Responsive image
博碩士論文 etd-0701116-115902 詳細資訊
Title page for etd-0701116-115902
論文名稱
Title
利用倒傳遞類神經網路解析藥品與個人保健用品於二階段加氯消毒生成亞硝胺之研究。
Analysis of Nitrosamine formation from Pharmaceuticals and Personal Care Products during two-stage chlorination using Back-Propagation Neural Network
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-11
繳交日期
Date of Submission
2016-08-02
關鍵字
Keywords
前氧化、加氯消毒、倒傳遞類神經網路、含氮消毒副產物、亞硝胺、飲用水處理
Chlorination, Back-propagation neural network, Pre-oxidation, Drinking water treatment, N-Nitrosodimethylamine, Nitrogenous disinfection byproduct
統計
Statistics
本論文已被瀏覽 5707 次,被下載 25
The thesis/dissertation has been browsed 5707 times, has been downloaded 25 times.
中文摘要
藥物及個人保健用品(Pharmaceuticals and personal care products,PPCPs)因於人類生活中被氾濫使用、傳統的廢水處理流程未能有效處理等原因,常存在於全球各地水體環境中,PPCPs在飲用水消毒程序中可生成如亞硝胺之新興含氮消毒副產物。亞硝胺含氮消毒副產物因具有高致癌性,受到來自包含研究領域或管理單位的極大關注。目前已知的亞硝胺前驅物有二級胺、三級胺、尿素系除草劑、PPCPs、含胺基的聚合物、NOM(Natural Oganic Matter)等。國內飲用水處理中,消毒程序多以加氯為主,前氧化程序則是以加氯或者添加臭氧等方式進行前氧化,在處理程序中可能因環境水體污染程度以及處理程序不同,衍生出不同程度亞硝胺污染。目前於PPCPs之研究上主要探討NDMA(N-Nitrosodimethylamine)的生成,以實驗室模擬為主,且多以線性回歸或生成不同階級動力曲線模型來建立亞硝胺生成之經驗公式,少見有學者利用倒傳遞類神經網路理論來建立前驅物與亞硝胺反應物生成之預測模型。
本研究分為以實驗室試驗模擬二階段加氯消毒實驗、倒傳遞類神經網路理論之驗證測試、情境預測等三大部分,二階段加氯消毒實驗選定Ranitidine(雷尼替)、Nizatidine(尼唑替丁)、Chlorpheniramine(氯苯那敏)、Doxylamine(多西拉敏)作為亞硝胺可能前驅物,研究目的為以下三點:(1)針對4種PPCPs於二階段加氯模擬流程中,在不同操作條件下,如有無混凝沉澱以及前氧化、前氧化劑量差異、以及水中氮化物種類等影響下,觀察PPCPs生成NDMA情形、(2)利用瓶杯試驗實驗及苯脲系除草劑消毒實驗之數據評估倒傳遞類神經網路理論之可適用性,再根據倒傳遞類神經網路理論驗證之結論,進行二階段加氯模擬實驗之情境預測、(3)使用二階段加氯消毒實驗之結果,以倒傳遞類神經網路理論模擬飲用水處理程序中可能遇見之情境預測,期望能找出減少藥物及個人保健用品經二階段加氯消毒處理後副產物危害之辦法。
針對4種PPCPs於二階段加氯消毒流程中,在不同操作條件下影響生成NDMA情形,混凝沉澱流程影響NDMA生成之結果顯示,4種PPCPs於原水中經由前氧化程序所破壞之NDMA可能前驅物,其莫爾質量多小於1 kDa,因其質量小,較不易受到混凝過程劑之移除,而影響其NDMA生成潛勢,故於二階段加氯實驗中,混凝、沉澱之處理流程並非為影響NDMA生成之主要因素;前氧化程序影響NDMA生成之結果顯示,因前氧化階段破壞NDMA可能之前驅物,使二階段加氯之NDMA最大生成率普遍皆小於一階段加氯消毒所生成NDMA,且生成NDMA機制可能並不相同,說明於二階段加氯實驗中,前氧化程序為影響NDMA生成的重要因素之一;針對總加氯量與PPCPs濃度比影響NDMA生成,因4種PPCPs之結構差異,導致4種PPCPs之NDMA最大生成率不相同,其中NDMA生成率皆與結合餘氯有關,推測4種不同結構之PPCPs於二階段加氯反應中,4種PPCPs生成NDMA之途徑可能與氯胺反應生成NDMA之途徑相似;最後於環境中氮化物種類與劑量影響NDMA生成,4種PPCPs於二階段加氯消毒氧化流程中會因額外添加無機氮(如氨氮、亞硝酸鹽或硝酸鹽)種類與劑量等因子影響NDMA生成,其中氨氮之加入對NDMA生成之影響最為顯著,4種PPCPs之NDMA生成量隨著額外添加氨氮濃度增加而增加,於亞硝酸鹽與硝酸鹽影響4種PPCPs之NDMA生成,因四種PPCPs化學結構上差異,使得反應後NDMA生成率不盡相同,其中Nizatidine於額外添加高、低濃度之亞硝酸鹽與硝酸鹽反應下並不會生成NDMA。
利用瓶杯試驗實驗及苯脲系除草劑消毒實驗之數據評估倒傳遞類神經網路理論之可適用性,其中學習數據量、學習數據中初始值設定、學習數據中正規化其最大值設定、隱藏層內神經元數目等皆影響數據預測之準確性。學習數據量越多對結果預測之準確性有幫助,而無給定初始值之設定能有效改善預測誤差,且同時改變參數值之最大值來進行學習與預測,會使預測結果變好,最後隱藏層內神經元數目以經驗公式所得參考值為最佳設定值,其經驗公式之算法為輸入層與輸出層之神經元數目總和除以二。
以倒傳遞類神經網路理論模擬飲用水處理程序中可能遇見之六種情境預測,其中情境一、情境四之預測結果與二階段加氯實驗結果進行相關性分析以及單因子變異數分析,結果顯示預測結果與實際值之間差異很小,且預測值與實際值間之分佈趨勢相關性高,說明倒傳遞類神經網路理論可應用於預測亞硝胺於二階段加氯消毒生成之機制中。針對當環境水體中無含有額外氮源情況下,4種PPCPs於二階段加氯消毒機制中生成NDMA情形,結果顯示單一PPCPs情況下較容易生成NDMA,4種PPCPs之NDMA生成率皆會隨著前氧化劑量增加而減少,說明前氧化劑量會影響NDMA生成;針對當環境水體中含有額外氮源情況下,4種PPCPs於二階段加氯消毒機制中生成NDMA情形,結果顯示NDMA生成率會隨著前氧化劑量增加而減少,直到前氧化次氯酸鹽濃度達某一劑量後趨於平穩,其中Ranitidine為四種PPCPs中最具生成潛勢之物種,且增加前氧化程序之次氯酸鹽濃度並未能有效抑制NDMA生成。
依據二階段加氯實驗與倒傳利類神經網路預測之結果,建議4種PPCPs於無含有額外氮源情況下經二階段加氯消毒氧化機制下,可藉由改變前氧化程序中添加足量之次氯酸鹽濃度以達到氯氮比高於20,來有效降低NDMA之生成;針對4種PPCPs含有額外氮源情況下,改變前氧化程序中次氯酸鹽添加劑量並非能有效抑制NDMA生成,建議於前氧化程序前端先有效去除藥品如Ranitidine和無機氮,再經由添加足夠之前氧化次氯酸鹽濃度,方可有效抑制後消毒處理過程中NDMA生成之可能性。
Abstract
Pharmaceuticals and personal care products (PPCPs), which are commonly abused in human activities and less effectively treated by conventional wastewater treatment technologies, are often found in aquatic environments worldwide. PPCPs are known to form nitrogenous disinfection byproducts such as n-nitrosodimethylamine (NDMA) in nitrosamines during disinfection. Due to high carcinogenicity, nitrosamines are of wide concern in the research and practical management fields. The well-known NDMA precursors include secondary and tertiary amines, urea-based herbicide, PPCPs, amine-containing polymers, and natural organic matter (NOM). Free chlorine and ozone are two oxidants widely used during peroxidation or post-disinfection. Different levels of NDMA pollution may result by reactions of oxidant and potential precursors, as the reactions were typically simulated by laboratory experiments and explained by multiple linear or non-linear regressions or empirical models. The objective of this study was to investigate the NDMA formation from four PPCPs including ranitidine, nizatidine, chlorpheniramine, and doxylamine during two-stage chlorination, as the NDMA formation was analyzed and predicted by using the back-propagation neural network First, lab-scale two-stage chlorination experiments were conducted to study the effects of coagulation and sedimentation, peroxidation dosage, presence of inorganic nitrogen, namely nitrite, nitrate and ammonia, on NDMA formation from PPCPs. Next, the results from the early studies that discussed the optimal strategy of coagulation to remove turbidity and the formation of NDMA from herbicides in drinking water treatment processes were employed to establish and assess the applicability of the back-propagation neural network theory. Finally, the results of the two-stage chlorination simulation were analyzed by the back-propagation neural network theory, as the model was used to predict the scenarios not covered by the lab experiments.
The effect of coagulation and sedimentation on the NDMA formation from PPCPs was negligible. The NDMA formation in the two-stage chlorination simulation was lower than those in the one-stage chlorination simulation, showing the effect of preoxidation. For the effect of molar ratio of total chlorine to PPCPs concentrations, the NDMA formation was significantly enhanced at specific ratios. Given the observations, the pathways of NDMA formation from four PPCPs were proposed and associated with the chemical structures of PPCPs. The presences of excess nitrogen sources enhanced the NDMA formation, with ammonia being the most important species. Different structures of PPCPs affected their NDMA formation ratios during two-stage chlorination with the addition of nitrite and nitrate. By using the back-propagation neural network theory to fit the data from the early studies that discussed the optimal strategy of coagulation to remove turbidity and the formation of NDMA from herbicides in drinking water treatment processes, increasing the size of the input data elevated the precision of model prediction. Without determining the initial values of the input data improved the model prediction. Normalization with defined maximum for the input parameters reduced prediction errors. Using the average of the neuron numbers of input and output layer as the number of neuron in hidden layer also increased the accuracy of model prediction. By using the established model to predict the NDMA formation from four PPCPs during two-stage chlorination, NDMA formation was lower when mixed PPCPs were present. NDMA formation decreased and reached an apparent plateau as pre-oxidation dose continuously increased. Ranitidine was the most important PPCPs to form NDMA, as increasing chlorine dose during pre-oxidation failed to effectively inhibit the NDMA formation. It was suggested that the removal of PPCPs and inorganic nitrogen during pre-oxidation and supply of sufficient chlorine could be the more effective approach to inhibit the NDMA formation from PPCPs.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract v
目錄 viii
圖目錄 xii
表目錄 xv
第一章 前言 1
1.1研究緣起 1
1.2研究目的 4
第二章 文獻回顧 7
2.1亞硝胺類化合物 8
2.1.1亞硝胺類化合物之物化特性 9
2.1.2亞硝胺類化合物之危害性與相關規範 11
2.2 亞硝胺類化合物之生成機制 13
2.2.1 氯胺化生成亞硝胺 13
2.2.2 臭氧生成亞硝胺 15
2.2.3 氯化(Chlorination)生成亞硝胺 17
2.3 亞硝胺類化合物前驅物 19
2.3.1 胺類化合物(Amines) 19
2.3.2 尿素系除草劑(phenylurea herbicide) 20
2.3.3 藥品與個人保健用品 20
2.4 亞硝胺類化合物與其前驅物之去除 22
2.4.1 混凝沉澱過濾 22
2.4.2 活性碳或生物活性碳吸附亞硝胺前驅物 23
2.4.3 前氧化去除亞硝胺前驅物 23
2.4.4 紫外光去除亞硝胺: 24
2.4.5 氯胺應用方式改變 24
2.4.6 生物降解 25
2.5 亞硝胺類化合物之污染分布 25
2.5.1國內淨水廠中亞硝胺濃度 26
2.5.2 國外淨水廠亞硝胺濃度 26
2.6 倒傳遞類神經網路理論介紹 27
2.6.1 倒傳遞類神經網路架構 28
2.6.2 倒傳遞類神經網路運作過程 30
2.6.3 倒傳遞類神經網路演算法 31
2.6.4 倒傳遞類神經網路理論之參數決定 36
2.6.5 倒傳遞類神經網路理論之使用成功案例 39
第三章 研究方法 40
3.1研究架構 40
3.2實驗材料與設備 44
3.3 實驗方法 48
3.3.1瓶杯試驗實驗 48
3.3.2苯脲系除草劑消毒模擬實驗 49
3.3.3 二階段加氯消毒模擬實驗 50
3.3.4 亞硝胺類化合物樣品分析前處理 52
3.3.5 亞硝胺類化合物樣品分析 54
3.3.6 水質參數量測 55
3.3.7 總有效餘氯及自由餘氯測定方法 56
3.4 倒傳遞類神經網路理論模擬預測之測試 56
3.4.1學習數據量之影響測試 58
3.4.2 學習數據中初始值設定之影響測試 59
3.4.3學習數據中正規化最大值之影響測試 60
3.4.4 隱藏層內神經元數量之影響測試 62
3.5 二階段加氯實驗模擬預測 63
3.5.1 數據庫建立 64
3.5.2數值正規化 64
3.5.3數據庫學習 65
3.5.4數據庫回想及情境預測 65
3.6統計分析 68
3.6.1相關性分析 68
3.6.2 單因子變異數分析 69
第四章 結果與討論 71
4.1二階段加氯模擬實驗 71
4.1.1混凝沉澱流程影響NDMA生成 71
4.1.2前氧化程序影響NDMA生成 74
4.1.3總加氯量與PPCPs濃度比影響NDMA生成 76
4.1.4環境中額外氮源種類與劑量影響NDMA生成 81
4.1.5 PPCPs於二階段加氯消毒中生成NDMA途徑 85
4.2 倒傳遞類神經網路理論之驗證測試 88
4.2.1 學習數據量之影響 88
4.2.2學習數據中初始值設定之影響 93
4.2.3 學習數據中正規化其最大值設定之影響 96
4.2.4 隱藏層內神經元神數目之影響 97
4.3 二階段加氯模擬實驗之情境預測 103
4.3.1情境一預測 106
4.3.2情境二預測 108
4.3.3情境三預測 109
4.3.4情境四預測 111
4.3.5情境五預測 112
4.3.6情境六預測 113
4.3.7有效控管NDMA生成 116
第五章 結論與建議 121
5.1結論 121
5.2建議 123
參考文獻 126
參考文獻 References
Abyaneh, H. Z., 2014, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters: Journal of Environmental Health Science and Engineering, v. 12.
Andrews, A. W., J. A. Fornwald, and W. Lijinsky, 1980, NITROSATION AND MUTAGENICITY OF SOME AMINE DRUGS: Toxicology and Applied Pharmacology, v. 52, p. 237-244.
Andrzejewski, P., B. Kasprzyk-Hordern, and J. Nawrocki, 2005, The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants: Desalination, v. 176, p. 37-45.
Andrzejewski, P., B. Kasprzyk-Hordern, and J. Nawrocki, 2008, N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters: Water Research, v. 42, p. 863-870.
Andrzejewski, P., and J. Nawrocki, 2009, N-nitrosodimethylamine (NDMA) as a product of potassium permanganate reaction with aqueous solutions of dimethylamine (DMA): Water Research, v. 43, p. 1219-1228.
Arhami, M., N. Kamali, and M. M. Rajabi, 2013, Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations: Environmental Science and Pollution Research, v. 20, p. 4777-4789.
Asadi-Eydivand, M., M. Solati-Hashjin, A. Farzadi, and N. A. Abu Osman, 2014, Artificial neural network approach to estimate the composition of chemically synthesized biphasic calcium phosphate powders: Ceramics International, v. 40, p. 12439-12448.
Asami, M., M. Oya, and K. Kosaka, 2009, A nationwide survey of NDMA in raw and drinking water in Japan: Science of the Total Environment, v. 407, p. 3540-3545.
Barbes, L., C. Neagu, L. Melnic, C. Ilie, and M. Velicu, 2009, The Use of Artificial Neural Network (ANN) for Prediction of Some Airborne Pollutants Concentration in Urban Areas: Revista De Chimie, v. 60, p. 301-307.
Bond, T., and M. R. Templeton, 2011, Nitrosamine formation from the oxidation of secondary amines: Water Science and Technology-Water Supply, v. 11, p. 259-265.
Bond, T., M. R. Templeton, and N. Graham, 2012, Precursors of nitrogenous disinfection by-products in drinking water-A critical review and analysis: Journal of Hazardous Materials, v. 235, p. 1-16.
Boughrara, H., M. Chtourou, C. Ben Amar, and L. M. Chen, 2016, Facial expression recognition based on a mlp neural network using constructive training algorithm: Multimedia Tools and Applications, v. 75, p. 709-731.
CDPH.(2010).Drinking Water Notification Levels and Response Levels:An overview:California Department of Public Health Drinking Water Program
CDPR.(2012).The top 100 pesticides used by pound of active ingredient statewide.
Chang, H. H., and G. S. Wang, 2011, Correlations between surrogate nitrogenous organic precursors and C-, N-DBP formation: Water Science and Technology, v. 64, p. 2395-2403.
Charrois, J. W. A., J. M. Boyd, K. L. Froese, and S. E. Hrudey, 2007, Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems: Journal of Environmental Engineering and Science, v. 6, p. 103-114.
Charrois, J. W. A., and S. E. Hrudey, 2007, Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations: Water Research, v. 41, p. 674-682.
Chen, Z., and R. L. Valentine, 2006, Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine: Environmental Science & Technology, v. 40, p. 7290-7297.
Chen, Z., and R. L. Valentine, 2007, Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water: Environmental Science & Technology, v. 41, p. 6059-6065.
Chen, Z., and R. L. Valentine, 2008, The influence of the pre-oxidation of natural organic matter on the formation of N-nitrosodimethylamine (NDMA): Environmental Science & Technology, v. 42, p. 5062-5067.
Cheng, R. C., C. J. Hwang, C. Andrews-Tate, Y. B. Guo, S. Carr, and I. H. Suffet, 2006, Alternative methods for the analysis of NDMA and other nitrosamines in water: Journal American Water Works Association, v. 98, p. 82-96.
Choi, J., S. E. Duirk, and R. L. Valentine, 2002, Mechanistic studies of N-nitrosodimethylamine (NDMA) formation in chlorinated drinking water: Journal of Environmental Monitoring, v. 4, p. 249-252.
Choi, J. H., and R. L. Valentine, 2003, N-nitrosodimethylamine formation hy free-chlorine-enhanced nitrosation of dimethylamine: Environmental Science & Technology, v. 37, p. 4871-4876.
DHS,California Department of Health Services;NDMA in California Drinking Water,2002,http://www.dhs.ca.gov/ps/ddwem/chemicals/NDMA/history.htm.
Dongale, T. D., P. R. Jadhav, G. J. Navathe, J. H. Kim, M. M. Karanjkar, and P. S. Patil, 2015, Development of nano fiber MnO2 thin film electrode and cyclic voltammetry behavior modeling using artificial neural network for supercapacitor application: Materials Science in Semiconductor Processing, v. 36, p. 43-48.
Dulkadiroglu, H., G. Seckin, and D. Orhon, 2015, Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique: Desalination and Water Treatment, v. 54, p. 2496-2503.
Eichholzer, M., and F. Gutzwiller, 1998, Dietary nitrates, nitrites, and N-nitroso compounds and cancer risk: A review of the epidemiologic evidence: Nutrition Reviews, v. 56, p. 95-105.
El Tabach, E., L. Adishirinli, N. Gascoin, and G. Fau, 2015, Prediction of transient chemistry effect during fuel pyrolysis on the pressure drop through porous material using artificial neural networks: Journal of Analytical and Applied Pyrolysis, v. 115, p. 143-148.
Esmaeili, A., and A. A. Beni, 2015, Novel membrane reactor design for heavy-metal removal by alginate nanoparticles: Journal of Industrial and Engineering Chemistry, v. 26, p. 122-128.
Farre, M. J., J. Reungoat, F. X. Argaud, M. Rattier, J. Keller, and W. Gernjak, 2011, Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration: Water Research, v. 45, p. 5695-5704.
Flowers, R. C., and P. C. Singer, 2013, Anion Exchange Resins as a Source of Nitrosamines and Nitrosamine Precursors: Environmental Science & Technology, v. 47, p. 7365-7372.
Gerecke, A. C., and D. L. Sedlak, 2003, Precursors of N-mitrosodimethylamine in natural waters: Environmental Science & Technology, v. 37, p. 1331-1336.
Giacomazzi, S., and N. Cochet, 2004, Environmental impact of diuron transformation: a review: Chemosphere, v. 56, p. 1021-1032.
Goslan, E. H., S. W. Krasner, M. Bower, S. A. Rocks, P. Holmes, L. S. Levy, and S. A. Parsons, 2009, A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland: Water Research, v. 43, p. 4698-4706.
Guo, H., K. Jeong, J. Lim, J. Jo, Y. M. Kim, J.-P. Park, J. H. Kim, and K. H. Cho, 2015, Prediction of effluent concentration in a wastewater treatment plant using machine learning models: Journal of Environmental Sciences, v. 32, p. 90-101.
Hanigan, D., J. W. Zhang, P. Herckes, S. W. Krasner, C. Chen, and P. Westerhoff, 2012, Adsorption of N-Nitrosodimethylamine Precursors by Powdered and Granular Activated Carbon: Environmental Science & Technology, v. 46, p. 12630-12639.
Hebert, A., D. Forestier, D. Lenes, D. Benanou, S. Jacob, C. Arfi, L. Lambolez, and Y. Levi, 2010, Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health: Water Research, v. 44, p. 3147-3165.
Ho, K.-L., Y.-C. Chung, Y.-H. Lin, and C.-P. Tseng, 2008, Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp CP2 and Arthrobacter sp CP1: Chemosphere, v. 72, p. 250-256.
Hung, H.-W., T.-F. Lin, C.-H. Chiu, Y.-C. Chang, and T.-Y. Hsieh, 2010, Trace Analysis of N-Nitrosamines in Water Using Solid-Phase Microextraction Coupled with Gas Chromatograph-Tandem Mass Spectrometry: Water Air and Soil Pollution, v. 213, p. 459-469.
Hwang, Y., T. Matsuo, K. Hanaki, and N. Suzuki, 1994, REMOVAL OF ODOROUS COMPOUNDS IN WASTE-WATER BY USING ACTIVATED CARBON, OZONATION AND AERATED BIOFILTER: Water Research, v. 28, p. 2309-2319
Iliuta, M. C., I. Iliuta, and F. Larachi, 2000, Vapour-liquid equilibrium data analysis for mixed solvent-electrolyte systems using neural network models: Chemical Engineering Science, v. 55, p. 2813-2825.
J. C. Morris and R. A. Isaac, in A Critical Review of Kinetic and Thermodynamic Constants for the Aqueous Chlorine–Ammonia System. Water Chlorination: Environmental Impact and Health Effects, ed. R. L. Jolley, W. A. Brungs, J. A. Contruvo et al., Ann Arbor Science Publishers, Ann Arbor, MI, 1981, vol. 4, pp. 49–62.
Jeong, G., J. H. Jung, J. H. Lim, Y. S. Won, and J. K. Lee, 2014, A Computational Mechanistic Study of Breakpoint Chlorination for the Removal of Ammonia Nitrogen from Water: Journal of Chemical Engineering of Japan, v. 47, p. 225-229.
Jurado-Sanchez, B., E. Ballesteros, and M. Gallego, 2007, Gas chromatographic determination of N-nitrosamines in beverages following automatic solid-phase extraction: Journal of Agricultural and Food Chemistry, v. 55, p. 9758-9763.
Jurado-Sanchez, B., E. Ballesteros, and M. Gallego, 2010, Screening of N-nitrosamines in tap and swimming pool waters using fast gas chromatography: Journal of Separation Science, v. 33, p. 610-616.
Keefer, L. K. & Roller, P. P.,N-nitrosation by nitrite ion in neutral and basic medium. Science ,1973,181, 1245–1247.
Kemper, J. M., S. S. Walse, and W. A. Mitch, 2010, Quaternary Amines As Nitrosamine Precursors: A Role for Consumer Products?: Environmental Science & Technology, v. 44, p. 1224-1231.
Kemper, J. M., P. Westerhoff, A. Dotson, and W. A. Mitch, 2009, Nitrosamine, Dimethylnitramine, and Chloropicrin Formation during Strong Base Anion-Exchange Treatment: Environmental Science & Technology, v. 43, p. 466-472.
Khovanova, N. A., T. Shaikhina, and K. K. Mallick, 2015, Neural networks for analysis of trabecular bone in osteoarthritis: Bioinspired Biomimetic and Nanobiomaterials, v. 4, p. 90-100.
Kimoto, W. I., C. J. Dooley, J. Carre, and W. Fiddler, 1980, ROLE OF STRONG ION-EXCHANGE RESINS IN NITROSAMINE FORMATION IN WATER: Water Research, v. 14, p. 869-876.
Krasner, S.W., Westerhoff, P., Chen, B., Amy, G., Nam, S.,Chowdhury, Z., Sinha, S., Rittmann, B., 2008. Contribution of Wastewater to DBP Formation. AwwaRF, Denver, Colo.
Krasner, S. W., 2009, The formation and control of emerging disinfection by-products of health concern: Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, v. 367, p. 4077-4095.
Krasner, S. W., W. A. Mitch, D. L. McCurry, D. Hanigan, and P. Westerhoff, 2013, Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review: Water Research, v. 47, p. 4433-4450.
Krasner, S. W., W. A. Mitch, P. Westerhoff, and A. Dotson, 2012, Formation and control of emerging C- and N-DBPs in drinking water: Journal American Water Works Association, v. 104, p. 33-34.
KRASNER, S. W., et al. Development of a Bench-Scale Test to Predict the Formation of Nitrosamines. Water Research Foundation, Denver, 2012.
KRASNER S. W. , MCGUIRE M. J. , JACANGELO J. G. , PATANIA N. L. , REAGAN K. M. and AIETA E. M. ,1989, The occurrence of disinfection by-products in US drinking water, Journal - American Water Works Association ,p. 41-53
Krauss, M., P. Longree, F. Dorusch, C. Ort, and J. Hollender, 2009, Occurrence and removal of N-nitrosamines in wastewater treatment plants: Water Research, v. 43, p. 4381-4391.
Kukui, A., T. P. W. Jungkamp, and R. N. Schindler, 1994, DETERMINATION OF THE PRODUCT BRANCHING RATIO IN THE REACTION OF NO3 WITH OCL AT 300-K: Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, v. 98, p. 1619-1621.
Kukui, A., T. P. W. Jungkamp, and R. N. Schindler, 1994, DETERMINATION OF THE PRODUCT BRANCHING RATIO IN THE REACTION OF NO3 WITH OCL AT 300-K: Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, v. 98, p. 1619-1621.
Le Roux, J., H. Gallard, and J. P. Croue, 2011, Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation: Water Research, v. 45, p. 3164-3174.
Lee, C., Y. Lee, C. Schmidt, J. Yoon, and U. Von Gunten, 2008, Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the NDMA formation potential of natural waters: Water Research, v. 42, p. 433-441.
Lee, C., C. Schmidt, J. Yoon, and U. von Gunten, 2007a, Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential: Environmental Science & Technology, v. 41, p. 2056-2063.
Lee, C., J. Yoon, and U. Von Gunten, 2007b, Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone
Lijinsky, W., 1994, CHEMICAL-STRUCTURE OF NITROSAMINES RELATED TO CARCINOGENESIS: Nitrosamines and Related N-Nitroso Compounds: Chemistry and Biochemistry, v. 553, p. 250-266.
Lijinsky, W., and H. W. Taylor, 1977, FEEDING TESTS IN RATS ON MIXTURES OF NITRITE WITH SECONDARY AND TERTIARY-AMINES OF ENVIRONMENTAL IMPORTANCE: Food and Cosmetics Toxicology, v. 15, p. 269-274.
Ma, F. J., Y. Wan, G. X. Yuan, L. P. Meng, Z. M. Dong, and J. Y. Hu, 2012b, Occurrence and Source of Nitrosamines and Secondary Amines in Groundwater and its Adjacent Jialu River Basin, China: Environmental Science & Technology, v. 46, p. 3236-3243.
Ma, Q., H.-W. Xi, C. Wang, H. Bai, G.-C. Xi, N. Su, L.-Y. Xu, and J.-B. Wang, 2011, Determination of 10 Volatile Nitrosamines in Cosmetics by Gas Chromatography-Tandem Mass Spectrometry: Chinese Journal of Analytical Chemistry, v. 39, p. 1201-1207.
Mirbagheri, S. A., M. Bagheri, Z. Bagheri, and A. M. Kamarkhani, 2015, Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm: Process Safety and Environmental Protection, v. 96, p. 111-124.
Mitch, W. A., G. L. Oelker, E. L. Hawley, R. A. Deeb, and D. L. Sedlak, 2005, Minimization of NDMA formation during chlorine disinfection of municipal wastewater by application of pre-formed chloramines: Environmental Engineering Science, v. 22, p. 882-890.
Mitch, W. A., and D. L. Sedlak, 2002, Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination: Environmental Science & Technology, v. 36, p. 588-595.
Mitch, W. A., and D. L. Sedlak, 2004, Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants: Environmental Science & Technology, v. 38, p. 1445-1454.
Mitch, W. A., J. O. Sharp, R. R. Trussell, R. L. Valentine, L. Alvarez-Cohen, and D. L. Sedlak, 2003, N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review: Environmental Engineering Science, v. 20, p. 389-404.
Moorthi, N. S. V., P. A. Franco, and K. Ramesh, 2015, Application of design of experiments and artificial neural network in optimization of ultrasonic energy-assisted transesterification of Sardinella longiceps fish oil to biodiesel: Journal of the Chinese Institute of Engineers, v. 38, p. 731-741.
Muneer, M., J. Theurich, and D. Bahnemann, 1999, Formation of toxic intermediates upon the photocatalytic degradation of the pesticide diuron: Research on Chemical Intermediates, v. 25, p. 667-683.
Munoz, F., and C. von Sonntag, 2000, The reactions of ozone with tertiary amines including the complexing agents nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) in aqueous solution: Journal of the Chemical Society-Perkin Transactions 2, p. 2029-2033.
Nawrocki, J., and P. Andrzejewski, 2011, Nitrosamines and water: Journal of Hazardous Materials, v. 189, p. 1-18.
Nieuwenhuijsen, M. J., J. Grellier, R. Smith, N. Iszatt, J. Bennett, N. Best, and M. Toledano, 2009, The epidemiology and possible mechanisms of disinfection by-products in drinking water: Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, v. 367, p. 4043-4076.
Nong, Z. S., J. C. Zhu, Y. Cao, X. W. Yang, Z. H. Lai, and Y. Liu, 2014, Stability and structure prediction of cubic phase in as cast high entropy alloys: Materials Science and Technology, v. 30, p. 363-369.
Norouzbahari, S., S. Shahhosseini, and A. Ghaemi, 2015, Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm: Journal of Natural Gas Science and Engineering, v. 24, p. 18-25.
Novak, J. T., and M. Langford, 1977, USE OF POLYMERS FOR IMPROVING CHEMICAL SLUDGE DEWATERING ON SAND BEDS: Journal American Water Works Association, v. 69, p. 106-110.
Novak, J. T., and G. E. Montgomery, 1975, CHEMICAL SLUDGE DEWATERING ON SAND BEDS: Journal of the Environmental Engineering Division-Asce, v. 101, p. 1-14.
Oya, M., K. Kosaka, M. Asami, and S. Kunikane, 2008, Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds: Chemosphere, v. 73, p. 1724-1730.
Padhye, L., U. Tezel, W. A. Mitch, S. G. Pavlostathis, and C. H. Huang, 2009, Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems: Environmental Science & Technology, v. 43, p. 3087-3093.
Padhye, L., Y. Luzinova, M. Cho, B. Mizaikoff, J. H. Kim, and C. H. Huang, 2011, PolyDADMAC and Dimethylamine as Precursors of N-Nitrosodimethylamine during Ozonation: Reaction Kinetics and Mechanisms: Environmental Science & Technology, v. 45, p. 4353-4359.
Patel, D. A., and K. N. Jha, 2015, Neural Network Approach for Safety Climate Prediction: Journal of Management in Engineering, v. 31, p. 11.
Perez, D. M., G. G. Alatorre, E. B. Alvarez, E. E. Silva, and J. F. J. Alvarado, 2008, Solid-phase microextraction of N-nitrosodimethylamine in beer: Food Chemistry, v. 107, p. 1348-1352.
Pietsch, J., F. Sacher, W. Schmidt, and H. J. Brauch, 2001, Polar nitrogen compounds and their behaviour in the drinking water treatment process: Water Research, v. 35, p. 3537-3544.
Planas, C., O. Palacios, F. Ventura, J. Rivera, and J. Caixach, 2008, Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS - Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent: Talanta, v. 76, p. 906-913.
Richardson, S. D., 2003, Disinfection by-products and other emerging contaminants in drinking water: Trac-Trends in Analytical Chemistry, v. 22, p. 666-684.
Richardson, S. D., 2009, Water Analysis: Emerging Contaminants and Current Issues (vol 81, pg 4645, 2009): Analytical Chemistry, v. 81, p. 8654-8654.
R.M. Clark and B.K. Boutin, Controlling disinfection by-products and microbial contaminants in drinking water, EPA/600/R-01 / 110, 2001.
ROOK J.J.,1974, FORMATION OF HALOFORMS DURING CHLORINATION OF NATURAL WATERS,Water treatment.Exam,p. 234-243
Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986, LEARNING REPRESENTATIONS BY BACK-PROPAGATING ERRORS: Nature, v. 323, p. 533-536.
Russell, C. G., N. K. Blute, S. Via, X. Wu, and Z. Chowdhury, 2012, Nationwide assessment of nitrosamine occurrence and trends: Journal American Water Works Association, v. 104, p. 57-58
Salvestrini, S., P. Di Cerbo, and S. Capasso, 2002a, Kinetics and mechanism of hydrolysis of phenylureas: Journal of the Chemical Society-Perkin Transactions 2, p. 1889-1893.
Salvestrini, S., P. Di Cerbo, and S. Capasso, 2002b, Kinetics of the chemical degradation of diuron: Chemosphere, v. 48, p. 69-73.
Schmidt, C. K., and H. J. Brauch, 2008, N,N-dimethosulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment: Environmental Science & Technology, v. 42, p. 6340-6346.
Schreiber, I. M., and W. A. Mitch, 2005, Influence of the order of reagent addition on NDMA formation during chloramination: Environmental Science & Technology, v. 39, p. 3811-3818.
Schreiber, I. M., and W. A. Mitch, 2006, Occurrence and fate of nitrosamines and nitrosamine precursors in wastewater-impacted surface waters using boron as a conservative tracer: Environmental Science & Technology, v. 40, p. 3203-3210.
Sedlak, D. L., R. A. Deeb, E. L. Hawley, W. A. Mitch, T. D. Durbin, S. Mowbray, and S. Carr, 2005, Sources and fate of nitrosodimethylamine and its precursors in municipal wastewater treatment plants: Water Environment Research, v. 77, p. 32-39.
Shah, A. D., S. W. Krasner, C. F. T. Lee, U. von Gunten, and W. A. Mitch, 2012, Trade-Offs in Disinfection Byproduct Formation Associated with Precursor Preoxidation for Control of N-Nitrosodimethylamine Formation: Environmental Science & Technology, v. 46, p. 4809-4818.
Shah, A. D., and W. A. Mitch, 2012, Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways: Environmental Science & Technology, v. 46, p. 119-131.
Shahbaz, K., S. Baroutian, F. S. Mjalli, M. A. Hashim, and I. M. AlNashef, 2012, Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques: Thermochimica Acta, v. 527, p. 59-66.
Sharp, J. O., T. K. Wood, and L. Alvarez-Cohen, 2005, Aerobic biodegradation of n-nitrosodimethylamine (NDMA) by axenic bacterial strains: Biotechnology and Bioengineering, v. 89, p. 608-618.
Sharpless, C. M., and K. G. Linden, 2003, Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water: Environmental Science & Technology, v. 37, p. 1933-1940.
Shen, R., and S. A. Andrews, 2011a, Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection: Water Research, v. 45, p. 944-952.
Shen, R. Q., and S. A. Andrews, 2011b, NDMA formation kinetics from three pharmaceuticals in four water matrices: Water Research, v. 45, p. 5687-5694.
Shen, R. Q., and S. A. Andrews, 2013a, Formation of NDMA from ranitidine and sumatriptan: The role of pH: Water Research, v. 47, p. 802-810.
Shen, R. Q., and S. A. Andrews, 2013b, NDMA formation from amine-based pharmaceuticals - Impact from prechlorination and water matrix: Water Research, v. 47, p. 2446-2457.
Sims, G. K., and L. E. Sommers, 1985, DEGRADATION OF PYRIDINE-DERIVATIVES IN SOIL: Journal of Environmental Quality, v. 14, p. 580-584.
Sohn, S. H., S. C. Oh, and Y. K. Yeo, 1999, Prediction of air pollutants by using an artificial neural network: Korean Journal of Chemical Engineering, v. 16, p. 382-387.
Stackelberg, P. E., E. T. Furlong, M. T. Meyer, S. D. Zaugg, A. K. Henderson, and D. B. Reissman, 2004, Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-watertreatment plant: Science of the Total Environment, v. 329, p. 99-113.
Svozil, D., V. Kvasnicka, and J. Pospichal, 1997, Introduction to multi-layer feed-forward neural networks: Chemometrics and Intelligent Laboratory Systems, v. 39, p. 43-62.
Swaim, P., A. Royce, T. Smith, T. Maloney, D. Ehlen, and B. Carter, 2008, Effectiveness of UV advanced oxidation for destruction of micro-pollutants: Ozone-Science & Engineering, v. 30, p. 34-42.
Taguchi, V., S. D. W. Jenkins, D. T. Wang, J. Palmentier, and E. J. Reiner, 1994, Determination of N-Nitrosamines by isotope-dilution,high-resolution Mass-Spectrometry: Canadian Journal of Applied Spectroscopy, v. 39, p. 87-93.
Tijani, I. B., R. Akmeliawati, A. Legowo, and A. Budiyono, 2014, Nonlinear identification of a small scale unmanned helicopter using optimized NARX network with multiobjective differential evolution: Engineering Applications of Artificial Intelligence, v. 33, p. 99-115.
Tkac, M., and R. Verner, 2016, Artificial neural networks in business: Two decades of research: Applied Soft Computing, v. 38, p. 788-804.
USEPA, (2004).method 521 determination of nitrosamines in drinking water by solid phase extraction and capillary column gas chromatography with large volumn inject and chemical ionization tandem mass spectrometry (MS/MS) National exposure research laboratory office of research and development.
USEPA Retrieved from http://www.epa.gov/nerlcwww/document/m_521.pdf.
USEPA, 2006b. Unregulated Contaminant Monitoring Rule 2(UCMR 2). http://www.epa.gov/safewater/ucmr/ucmr2/basicinformation.html#list.
USEPA, 2009. Contaminant Candidate List 3 (CCL3). http://water.epa.gov/scitech/drinkingwater/dws/ccl/ccl3.cfm.
USEPA,2010,Emerging Contaminant -N-Nitrosodimethylamine(NDMA),The U.S. Environmental Protection Agency.
USEPA.(2016).Ingrated Risk Information System Database
OEHHA, 2006. Public Health Goal for Chemicals in Drinking Water: N-Nitrosodimethylamine. http://www.oehha.ca.gov/water/phg/pdf/122206NDMAphg.pdf
Ventanas, S., and J. Ruiz, 2006, On-site analysis of volatile nitrosamines in food model systems by solid-phase microextraction coupled to a direct extraction device: Talanta, v. 70, p. 1017-1023.
Walse, S. S., and W. A. Mitch, 2008, Nitrosamine carcinogens also swim in chlorinated pools: Environmental Science & Technology, v. 42, p. 1032-1037.
Wang, C., X. Zhang, J. Wang, and C. Chen, 2013, Characterization of dissolved organic matter as N-nitrosamine precursors based on hydrophobicity, molecular weight and fluorescence: Journal of Environmental Sciences, v. 25, p. 85-95.
Wang, W., S. Ren, H. Zhang, J. Yu, W. An, J. Hu, and M. Yang, 2011, Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors: Water Research, v. 45, p. 4930-4938.
Watson, G. K., and R. B. Cain, 1975, MICROBIAL METABOLISM OF PYRIDINE RING - METABOLIC PATHWAYS OF PYRIDINE BIODEGRADATION BY SOIL BACTERIA: Biochemical Journal, v. 146, p. 157-172.
Wilczak, A., A. Assadi-Rad, H. H. Lai, L. L. Hoover, J. F. Smith, R. Berger, F. Rodigari, J. W. Beland, L. J. Lazzelle, E. G. Kinicannon, H. Baker, and C. T. Heaney, 2003, Formation of NDMA in chloraminated water coagulated with DADMAC cationic polymer: Journal American Water Works Association, v. 95, p. 94-106.
WHO.(2008). N-Nirtrosodimethylamine in Drinking-water Background document for development of WHO Guideline for Drinking-water Quality.World Health Organization Retrieved from
http://www.who.int/water_sanitation_health/dwq/chemical/ndma_2add_feb2008.pdf.
Xu, B., T. Ye, D.-P. Li, C.-Y. Hu, Y.-L. Lin, S.-J. Xia, F.-X. Tian, and N.-Y. Gao, 2011, Measurement of dissolved organic nitrogen in a drinking water treatment plant: Size fraction, fate, and relation to water quality parameters: Science of the Total Environment, v. 409, p. 1116-1122.
Yang, L., Z. L. Chen, J. M. Shen, Z. Z. Xu, H. Liang, J. Y. Tian, Y. Ben, X. Zhai, W. X. Shi, and G. B. Li, 2009, Reinvestigation of the Nitrosamine-Formation Mechanism during Ozonation: Environmental Science & Technology, v. 43, p. 5481-5487.
YAGIL, G., and ANBAR, M.,The kinetics of hydrazine formation from chloramine and ammonia,1962, J. Am. Chem. Soc. 84, 1797–1803
Zhang, A., Y. Li, Y. Song, J. Lv, and J. Yang, 2014, Characterization of pharmaceuticals and personal care products as N-nitrosodimethylamine precursors during disinfection processes using free chlorine and chlorine dioxide: Journal of Hazardous Materials, v. 276, p. 499-509.
Zhao, Y.-Y., J. Boyd, S. E. Hrudey, and X.-F. Li, 2006, Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry: Environmental Science & Technology, v. 40, p. 7636-7641.
Zhou, Q., S. McCraven, J. Garcia, M. Gasca, T. A. Johnson, and W. E. Motzer, 2009a, Field evidence of biodegradation of N-Nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge: Water Research, v. 43, p. 793-805.
Zhou, W. J., J. M. Boyd, F. Qin, S. E. Hrudey, and X. F. Li, 2009b, Formation of N-Nitrosodiphenylamine and Two New N-Containing Disinfection Byproducts from Chloramination of Water Containing Diphenylamine: Environmental Science & Technology, v. 43, p. 8443-8448.
Zhou, W. J., C. P. Chen, L. J. Lou, Q. Yang, and L. Z. Zhu, 2014, Formation potential of nine nitrosamines from corresponding secondary amines by chloramination: Chemosphere, v. 95, p. 81-87.
Zwiener, C., 2007, Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment: Analytical and Bioanalytical Chemistry, v. 387, p. 1159-1162.
蘭雪梅、朱健、黃承明、董德存,2003,『BP網絡的MATLAB實現,微型電腦應用』。
蘇昭安,2003,應用倒傳遞類神經網路在颱風波浪預報之研究,國立台灣大學工程科學與海洋工程學系碩士論文。
王進德,(2006),類神經網路與模糊控制理論入門與應用。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code