Responsive image
博碩士論文 etd-0701116-135959 詳細資訊
Title page for etd-0701116-135959
論文名稱
Title
氧化石墨烯含鐵複合吸附材料去除藥品氯苯那敏及亞硝胺生成潛勢之影響因子及效率探討
Performances and influential factors of adsorption of chlorpheniramine and N-nitrosamine formation potentials by graphene oxide-iron oxide composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-11
繳交日期
Date of Submission
2016-08-01
關鍵字
Keywords
氧化石墨烯、亞硝胺、四氧化三鐵、氯苯那敏、奈米複合吸附材料、廢水處裡
Nitrosamine, Fe3O4, Graphene oxide, Chlorpheniramine, Wastewater treatment, Nanocomposite adsorbent
統計
Statistics
本論文已被瀏覽 5666 次,被下載 464
The thesis/dissertation has been browsed 5666 times, has been downloaded 464 times.
中文摘要
亞硝胺(Nitrosamines)具有高致癌風險且陸續在世界各國多處飲用水及廢水處理系統中發現而受到關注,本研究利用吸附技術移除環境水體中之亞硝胺前驅物,期望藉此降低水中亞硝胺之生成潛勢(Formation Potential,FP),並挑選亞硝胺前驅物中擁有高莫爾轉換率(Molar Conversions)之氯苯那敏(Chlorpheniramine)作為目標污染物。氧化石墨烯(Graphene Oxide,GO)之高比表面積與親水性等特性,使其具有以吸附機制應用於淨水或廢污水處理程序之潛力,由於GO為奈米尺度之材料,因此本研究利用化學共沉降法製作出擁有高吸附能力及可利用磁鐵快速從水中移除之氧化石墨烯-四氧化三鐵(GO/Fe3O4)複合吸附材料。

本研究主要分為(1)去離子水背景之批次吸附實驗;(2)廢水廠放流水背景之批次吸附實驗;(3)廢水廠放流水之亞硝胺生成潛勢吸附去除實驗。去離子水背景之批次吸附實驗結果顯示,在水質pH為6情況下,氯苯那敏吸附效果為乾基GO/Fe3O4(經烘乾之粉末,後以乾基簡稱之)>濕基GO/Fe3O4(未經烘乾之溶液,後以濕基簡稱之)>活性碳,隨著吸附劑之鐵含量增加,乾基GO/Fe3O4表面可吸附氯苯那敏濃度也逐漸減少,推測為Fe3O4佔據GO表面之吸附位置所導致;而含鐵比例高低則對濕基GO/Fe3O4表面可吸附之氯苯那敏濃度並無顯著影響。乾基GO/Fe3O4因烘乾使水分去除造成GO層狀堆疊,並藉由Fe3O4在GO表面間支撐形成奈米尺寸之空隙,加強氯苯那敏被GO奈米孔隙捕集吸附之可能性。乾基GO/Fe3O4之BET比表面積及孔隙體積分析結果中顯示添加微量Fe3O4於GO表面有助於增加材料本身之微孔體積(< 2nm)及比表面積,並增加其對氯苯那敏之吸附能力,而總孔隙體積並非決定此材料對氯苯那敏可吸附量之關鍵因子。改變水質pH之批次實驗顯示,可根據污染物水中之解離狀態(pKa)及GO/Fe3O4吸附劑本身之表面電荷變化,來判斷有利吸附的最佳水質pH。反應速率部分則是濕基GO/Fe3O4較乾基快,約60分鐘內達到平衡,乾基GO/Fe3O4則需超過360分鐘,而含鐵比例多寡並無顯著影響乾、濕基GO/Fe3O4之反應速率。

廢水廠放流水背景之批次吸附實驗結果顯示,在水質pH為6情況下,氯苯那敏吸附效果為濕基GO/Fe3O4 >乾基GO/Fe3O4 >活性碳,其中乾、濕基GO/Fe3O4與活性碳之Freundlich模型參數n值與去離子水背景時相比,皆有顯著上升之趨勢,水中天然有機物(Natural Organic Matter,NOM)可能附著於本研究吸附劑之表面,進一步使吸附劑表面之異質性下降並增加其同質性;n值上升也代表吸附過程為有利性吸附,氯苯那敏濃度越高其吸附親和力有逐漸增強趨勢。與去離子水背景吸附結果相較之下,乾基吸附劑(乾基GO/Fe3O4或活性碳)對氯苯那敏之吸附效果皆呈現下降趨勢,實廠水樣中之溶解性有機物質(DOM)易與特定結構之PPCPs競爭吸附劑表面之吸附位置;而濕基GO/Fe3O4對氯苯那敏之吸附效果於廢水廠放流水背景下反而上升,可能與水中NOM之存在對吸附劑表面造成變化及水中離子強度增加有關。

廢水廠放流水經過乾基GO/Fe3O4(S2.5)之吸附程序後(pH為6),可有效移除亞硝胺類化合物FP(NDMA-FP移除29±12 %、NPIP-FP移除26±6 %、NMOR-FP移除46±1 %及NDBA-FP移除44 %)。於去離子水背景下添加氯苯那敏,經乾基GO/Fe3O4之吸附程序(pH為6)並測試其亞硝胺類化合物FP後,發現其FP呈上升趨勢,顯示添加乾基GO/Fe3O4不僅無法使亞硝胺類化合物FP下降,反而導致更多亞硝胺生成。廢水廠放流水中添加氯苯那敏,經乾基GO/Fe3O4(S2.5)之吸附程序(pH為6)並測試其亞硝胺類化合物FP後,發現此吸附劑對亞硝胺類化合物之FP同時存在吸附移除與生成增加之現象,即使添加高濃度之亞硝胺前驅物(氯苯那敏,14.6 μM),此吸附劑亦能有效降低亞硝胺類化合物之FP。
Abstract
Nitrosamines are of concern because thery are highly carcinogenic and were frequently observed in water and wastewater treatment processes in many countries of the world. In this study, a wastewater treatment technology that reduced the formation potentials (FPs) of nitrosamines by removing potential nitrosamine precursors with high molar conversion rate via adsorption was investigated, with chlorpheniramine being selected as the target pollutants. Graphene oxide (GO), due to its large surface area and strong hydrophilicity, has the potential to remove contaminants by adsorption amongst water and wastewater treatment technoloiges. Considered the nano-size of GO material, the GO-iron oxide (GO/Fe3O4) composite with high adsorption capacity was synthesized by using the method of coprecipitation, as this material possesses the property of being quickly removed from water with magnetic force.

This study is divided into: (1) the batch adsorption experiments that removed chlorpheniramine in deionized water; (2) the batch adsorption experiments that removed chlorphenirame in real wastewater effluents; (3) the adsorption experiments that removed nitrosamine’s FP in wastewater effluents. In the 1st stage of the study, the removal efficiencies of chlorpheniramine by adsorption onto the surface of GO/Fe3O4 composite at pH 6 followed the order of: GO/Fe3O4 powder > GO/Fe3O4 suspension > activated carbon. With the increase of the iron content, the chlorpheniramine concentration onto the surface of GO/Fe3O4 powder was reduced because of limited adsorption sites, whereas the iron content of adsorbent did not significantly affect the removal of chlorpheniramine by the GO/Fe3O4 suspension. The stacking of GO layers became more obvious in the GO/Fe3O4 particle due to drying, forming nano-pore structures braced by Fe3O4 among GO layers to enhance the chlorpheniramine adsorption. The BET surface area, pore volume, pore size distribution measurements of GO/Fe3O4 particle supported the assumption that the enhanced chlorphenirame adsorption was associated with the increasing pore volume (diameter < 2 nm) and specific surface area. The total pore volume was not the critical factor to determine the adsorption capacity of chlorpheniramine onto GO/Fe3O4. By changing the reaction pH, the ionization states of chlorpheniramine and the surface charge of GO/Fe3O4 were both affected, affecting the optimal pH of effective adsorption. The chlorpheniramine adsorption onto the GO/Fe3O4 suspension (in 60 minutes) was overall more efficient than that of the GO/Fe3O4 particle (in 360 minutes), as the effect of changing the iron content of GO/Fe3O4 was negligible.

In the 2nd stage of the study, the chlorpheniramine removal in real effluents by adsorption at pH 6 followed the order of: GO/Fe3O4 suspension > GO/Fe3O4 particle > activated carbon. Compared to the results in the 1st stage of the study using deionized water, the n value in the Freundlich model fittings of both GO/Fe3O4 suspension and particle as well as activated carbon were significantly higher. Natural organic matter (NOM) could be attached onto the surface of GO/Fe3O4, declining the heterogeneity of the adsorbent surface. The rise of n value also represents adsorption process is favorable adsorption, meaning that excess chlorpheniramine adsorbed results in stronger adsorption affinity between chlorpheniramine and the GO/Fe3O4 surface. The chlorpheniramine adsorption by the GO/Fe3O4 particle and activated carbon in wastewater effluents were less efficient when compare to the results using deionized water as the background, atributalbe to the potential competition between dissolved organic matter (DOM) in wastewater and specific functional gourps of chlorpheniramine for adsorption sites on the GO/Fe3O4 surface. A different result was observed for the GO/Fe3O4 suspesion possibly due to the presence of NOM in wastewater decreasing the heterogeneity of the adsorbent sites and increasing the ionic strength.

In the 3rd stage of the experiments, the nitrosamine FPs in wastewater effluents were effectively treated by the GO/Fe3O4 particle at pH 6, as the FPs of N-Nitrosodimethylamine (NDMA), N-Nitrosopiperidine (NPIP), N-Nitrosomorpholine (NMOR) and N-Nitrosodi-n-butylamine (NDBA) were reduced by 29±12, 26±6, 46±1 and 44 %. By adding chlorpheniramine to deionized water in the GO/Fe3O4 particle experiment at pH 6, the nitrosamine FPs were increased suggesting that GO/Fe3O4 could possibly assist in nitrosamine formation. By adding chlorpheniramine to wastewater in the same experiment, the GO/Fe3O4 particle was found to simulataneously treat and result in the formation of nitrosamine. Even at a high chlorpheniramine concentration in wastewater, the nitrosamine FPs could still be efficiently treated by employing the GO/Fe3O4 particle as the adsorbent.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iv
目錄 viii
圖目錄 xii
表目錄 xv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
1.3 本研究之貢獻與重要性 5
第二章 文獻回顧 6
2.1 亞硝胺類化合物 6
2.1.1 亞硝胺之物理化學特性 7
2.1.2 亞硝胺之致癌風險與法規規範 9
2.2 亞硝胺之生成 11
2.2.1 消毒氧化(加氯)反應生成亞硝胺 11
2.2.2 消毒氧化(加氯胺)反應生成亞硝胺 12
2.2.3 消毒氧化(加臭氧)反應生成亞硝胺 14
2.2.4 活性碳表面反應生成亞硝胺 15
2.3 亞硝胺之前驅物 16
2.3.1 藥品與個人保健用品(PPCPs) 16
2.4 亞硝胺及其前驅物之去除 19
2.4.1 活性碳或生物活性碳吸附移除亞硝胺前驅物 19
2.4.2 薄膜過濾移除亞硝胺及其前驅物 21
2.4.3 紫外光(UV)去除亞硝胺 21
2.4.4 生物降解去除亞硝胺 22
2.5 實場廢水中之亞硝胺類化合物生成潛勢及濃度 23
2.6 石墨烯類衍生材料 24
2.6.1 石墨烯類衍生材料之製備方法 25
2.6.2 氧化石墨烯之表面改質 27
2.7 石墨烯類衍生材料於吸附技術上之應用 29
2.7.1 石墨烯類衍生材料吸附去除染料 29
2.7.2 石墨烯類衍生材料吸附去除PPCPs及環境賀爾蒙 30
2.7.3 石墨烯類衍生材料吸附去除多環芳香烴碳氫化合物 31
2.7.4 石墨烯類衍生材料吸附去除重金屬 31
2.8 石墨烯類衍生材料之環境宿命 36
2.8.1 石墨烯類衍生材料(GFNs)於環境水體中之吸附特性 36
2.8.2 氧化石墨烯(GO)於環境水體中之分散與聚合行為 37
2.8.3 石墨烯類衍生材料(GFNs)於環境水體中之轉化還原 38
2.8.4 石墨烯類衍生材料(GFNs)於環境水體中之降解 39
第三章 研究方法 41
3.1 研究架構 41
3.2 實驗材料與設備 43
3.2.1 材料與試劑 43
3.3 廢水廠放流水 50
3.3.1 採樣與保存 51
3.3.2 廢水廠放流水質分析 52
3.4 實驗方法與設計 53
3.4.1 先期亞硝胺去除實驗測試 53
3.4.2 GO/Fe3O4之合成 54
3.4.3 以去離子水為背景之批次吸附實驗 55
3.4.4 以實際廢水廠放流水為背景之批次吸附實驗 58
3.4.5 廢水廠放流水中亞硝胺生成潛勢之去除實驗 59
3.5 亞硝胺分析 61
3.5.1 固相萃取(前處理) 61
3.5.2 亞硝胺儀器分析 62
3.6 氯苯那敏分析 65
3.6.1 液相萃取之前處理步驟 65
3.6.2 氯苯那敏之儀器分析 66
3.7 品質保證與品質管理 68
3.8 吸附材料特性分析 69
3.8.1 GO含量分析 69
3.8.2 BET比表面積、孔徑分佈及孔隙體積分析 70
3.8.3 界達電位分析 70
3.8.4 晶體結構分析(X射線繞射分析儀) 70
3.8.5 表面結構分析(掃描式電子顯微鏡) 70
3.9 實驗數據分析 71
3.9.1 等溫吸附模式 71
3.9.2 吸附動力方程式 72
第四章 結果與討論 73
4.1 先期實驗測試 73
4.1.1 去離子水背景之二甲基亞硝胺(NDMA)批次吸附實驗 73
4.2 去離子水背景之氯苯那敏批次吸附實驗 75
4.2.1 等溫吸附實驗(去離子水背景) 75
4.2.2 含鐵比例影響吸附實驗 78
4.2.3 pH影響吸附實驗 80
4.2.4 吸附動力實驗 83
4.3 吸附材料與廢水廠放流水之特性分析 86
4.3.1 GO含量分析 86
4.3.2 BET比表面積及孔隙體積(包含孔徑分佈)分析 87
4.3.3 界達電位測量及吸附材料於水中之分散特性 90
4.3.4 表面晶體結構分析(X射線繞射分析) 91
4.3.5 掃描式電子顯微鏡分析 92
4.3.6 廢水廠放流水之特性分析 94
4.4 廢水廠放流水背景之氯苯那敏批次吸附實驗 95
4.4.1 空白吸附實驗 95
4.4.2 等溫吸附實驗(廢水廠放流水背景) 96
4.4.3 不同水質背景之等溫吸附線比較 98
4.5 廢水廠放流水之亞硝胺生成潛勢吸附去除實驗 102
4.5.1 廢水廠放流水之水質特性及亞硝胺類化合物生成潛勢分析 102
4.5.2 廢水廠放流水之亞硝胺生成潛勢去除效果 104
4.5.3 去離子水背景添加氯苯那敏之亞硝胺生成潛勢去除效果 106
4.5.4 廢水廠放流水背景添加氯苯那敏之亞硝胺生成潛勢去除效果 108
第五章 結論與建議 111
5.1 結論 111
5.2 建議 116
參考文獻 117
參考文獻 References
Akhavan, O., Abdolahad, M., Esfandiar, A. and Mohatashamifar, M. (2010) Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction. Journal of Physical Chemistry C 114(30), 12955-12959.
Akhavan, O. and Ghaderi, E. (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5), 1853-1860.
Andrzejewski, P., Kasprzyk-Hordern, B. and Nawrocki, J. (2008) N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Research 42(4-5), 863-870.
Apul, O.G., Wang, Q.L., Zhou, Y. and Karanfil, T. (2013) Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Research 47(4), 1648-1654.
Barrows, S.E., Cramer, C.J., Truhlar, D.G., Elovitz, M.S. and Weber, E.J. (1996) Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution. Environmental Science & Technology 30(10), 3028-3038.
BCCResearch (2013) Graphene: Technologies, Applications and Markets, BCC Research Market Forecasting.
Borisover, M., Sela, M. and Chefetz, B. (2011) Enhancement effect of water associated with natural organic matter (NOM) on organic compound-NOM interactions: A case study with carbamazepine. Chemosphere 82(10), 1454-1460.
Carter, M.C., Kilduff, J.E. and Weber, W.J. (1995) Site energy-distribution analysis of preloaded adsorbents. Environmental Science & Technology 29(7), 1773-1780.
CDPH (2010) Drinking Water Notification Levels and Response Levels: An Overview, California Department of Public Health
Drinking Water Program.
CDPH (2013) NDMA and Other Nitrosamines - Drinking Water Issues, California Department of Public Health.
Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.C. and Kim, K.S. (2010) Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. Acs Nano 4(7), 3979-3986.
Chang, Y.-P., Ren, C.-L., Qu, J.-C. and Chen, X.-G. (2012) Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Applied Surface Science 261, 504-509.
Chang, Y.L., Yang, S.T., Liu, J.H., Dong, E., Wang, Y.W., Cao, A.N., Liu, Y.F. and Wang, H.F. (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology Letters 200(3), 201-210.
Chen, C., Leavey, S., Krasner, S.W. and Suffet, I.H. (2014) Applying polarity rapid assessment method and ultrafiltration to characterize NDMA precursors in wastewater effluents. Water Research 57, 115-126.
Chen, J., Shepherd, R.L., Razal, J.M., Huang, X., Zhang, W., Zhao, J., Harris, A.T., Wang, S., Minett, A.I. and Zhang, H. (2013) Scalable solid-template reduction for designed reduced graphene oxide architectures. ACS Appl. Mater. Interfaces 5(16), 7676-7681.
Chen, S., Zhu, J., Wu, X., Han, Q. and Wang, X. (2010a) Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. Acs Nano 4(5), 2822-2830.
Chen, W., Yan, L. and Bangal, P.R. (2010b) Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 114(47), 19885-19890.
Chen, Z. and Valentine, R.L. (2007) Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water. Environmental Science & Technology 41(17), 6059-6065.
Choi, J. and Valentine, R.L. (2003) N-Nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine, pp. 4871-4876, Environmental Science and Technology.
Choi, J.H. and Valentine, R.L. (2002) Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Research 36(4), 817-824.
Chon, K., Kim, S.H. and Cho, J. (2015) Removal of N-nitrosamines in a membrane bioreactor and nanofiltration hybrid system for municipal wastewater reclamation: Process efficiency and mechanisms. Bioresource Technology 190, 499-507.
Chowdhury, I., Duch, M.C., Mansukhani, N.D., Hersam, M.C. and Bouchard, D. (2013) Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. Environmental Science & Technology 47(12), 6288-6296.
Chung, K., Lee, C.-H. and Yi, G.-C. (2010) Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices. Science 330(6004), 655-657.
Cote, L.J., Kim, J., Tung, V.C., Luo, J., Kim, F. and Huang, J. (2011) Graphene oxide as surfactant sheets. Pure and Applied Chemistry 83(1), 95-110.
Deng, X.J., Lu, L.L., Li, H.W. and Luo, F. (2010) The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. Journal of Hazardous Materials 183(1-3), 923-930.
Dimiev, A.M., Alemany, L.B. and Tour, J.M. (2013) Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model. Acs Nano 7(1), 576-588.
Dolar, D., Gros, M., Rodriguez-Mozaz, S., Moreno, J., Comas, J., Rodriguez-Roda, I. and Barcelo, D. (2012) Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials 239, 64-69.
Dotson, A., Westerhoff, P. and Krasner, S.W. (2009) Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products. Water Science and Technology 60(1), 135-143.
Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff, R.S. (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1), 228-240.
Edwards, M., Topp, E., Metcalfe, C.D., Li, H., Gottschall, N., Bolton, P., Curnoe, W., Payne, M., Beck, A., Kleywegt, S. and Lapen, D.R. (2009) Pharmaceutical and personal care products in tile drainage following surface spreading and injection of dewatered municipal biosolids to an agricultural field. Science of the Total Environment 407(14), 4220-4230.
Fan, L., Luo, C., Sun, M., Qiu, H. and Li, X. (2013a) Synthesis of magnetic beta-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surfaces B-Biointerfaces 103, 601-607.
Fan, L.L., Luo, C.N., Sun, M., Li, X.J. and Qiu, H.M. (2013b) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces B-Biointerfaces 103, 523-529.
Fan, L.L., Luo, C.N., Sun, M., Qiu, H.M. and Li, X.J. (2013c) Synthesis of magnetic beta-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surfaces B-Biointerfaces 103, 601-607.
Fan, Z., Wang, K., Wei, T., Yan, J., Song, L. and Shao, B. (2010) An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48(5), 1686-1689.
Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T. and Wei, F. (2011a) Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials 21(12), 2366-2375.
Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Ren, Y.-m., Song, L.-P. and Wei, F. (2011b) Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. Acs Nano 5(1), 191-198.
Farre, M.J., Reungoat, J., Argaud, F.X., Rattier, M., Keller, J. and Gernjak, W. (2011) Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration. Water Research 45(17), 5695-5704.
Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A. and Tascon, J.M.D. (2010) Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C 114(14), 6426-6432.
Fleming, E.C., Pennington, J.C., Wachob, B.G., Howe, R.A. and Hill, D.O. (1996) Removal of N-nitrosodimethylamine from waters using physical-chemical techniques. Journal of Hazardous Materials 51(1-3), 151-164.
Fu, F.L. and Wang, Q. (2011) Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92(3), 407-418.
Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z. and Zhang, X. (2010) Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials 22(7), 2213-2218.
Gao, W., Majumder, M., Alemany, L.B., Narayanan, T.N., Ibarra, M.A., Pradhan, B.K. and Ajayan, P.M. (2011) Engineered Graphite Oxide Materials for Application in Water Purification. Acs Applied Materials & Interfaces 3(6), 1821-1826.
Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J.J., Shah, S.M. and Su, X.G. (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science 368, 540-546.
Geim, A.K. and Novoselov, K.S. (2007) The rise of graphene. Nature Materials 6(3), 183-191.
Girish, C.M., Sasidharan, A., Gowd, G.S., Nair, S. and Koyakutty, M. (2013) Confocal Raman Imaging Study Showing Macrophage Mediated Biodegradation of Graphene In Vivo. Advanced Healthcare Materials 2(11), 1489-1500.
Guardia, L., Villar-Rodil, S., Paredes, J.I., Rozada, R., Martinez-Alonso, A. and Tascon, J.M.D. (2012) UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation. Carbon 50(3), 1014-1024.
Hanigan, D., Zhang, J., Herckes, P., Krasner, S.W., Chen, C. and Westerhoff, P. (2012) Adsorption of N-Nitrosodimethylamine Precursors by Powdered and Granular Activated Carbon. Environmental Science & Technology 46(22), 12630-12639.
Hao, L., Song, H., Zhang, L., Wan, X., Tang, Y. and Lv, Y. (2012) SiO2/graphene composite for highly selective adsorption of Pb(II) ion. Journal of Colloid and Interface Science 369, 381-387.
Hasegawa, C., Kumazawa, T., Lee, X.P., Fujishiro, M., Kuriki, A., Marumo, A., Seno, H. and Sato, K. (2006) Simultaneous determination of ten antihistamine drugs in human plasma using pipette tip solid-phase extraction and gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 20(4), 537-543.
HealthCanada (2011) Guidelines for Canadian Drinking Water Quality.
Hong, B.J., Compton, O.C., An, Z., Eryazici, I. and Nguyen, S.T. (2012) Successful Stabilization of Graphene Oxide in Electrolyte Solutions: Enhancement of Biofunctionalization and Cellular Uptake. Acs Nano 6(1), 63-73.
HSDB (2009) Hazardous Substances Data Bank, Hazardous Substances Data Bank. National Library of Medicine.
Hu, X.-j., Liu, Y.-g., Wang, H., Chen, A.-w., Zeng, G.-m., Liu, S.-m., Guo, Y.-m., Hu, X., Li, T.-t., Wang, Y.-q., Zhou, L. and Liu, S.-h. (2013) Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Separation and Purification Technology 108, 189-195.
Hu, X.-j., Liu, Y.-g., Zeng, G.-m., Wang, H., You, S.-h., Hu, X., Tan, X.-f., Chen, A.-w. and Guo, F.-y. (2015) Effects of inorganic electrolyte anions on enrichment of Cu(II) ions with aminated Fe3O4/graphene oxide: Cu(II) speciation prediction and surface charge measurement. Chemosphere 127, 35-41.
Hummers, W.S. and Offeman, R.E. (1958) Preparation of graphitic oxide. Journal of the American Chemical Society 80(6), 1339-1339.
IARC (1978) N-Nitrosodi-n-propylamine. In Some N-nitroso Compounds., IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans.
Ji, L., Chen, W., Xu, Z., Zheng, S. and Zhu, D. (2013) Graphene Nanosheets and Graphite Oxide as Promising Adsorbents for Removal of Organic Contaminants from Aqueous Solution. Journal of Environmental Quality 42(1), 191-198.
Kassaee, M.Z., Motamedi, E. and Majdi, M. (2011) Magnetic F Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal 172(1), 540-549.
Kemper, J.M., Walse, S.S. and Mitch, W.A. (2010) Quaternary Amines As Nitrosamine Precursors: A Role for Consumer Products? Environmental Science & Technology 44(4), 1224-1231.
Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y.J., Berger, C., de Heer, W., Bongiorno, A. and Riedo, E. (2012) Room-temperature metastability of multilayer graphene oxide films. Nature Materials 11(6), 544-549.
Kim, S.R., Parvez, M.K. and Chhowalla, M. (2009) UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters 483(1-3), 124-127.
Konkena, B. and Vasudevan, S. (2012) Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pK(a) Measurements. Journal of Physical Chemistry Letters 3(7), 867-872.
Kotchey, G.P., Allen, B.L., Vedala, H., Yanamala, N., Kapralov, A.A., Tyurina, Y.Y., Klein-Seetharaman, J., Kagan, V.E. and Star, A. (2011) The Enzymatic Oxidation of Graphene Oxide. Acs Nano 5(3), 2098-2108.
Krasner, S.W., Mitch, W.A., McCurry, D.L., Hanigan, D. and Westerhoff, P. (2013) Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research 47(13), 4433-4450.
Krasner, S.W., Westerhoff, P., Chen, B., Rittmann, B.E., Nam, S.-N. and Amy, G. (2009) Impact of Wastewater Treatment Processes on Organic Carbon, Organic Nitrogen, and DBP Precursors in Effluent Organic Matter. Environmental Science & Technology 43(8), 2911-2918.
Krauss, M., Longree, P., Dorusch, F., Ort, C. and Hollender, J. (2009) Occurrence and removal of N-nitrosamines in wastewater treatment plants. Water Research 43(17), 4381-4391.
Krauss, M., Longree, P., Van Houtte, E., Cauwenberghs, J. and Hollender, J. (2010) Assessing the Fate of Nitrosamine Precursors in Wastewater Treatment by Physicochemical Fractionation. Environmental Science & Technology 44(20), 7871-7877.
Lanphere, J.D., Luth, C.J. and Walker, S.L. (2013) Effects of Solution Chemistry on the Transport of Graphene Oxide in Saturated Porous Media. Environmental Science & Technology 47(9), 4255-4261.
Lee, C., Choi, W. and Yoon, J. (2005) UV photolytic mechanism of N-nitrosodimethylamine in water: Roles of dissolved oxygen and solution pH. Environmental Science & Technology 39(24), 9702-9709.
Lee, C., Yoon, J. and Von Gunten, U. (2007) Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Research 41(3), 581-590.
Lee, J., Chae, H.-R., Won, Y.J., Lee, K., Lee, C.-H., Lee, H.H., Kim, I.-C. and Lee, J.-m. (2013) Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. Journal of Membrane Science 448, 223-230.
Li, D., Mueller, M.B., Gilje, S., Kaner, R.B. and Wallace, G.G. (2008) Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 3(2), 101-105.
Li, J., Zhang, S., Chen, C., Zhao, G., Yang, X., Li, J. and Wang, X. (2012a) Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles. Acs Applied Materials & Interfaces 4(9), 4991-5000.
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. and Ruoff, R.S. (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312-1314.
Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y. and Xia, L. (2013a) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research & Design 91(2), 361-368.
Li, Y., Du, Q., Liu, T., Sun, J., Jiao, Y., Xia, Y., Xia, L., Wang, Z., Zhang, W., Wang, K., Zhu, H. and Wu, D. (2012b) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Materials Research Bulletin 47(8), 1898-1904.
Li, Y.H., Du, Q.J., Liu, T.H., Peng, X.J., Wang, J.J., Sun, J.K., Wang, Y.H., Wu, S.L., Wang, Z.H., Xia, Y.Z. and Xia, L.H. (2013b) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research & Design 91(2), 361-368.
Li, Z., Chang, P.-H., Jean, J.-S., Jiang, W.-T. and Hong, H. (2011) Mechanism of chlorpheniramine adsorption on Ca-montmorillonite. Colloids and Surfaces a-Physicochemical and Engineering Aspects 385(1-3), 213-218.
Li, Z., Chen, F., Yuan, L., Liu, Y., Zhao, Y., Chai, Z. and Shi, W. (2012c) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical Engineering Journal 210, 539-546.
Liang, S., Min, J.H., Davis, M.K., Green, J.F. and Remer, D.S. (2003) Use of pulsed-UV processes to destroy NDMA. Journal American Water Works Association 95(9), 121-131.
Lijinsky, W. (1999) N-Nitroso compounds in the diet. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 443(1-2), 129-138.
Lin, A.Y.C., Tsai, Y.T., Yu, T.H., Wang, X.H. and Lin, C.F. (2011) Occurrence and fate of pharmaceuticals and personal care products in Taiwan's aquatic environment. Desalination and Water Treatment 32(1-3), 57-64.
Lin, Y., Xu, S. and Jia, L. (2013) Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chemical Engineering Journal 225, 679-685.
Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M. and Seto, P. (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the Total Environment 367(2-3), 544-558.
Liu, L., Li, C., Bao, C., Jia, Q., Xiao, P., Liu, X. and Zhang, Q. (2012a) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93, 350-357.
Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang, W., Wang, K., Zhu, H. and Wu, D. (2012b) Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B-Biointerfaces 90, 197-203.
Luh, J. and Marinas, B.J. (2012) Bromide Ion Effect on N-Nitrosodimethylamine Formation by Monochloramine. Environmental Science & Technology 46(9), 5085-5092.
Luo, J., Cote, L.J., Tung, V.C., Tan, A.T.L., Goins, P.E., Wu, J. and Huang, J. (2010) Graphene Oxide Nanocolloids. Journal of the American Chemical Society 132(50), 17667-17669.
Luo, Y.-B., Shi, Z.-G., Gao, Q. and Feng, Y.-Q. (2011) Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics from environmental water samples. Journal of Chromatography A 1218(10), 1353-1358.
Ma, F., Wan, Y., Yuan, G., Meng, L., Dong, Z. and Hu, J. (2012) Occurrence and Source of Nitrosamines and Secondary Amines in Groundwater and its Adjacent Jialu River Basin, China. Environmental Science & Technology 46(6), 3236-3243.
Madadrang, C.J., Kim, H.Y., Gao, G., Wang, N., Zhu, J., Feng, H., Gorring, M., Kasner, M.L. and Hou, S. (2012) Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal. Acs Applied Materials & Interfaces 4(3), 1186-1193.
McDonald, J.A., Harden, N.B., Nghiem, L.D. and Khan, S.J. (2012) Analysis of N-nitrosamines in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry. Talanta 99, 146-154.
Mi, X., Huang, G., Xie, W., Wang, W., Liu, Y. and Gao, J. (2012) Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50(13), 4856-4864.
Mitch, W.A., Gerecke, A.C. and Sedlak, D.L. (2003a) A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Research 37(15), 3733-3741.
Mitch, W.A., Oelker, G.L., Hawley, E.L., Deeb, R.A. and Sedlak, D.L. (2005) Minimization of NDMA formation during chlorine disinfection of municipal wastewater by application of pre-formed chloramines. Environmental Engineering Science 22(6), 882-890.
Mitch, W.A. and Sedlak, D.L. (2002) Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environmental Science & Technology 36(4), 588-595.
Mitch, W.A. and Sedlak, D.L. (2004) Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants. Environmental Science & Technology 38(5), 1445-1454.
Mitch, W.A., Sharp, J.O., Trussell, R.R., Valentine, R.L., Alvarez-Cohen, L. and Sedlak, D.L. (2003b) N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environmental Engineering Science 20(5), 389-404.
Molinari, R., Pirillo, F., Loddo, V. and Palmisano, L. (2006) Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catalysis Today 118(1-2), 205-213.
Nawrocki, J. and Andrzejewski, P. (2011) Nitrosamines and water. Journal of Hazardous Materials 189(1-2), 1-18.
NIEA (2005a) 水質檢測方法總則(NIEA W102.51C), 行政院環保署環境檢驗所.
NIEA (2005b) 環境檢驗方法偵測極限測定指引(NIEA-PA107), 行政院環境保護署環境檢驗所.
NIEA (2005c) 環境檢驗檢量線製備及查核指引, 行政院環保署環境檢驗所.
NIH (2011) 12th Report on Carcinogens (RoC), National Toxicity Program, Department of Health and Human Services, National Institute of Human Health Sciences, National Institute of Health.
Novoselov, K.S., Fal'ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. and Kim, K. (2012) A roadmap for graphene. Nature 490(7419), 192-200.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004a) Electric field effect in atomically thin carbon films. Science 306(5696), 666-669.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004b) Electric field effect in atomically thin carbon films. Science 306(5696), 666-669.
OEHHA (2006) Public Health Goal for N-Nitrosodimethylamine in Drinking Water, Office of Environmental Health Hazard Assessment.
Ontario, G.o. (2002) Safe Drinking Water Act 2002, Ontario Regulation169/03, Schedule 2.
Padhye, L., Luzinova, Y., Cho, M., Mizaikoff, B., Kim, J.-H. and Huang, C.-H. (2011a) PolyDADMAC and Dimethylamine as Precursors of N-Nitrosodimethylamine during Ozonation: Reaction Kinetics and Mechanisms. Environmental Science & Technology 45(10), 4353-4359.
Padhye, L., Wang, P., Karanfil, T. and Huang, C.H. (2010) Unexpected Role of Activated Carbon in Promoting Transformation of Secondary Amines to N-Nitrosamines. Environmental Science & Technology 44(11), 4161-4168.
Padhye, L.P., Hertzberg, B., Yushin, G. and Huang, C.-H. (2011b) N-Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon. Environmental Science & Technology 45(19), 8368-8376.
Park, S., Lee, K.-S., Bozoklu, G., Cai, W., Nguyen, S.T. and Ruoff, R.S. (2008) Graphene oxide papers modified by divalent ions - Enhancing mechanical properties via chemical cross-linking. Acs Nano 2(3), 572-578.
Pei, Z., Li, L., Sun, L., Zhang, S., Shan, X.-q., Yang, S. and Wen, B. (2013) Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51, 156-163.
Phillips, P.J., Smith, S.G., Kolpin, D.W., Zaugg, S.D., Buxton, H.T. and Furlong, E.T. (2010) Method Description, Quality Assurance, Environmental Data, and other Information for Analysis of Pharmaceuticals in Wastewater-Treatment-Plant Effluents, Streamwater, and Reservoirs, 2004-2009, U.S. Geological Survey Open-File Report 2010-1102, 36 p.
Planas, C., Palacios, O., Ventura, F., Rivera, J. and Caixach, J. (2008) Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS - Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent. Talanta 76(4), 906-913.
Plumlee, M.H., Lopez-Mesas, M., Heidlberger, A., Ishida, K.P. and Reinhard, M. (2008) N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS. Water Research 42(1-2), 347-355.
Pozzi, R., Bocchini, P., Pinelli, F. and Galletti, G.C. (2011) Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry. Journal of Chromatography A 1218(14), 1808-1814.
Ramesha, G.K., Kumara, A.V., Muralidhara, H.B. and Sampath, S. (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science 361(1), 270-277.
Ren, X., Li, J., Tan, X. and Wang, X. (2013) Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions 42(15), 5266-5274.
Salas, E.C., Sun, Z., Luttge, A. and Tour, J.M. (2010) Reduction of Graphene Oxide via Bacterial Respiration. Acs Nano 4(8), 4852-4856.
Schlautman, M.A. and Morgan, J.J. (1993) Effects of aqueous chemistry on the binding of polycyclic aromatic-hydrocarbons by dissolved humic materials. Environmental Science & Technology 27(5), 961-969.
Schreiber, I.M. and Mitch, W.A. (2006) Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen. Environmental Science & Technology 40(19), 6007-6014.
Schreiber, I.M. and Mitch, W.A. (2007) Enhanced nitrogenous disinfection byproduct formation near the breakpoint: Implications for nitrification control. Environmental Science & Technology 41(20), 7039-7046.
Sharma, P. and Das, M.R. (2013) Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. Journal of Chemical and Engineering Data 58(1), 151-158.
Sharp, J.O., Wood, T.K. and Alvarez-Cohen, L. (2005) Aerobic biodegradation of n-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnology and Bioengineering 89(5), 608-618.
Sharpless, C.M. and Linden, K.G. (2003) Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water. Environmental Science & Technology 37(9), 1933-1940.
Shen, R. and Andrews, S.A. (2011) Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Research 45(2), 944-952.
Shen, R.Q. and Andrews, S.A. (2013a) Formation of NDMA from ranitidine and sumatriptan: The role of pH. Water Research 47(2), 802-810.
Shen, R.Q. and Andrews, S.A. (2013b) NDMA formation from amine-based pharmaceuticals - Impact from prechlorination and water matrix. Water Research 47(7), 2446-2457.
Sreeprasad, T.S., Maliyekkal, S.M., Lisha, K.P. and Pradeep, T. (2011) Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification. Journal of Hazardous Materials 186(1), 921-931.
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006) Graphene-based composite materials. Nature 442(7100), 282-286.
Steinmetz, K.A. and Potter, J.D. (1991) Vegetables, Fruit, and Cancer .2. Mechanisms. Cancer Causes & Control 2(6), 427-442.
Summers, R.S. and Roberts, P.V. (1984) Simulation of DOC removal in activated carbon beds. Journal of Environmental Engineering-Asce 110(1), 73-92.
Sun, Y., Wang, Q., Chen, C., Tan, X. and Wang, X. (2012) Interaction between Eu(III) and Graphene Oxide Nanosheets Investigated by Batch and Extended X-ray Absorption Fine Structure Spectroscopy and by Modeling Techniques. Environmental Science & Technology 46(11), 6020-6027.
Sun, Y.B., Yang, S.B., Zhao, G.X., Wang, Q. and Wang, X.K. (2013) Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides. Chemistry-an Asian Journal 8(11), 2755-2761.
USEPA (2002) Integrated Risk Information System (IRIS) Database.
USEPA (2004) Method 521 Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography with large volume injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS), U.S. Environmental Protection Agency.
USEPA (2008) Drinking water contaminant candidate list 3, U. S. Environmental Protection Agency: Washington, DC.
USEPA (2010) Emerging Contaminant - N-Nitroso-dimethylamine (NDMA), The U.S. Environmental Protection Agency.
USEPA (2012) Pharmaceuticals and personal care products, The U.S. Environmental Protection Agency.
USEPA (2013a) Unregulated Contaminant Monitoring Rule 3 (UCMR 2), The U.S. Environmental Protection Agency.
USEPA (2013b) USEPA Integrated Risk Information System (IRIS) Database, U.S. Environmental Protection Agency.
USEPA (2014) USEPA Integrated Risk Information System (IRIS) Database.
USHHS (2014) Report on Carcinogens, Thirteenth Edition.
Vadivelan, V. and Kumar, K.V. (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science 286(1), 90-100.
Von Gunten, U., Salhi, E., Schmidt, C.K. and Arnold, W.A. (2010) Kinetics and Mechanisms of N-Nitrosodimethylamine Formation upon Ozonation of N,N-Dimethylsulfamide-Containing Waters: Bromide Catalysis. Environmental Science & Technology 44(15), 5762-5768.
Wang, C., Li, H., Liao, S., Zheng, H., Wang, Z., Pan, B. and Xing, B. (2013) Coadsorption, desorption hysteresis and sorption thermodynamics of sulfamethoxazole and carbamazepine on graphene oxide and graphite. Carbon 65, 243-251.
Wang, J., Chen, Z.M. and Chen, B.L. (2014a) Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environmental Science & Technology 48(9), 4817-4825.
Wang, L., Li, Y., Shang, X. and Shen, J. (2014b) Occurrence and removal of N-nitrosodimethylamine and its precursors in wastewater treatment plants in and around Shanghai. Frontiers of Environmental Science & Engineering 8(4), 519-530.
Wang, W., Ren, S., Zhang, H., Yu, J., An, W., Hu, J. and Yang, M. (2011a) Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors, pp. 4930-4938, Water Research.
Wang, Y., Shi, Z. and Yin, J. (2011b) Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. Acs Applied Materials & Interfaces 3(4), 1127-1133.
Wei, H., Yang, W., Xi, Q. and Chen, X. (2012) Preparation of Fe3O4@graphene oxide core-shell magnetic particles for use in protein adsorption. Materials Letters 82, 224-226.
Westerhoff, P., Yoon, Y., Snyder, S. and Wert, E. (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology 39(17), 6649-6663.
WHO (2008 ) N-Nitrosodimethylamine in Drinking-water Background document for
development of WHO Guidelines for Drinking-water Quality, http://www.who.int/water_sanitation_health/dwq/chemicals/ndma_2add_feb2008.pdf.
Williams, G., Seger, B. and Kamat, P.V. (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano 2(7), 1487-1491.
Wu, Y., Li, Z., Chen, J., Yu, C., Huang, X., Zhao, C., Duan, L., Yang, Y. and Lu, W. (2015) Graphene nanosheets decorated with tunable magnetic nanoparticles and their efficiency of wastewater treatment. Materials Research Bulletin 68, 234-239.
Xie, J.R., Li, J.Y., Zhao, L.Q., Zhang, X.L., Yu, B.W., Wu, R.H., Wang, R.J., Liu, J.H., Xue, F.M. and Yang, S.T. (2014) Fabrication of TiO2-Graphene Oxide Aerogel for the Adsorption of Copper Ions. Nanoscience and Nanotechnology Letters 6(11), 1018-1023.
Xu, J., Wang, L. and Zhu, Y.F. (2012) Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 28(22), 8418-8425.
Yang, L., Chen, Z., Shen, J., Xu, Z., Liang, H., Tian, J., Ben, Y., Zhai, X., Shi, W. and Li, G. (2009) Reinvestigation of the Nitrosamine-Formation Mechanism during Ozonation. Environmental Science & Technology 43(14), 5481-5487.
Yang, S.-T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., Liu, Y. and Cao, A. (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science 351(1), 122-127.
Yang, X., Li, J.X., Wen, T., Ren, X.M., Huang, Y.S. and Wang, X.K. (2013a) Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation. Colloids and Surfaces a-Physicochemical and Engineering Aspects 422, 118-125.
Yang, Z., Yan, H., Yang, H., Li, H.B., Li, A.M. and Cheng, R.S. (2013b) Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water. Water Research 47(9), 3037-3046.
Yoon, K.Y., An, S.J., Chen, Y., Lee, J.H., Bryant, S.L., Ruoff, R.S., Huh, C. and Johnston, K.P. (2013) Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. Journal of Colloid and Interface Science 403, 1-6.
Yoon, S., Nakada, N. and Tanaka, H. (2011) Occurrence and removal of NDMA and NDMA formation potential in wastewater treatment plants. Journal of Hazardous Materials 190(1-3), 897-902.
Yoon, S., Nakada, N. and Tanaka, H. (2012) A new method for quantifying N-nitrosamines in wastewater samples by gas chromatography-triple quadrupole mass spectrometry. Talanta 97, 256-261.
Zhang, C., Wu, L., Cai, D., Zhang, C., Wang, N., Zhang, J. and Wu, Z. (2013a) Adsorption of Polycyclic Aromatic Hydrocarbons (Fluoranthene and Anthracenemethanol) by Functional Graphene Oxide and Removal by pH and Temperature-Sensitive Coagulation. Acs Applied Materials & Interfaces 5(11), 4783-4790.
Zhang, H., Lv, X., Li, Y., Wang, Y. and Li, J. (2010) P25-Graphene Composite as a High Performance Photocatalyst. Acs Nano 4(1), 380-386.
Zhang, Y., Li, H., Pan, L., Lu, T. and Sun, Z. (2009) Capacitive behavior of graphene-ZnO composite film for supercapacitors. Journal of Electroanalytical Chemistry 634(1), 68-71.
Zhang, Y., Tang, Y., Li, S. and Yu, S. (2013b) Sorption and removal of tetrabromobisphenol A from solution by graphene oxide. Chemical Engineering Journal 222, 94-100.
Zhao, C.Q., Xu, X.C., Chen, J., Wang, G.W. and Yang, F.L. (2014a) Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 340, 59-66.
Zhao, G., Li, J., Ren, X., Chen, C. and Wang, X. (2011a) Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environmental Science & Technology 45(24), 10454-10462.
Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., Huang, Y. and Wang, X. (2011b) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions 40(41), 10945-10952.
Zhao, J., Wang, Z., White, J.C. and Xing, B. (2014b) Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environmental Science & Technology 48(17), 9995-10009.
Zhou, C., Gao, N.Y., Deng, Y., Chu, W.H., Rong, W.L. and Zhou, S.D. (2012) Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. Journal of Hazardous Materials 231, 43-48.
Zhou, Q., McCraven, S., Garcia, J., Gasca, M., Johnson, T.A. and Motzer, W.E. (2009) Field evidence of biodegradation of N-Nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge. Water Research 43(3), 793-805.
胡靖宜 (2008) 鋁水解物種對腐植酸混凝行為之影響, 國立交通大學環境工程研究所.
龜山水資源回收中心 (2014) 龜山水資源回收中心之儀器設備及處理流程, pp. http://www.leaderman.com.tw/guishan-water/water_about.html.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code