本文對電池隔離過程中之震蕩暫態進行分析,並提出隔離機制以減小隔離過程中產生的諧振之電感電流與電容電壓突波。實驗研製四組降升壓串聯BPM,在充電與放電過程中對電池進行隔離,驗證隔離機制的效果。
Abstract
Battery power modules (BPMs) in a battery power source are independently controlled. Simply by removing the associated gating signals, the damaged, exhausted, or fully charged batteries can be isolated from the system without interrupting the operation. At the isolating transient, resonances may occur among the inductors and the capacitors, leading to high voltage and current stresses on the circuit components, and introduce spikes on the output voltage. Based on the analysis on the resonant transient, an isolation mechanism is implemented on the control scenario to minimize the generated spikes. Experiments are carried out on a laboratory battery power source with four serial bi-directional buck-boost BPMs to demonstrate the effectiveness of the proposed isolation mechanism.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 論文大綱 2
第二章 電池電源模組架構 3
2-1 電池電源模組 3
2-2 BPM串聯運轉 6
2-3 BPM並聯運轉 8
第三章 隔離機制探討10
3-1 各種BPM之電池隔離方式 10
3-2 電池隔離過程中之諧振電路分析 12
3-3 放電之延遲隔離對電感電流與電容電壓的影響 16
3-4 充電之延遲隔離對電感電流與電容電壓的影響 20
第四章 實例驗證 29
4-1 BPM串聯放電隔離機制之驗證 29
4-2 BPM串聯充電隔離機制之驗證 32
第五章 結論與未來研究 38
5-1 結論 38
5-2 未來研究方向 38

參考文獻 40
參考文獻 References
[1] M. A. Roscher, O. S. Bohlen, and D. U. Sauer, “Reliable state estimation of multicell lithium-ion battery systems,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 737-743, June 2011.
[2] C. Bonfiglio and W. Roessler, “A cost optimized battery management system with active cell balancing for lithium ion battery stacks,” in Proc. IEEE VPPC, pp. 304-309, Sep. 2009.
[3] B. C. Ummels, E. Pelgrum, and W. L. Kling, “Integration of large-scale wind power and use of energy storage in the netherlands electricity supply,” IEEE IET Renewable Power Generation, vol. 2, no. 1, pp. 34-46, Mar. 2008.
[4] N. Hatziargyriou and A. Zervos, “Wind power development in europe,” in Proc. IEEE, vol. 89, no. 12, pp. 1765-1782, Dec. 2001.
[5] G. Lacey, G. Putrus, and A. Salim, “The use of second life electric vehicle batteries for grid support,” in Proc. IEEE EUROCON, pp. 1255-1261, July 2013.
[6] X. Gong, R. Xiong, and C. C. Mi, “Study of the characteristics of battery packs in electric vehicles with parallel-connected lithium-ion battery cells,” in Proc. IEEE APEC, pp. 3218-3224, Mar. 2014.
[7] S. Yarlagadda, T. T. Hartley, and I. Husain, “A battery management system using an active charge equalization technique based on a DC/DC converter topology,” IEEE Trans. Ind Appl., vol. 49, no. 6, pp. 2720-2729, May 2013.
[8] H. S. Park, C. E. Kim, G. W. Moon, J. H. Lee, and J. K. Oh, “Two-stage cell balancing scheme for hybrid electric vehicle lithium-ion battery strings,” in Proc. IEEE PESC, pp. 273-279, June 2007.
[9] A. Hande and T. A. Stuart, “A round robin algorithm for an embedded electronic battery equalizer,” in Proc. IEEE EIT, pp. 199-206, Aug. 2004.
[10] H. Oman, “Battery developments that will make electric vehicles practical,” IEEE Aerosp. Electron. Syst. Mag., vol. 15, no. 8, pp. 11-21, Aug. 2000.
[11] Y. S. Lee and M. W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1297-1307, Oct. 2005.
[12] W. Hong, K. S. Ng, J. H. Hu, and C. S. Moo, “Charge equalization of battery power modules in series,” in Proc. IEEE PEC, pp. 1568-1572, June 2010.
[13] C. S. Moo, K. S. Ng, and J. S. Hu, “Operation of battery power modules with series output,” in Proc. Industrial Technology, pp. 1-6, Feb. 2009.
[14] C. S. Moo, K. S. Ng, and Y. C. Hsieh, “Parallel operation of battery power modules,” IEEE Trans. Energy Conversion, vol. 23, no. 2, pp. 701-707, June 2008.
[15] 詹家福,“陣列式升壓型BPM之架構與分析”,國立中山大學電機工程研究所碩士論文,中華民國九十九年七月。
[16] 胡錦欣,“BPM之輸出串聯運轉”,國立中山大學電機工程研究所碩士論文,中華民國九十八年七月。
[17] 余立人,“串聯BPM平衡放電”,國立中山大學電機工程研究所碩士論文,中華民國一零一年七月。
[18] 洪瑋,“串聯電源模組之電池平衡充電”,國立中山大學電機工程研究所碩士論文,中華民國九十九年七月。
[19] 簡振宇,“串聯降昇壓式BPM充電策略”,國立中山大學電機工程研究所碩士論文,中華民國一零二年四月。
[20] 林琨翔,“升壓式BPM並聯運轉”,國立中山大學電機工程研究所碩士論文,中華民國一零二年六月。
[21] 侯至豪,“降昇壓型BPM串並聯平衡放電”,國立中山大學電機工程研究所碩士論文,中華民國一零二年六月。
[22] 張舉申,“具人機介面之降昇壓式BPM並聯充電”,國立中山大學電機工程研究所碩士論文,中華民國一零三年七月。
[23] J. Y. Jian, C. S. Chang, C. S. Moo, and H. C. Yen, “Charging scenario of serial battery power modules with buck-boost converters,” in Proc. IEEE IPEC, pp. 3928-3932, May 2014.
[24] C. H. Hou, C. T. Yen, T. H. Wu, and C. S. Moo, “A battery power bank of serial battery power modules with buck-boost converters,” in Proc. IEEE PEDS, pp. 211-216, Apr. 2013.
[25] T. H. Wu, C. S. Moo, Y. C. Hsieh, and C. Y. Juan, “Operation of battery power modules with bidirectional DC/DC converters,” in Proc. IEEE ICSSE, pp. 443-448, July 2013.
[26] C. S. Moo, J. Y. Jian, T. H. Wu, and L. R. Yu, “Battery power system with arrayed battery power modules,” in Proc. IEEE ICSSE, pp. 437-441, July 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code