Responsive image
博碩士論文 etd-0701116-143142 詳細資訊
Title page for etd-0701116-143142
論文名稱
Title
內生性NO及H2O2可經由調節乙烯訊息途徑、生合成及老化相關基因表現影響NaCl誘導的甘藷葉片老化過程
Endogenous NO and H2O2 participate in NaCl-mediated leaf senescence via modulating ethylene signaling, biosynthesis and senescence-associated gene expression in sweet potato
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-08-01
關鍵字
Keywords
鹽分逆境、乙烯訊息傳遞基因、一氧化氮、葉片老化、過氧化氫
ethylene transduction gene, leaf senescence, NaCl stress, hydrogen peroxide, nitric oxide
統計
Statistics
本論文已被瀏覽 5691 次,被下載 17
The thesis/dissertation has been browsed 5691 times, has been downloaded 17 times.
中文摘要
葉片老化是葉片生長發育的最後階段且受生物性及非生物性逆境影響,其中鹽分逆境為主要非生物性逆境之一,會造成葉片提早老化並且影響降低糧食產量,內生性的NO及H2O2含量上升通常扮演其二次訊息因子的角色,然而它們在鹽分逆境誘導的甘藷葉片老化過程的生理功能及作用機制仍不清楚。本研究結果顯示經NaCl (140 mM)處理6天及9天可顯著促進甘藷葉片老化過程,包括葉片外觀形態黃化、葉綠素和Fv/Fm含量降低、及NO/ H2O2/Malondialdehyde (MDA)含量累積。在NaCl誘導24時內NO及H2O2含量亦會有顯著的累積。在內生性NO研究方面,分別由NO清除劑PTIO、nitric oxide synthase (NOS) 抑制劑 (L-NAME)、及nitrite reductase (NR) 抑制劑 (tungstate) 前處理皆可抑制24小時內內生性NO含量累積及延緩NaCl誘導的長期葉片老化過程,此內生性NO來源一部分可能與一氧化氮合成酶 (NOS) 及硝酸還原酶 (NR)有關,而以NO提供劑SNP前處理則能抑制PTIO作用,回復NaCl誘導葉片老化過程。在內生性H2O2研究方面,分別以還原態穀胱甘肽(GSH)及NADPH oxidase抑制劑 (DPI)前處理也可抑制24小時內內生性H2O2累積及延緩NaCl誘導的長期葉片老化過程,一部分內生性H2O2來源可能與NADPH oxidase有關。前處理抑制劑如PTIO、SNP、GSH、及DPI亦會抑制NaCl誘導烯所增加的乙烯訊息因子、乙烯生合成相關基因、穀胱甘肽-抗壞血酸循環、及老化相關的基因表現。根據上述結果推論,初期的內生性NO及H2O2含量累積可做為NaCl逆境的下游訊息因子,經由調控乙烯訊息傳遞途徑、乙烯生合成、穀胱甘肽-抗壞血酸循環、及老化相關基因表現而促進NaCl逆境誘導的甘藷葉片老化過程。
Abstract
Leaf senescence is the final stage of leaf develpment and is affected by abiotic and biotic stresses. NaCl stress, one of the important abiotic stresses, may cause early leaf senescence and severe crop yield reduction. Elevation of endogenous NO and H2O2 levels at early stage can act as signal molecules of second messengers. However, their physiological function and possible mechanisms in NaCl-mediated leaf senescence in sweet potato are unclear. In this report, NaCl stress (140 mM) significantly promoted leaf senescence of sweet potato on days 6 and 9 after treatment demonstrated by morphology senescent leaf, reduced chlorophyll content, decreased Fv/Fm level, and elevated NO/H2O2/MDA amounts. A significant elevation of NO and H2O2 amounts were also found within 24 h in NaCl-treated leaves. For endogenous NO as a signal molecule, pretreatment of inhibitors/effectors such as NO scavenger PTIO, nitric oxide synthase (NOS) inhibitor (L-NAME), and nitrite reductase (NR) inhibitor (tungstate) attenuated the NaCl-enhanced NO accumulation within the first 24 h and delayed leaf senescence on days 6 and 9. The source of endogenous NO may partly be synthesized by the NOS and NR activities. Pretreatment of NO donor SNP repressed the PTIO effects and reversed it to a senescent level similar to NaCl alone. For endogenous H2O2 as a signal molecule, pretreatment of inhibitors/effectors such as reduced glutathione (GSH) and NADPH oxidase inhibitor also attenuated the NaCl-enhanced H2O2 accumulation within the first 24 h and delayed leaf senescence on days 6 and 9. The source of endogenous H2O2 may partly come from the NADPH oxidase. Pretreatment of inhibitors/effectors such as PTIO, SNP, GSH, and DPI also repressed gene expression related to NaCl-induced ethylene signal components, ethylene biosynthesis, glutathione-ascorbate cycle, and leaf senescence. These results suggested that endogenous NO and H2O2 accumulation may function as downstream signal molecules of NaCl stress to induce leaf senescence possibly via the modulation of gene expression related to ethylene signal components, ethylene biosynthesis, glutathione-ascorbate cycle, and leaf senescence.
目次 Table of Contents
目錄
論文審定書………………………………………...……………………………….….i
致謝………………………………………………………………………...……........ii
中文摘要………………………………………………………………….………..….iii
英文摘要………………………………………………………..….………….……...iv
目錄……………………………………………………………………………....…...vi
圖表目錄………..……………………..…………………………………………...…ix
縮寫表………………………………………………………………….………….…..xi
壹、緒論
甘藷…………………………………………………………….…………………..1
葉片老化………………………………………………………………….………..1
鹽分逆境與葉片老化…………………………………………….………………..2
鹽分逆境與H2O2及NO訊息因子…………..……………………...……….……4
乙烯生合成及訊息傳遞…………………………………………………………...6
研究目的………………………………………………………………....……...…8
貳、實驗材料與方法
A.實驗材料
甘藷 (Ipomoea batatas (L.) Lam)……………………………….…………9
相關基因……………………………………………………………………...9
化學藥品………………………………………………………………….…10
B.實驗方法……………………………………………………………………..…11
葉片處理
NaCl處理………………………………………………………………12
NO清除劑PTIO 及NO 供應劑SNP處理……...………………...….12
L-NAME及tungstate處理………………………….……..………….13
還原態穀胱甘肽GSH處理……………………………...……………14
DPI處理………………………………………………………………..15
樣品分析
葉片外觀型態觀察……………………………………………………..16
葉綠素含量測量………………………………………………………..16
Fv/Fm測量……………………………………………………………..16
DAB染色分析………………………………………………...………..16
H2O2含量測定………………………………………………...…..…..17
NO含量測定………………………………………………….………...17
MDA含量分析…………………………………………………..….…..17
RT-PCR分析……………………………………...…………….…......18
PCR擴增相關引子序列………………………………...……………..20
統計分析………………………………………………………………….......23
参、結果…………………………………...…………………………………….…..24
Part A. NaCl逆境下產生NO訊息因子促進甘藷葉片老化過程
NaCl逆境促進甘藷葉片老化過程…………………………………….....…..24
NO清除劑PTIO延緩NaCl逆境下NO訊息因子產生及葉片老化
過程…………………………………………………………...........……………….25
L-NAME及tungstate抑制劑延緩NaCl逆境下NO訊息因子產生及葉片 老化過程……………………………………………………………….............................…….27
NO供應劑SNP拮抗NO清除劑PTIO影響回復NaCl逆境下促進葉片老化過程………………………………………………………………….…..........................…29
NO清除劑PTIO抑制NaCl逆境下可誘導基因的表現……………..….............….31
Part B. NaCl逆境下產生H2O2訊息因子促進甘藷葉片老化過程
還原態榖胱甘肽GSH延緩NaCl逆境下H2O2訊息因子產生及葉片老化過程……………………………………………………………………….......................….32
還原態榖胱甘肽GSH抑制NaCl逆境下可誘導基因的表現……………....……….35
NADPH oxidase抑制劑DPI延緩NaCl逆境下H2O2訊息因子產生及葉片老化過程……………………………………………….........................................................36
NADPH oxidase抑制劑DPI抑制NaCl逆境下可誘導基因的表現…….............................................................................................................38
還原態榖胱甘肽GSH亦抑制NaCl逆境下NO訊息因子的產生……………………..........................................................................................39
肆、討論……………………………………………..………………………...............….41
伍、參考文獻…………………………………………….………………….................…46
參考文獻 References
林哲緯,(2011). 定性分析一個參與在乙烯及鹽分逆境誘導甘藷葉片老化的calmodulin。國立中山大學 生物科學細研究所,碩士論文。
顏佩勳,(2015). 還原態穀胱苷肽延緩乙烯或NaCl誘導的甘藷葉片老化及可能機制探討。國立中山大學 生物科學細研究所,碩士論文。
Afiyanti, M (2015). Study the role of nitric oxide in the modulation of ethephon or NaCl-induced leaf senescence in sweet potato. National Sun Yat-sen University, Biological Sciences, Ph.D.’S Thesys.
周俊呈,(2016). 甘藷SPDSS1蛋白質及蛋白酶體抑制劑MG132延緩乙烯及鹽分逆境誘導的葉片老化。國立中山大學 生物科學細研究所,碩士論文。
賴永昌,(2005).農作篇 (一),甘藷。台灣農家要覽增修訂第三版。57-68
Al-Aghabary, K., Zhu, Z., and Shi, Q. H. (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition. 27, 2101-2115.
Albacete, A., Ghanem, M. E., Martínez-Andújar, C., Acosta, M., Sánchez-Bravo, J., Martínez, V., ... and Pérez-Alfocea, F. (2008). Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany. 59, 4119.
Allu, A. D., Soja, A. M., Wu, A. H., Szymanski, J., and Balazadeh, S. (2014). Salt stress and senescence: identification of cross-talk regulatory components. Journal of Experimental Botany. 65, 3993-4008.
Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 55, 373-399.
Begara-Morales, J. C., Sanchez-Calvo, B., Chaki, M., Valderrama, R., Mata-Perez, C., Padilla, M. N., Corpas, F. J., and Barroso, J. B. (2016). Antioxidant systems are regulated by Nitric oxide-mediated post-translational modifications (NO-PTMs). Frontiers in Plant Science. 7, 152-152.
Ben G. Bareja.(2011). What is light intensity, Effects on plant growth. Classifications of Agricultural Crops, 1-25
Ben, R. K., Benzarti, M., Debez, A., Bailly, C., Savouré, A., and Abdelly, C. (2015). NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. Journal of Plant Physiology. 174, 5-15.
Borges, A., Rosa, M. S., Recchia, G. H., de Queiroz-Silva, J. R., Bressan, E. D., and Veasey, E. A. (2009). Ctab methods for DNA extraction of sweetpotato for microsatellite analysis. Scientia Agricola. 66, 529-534.
Briggs, S. P., and Koziel, M. (1998). Engineering new plant strains for commercial markets. Current Opinion in Biotechnology. 9, 233-235.
Cam, Y., Pierre, O., Boncompagni, E., Herouart, D., Meilhoc, E., and Bruand, C. (2012). Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. The New phytologist. 196, 548-560.
Çelık, Ö., and Atak, Ç. (2012). The effect of salt stress on antioxidative enzymes and proline content of two turkish tobacco varieties. Turkish Journal of Biology. 36, 339-356.
Chen, H. J., Hou, W. C., Jane, W. N., and Lin, Y. H. (2000). Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomoea batatas cv. Tainong 57). Journal of Plant Physiology. 157, 669-676.
Chen, H. J., Hou, W. C., Liu, J. S., Yang, C. Y., Huang, D. J., and Lin, Y. H. (2004). Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. Journal of Experimental Botany. 55, 825-835.
Chen, H. J., Hou, W. C., Yang, C. Y., Huang, D. J., Liu, J. S., and Lin, Y. H. (2003). Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. Journal of Plant Physiology. 160, 547-555.
Chen, H. J., Huang, D. J., Hou, W. C., Liu, J. S., and Lin, Y. H. (2006). Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Journal of Plant Physiology. 163, 863-876.
Chen, H. J., Huang, G. J., Chen, W. S., Su, C. T., Hou, W. C., and Lin, Y. H. (2009). Molecular cloning and expression of a sweet potato cysteine protease SPCP1 from senescent leaves. Botanical Studies. 50, 159-170.
Chen, H. J., Su, C. T., Lin, C. H., Huang, G. J., and Lin, Y. H. (2010). Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Journal of Plant Physiology. 167, 838-847.
Chen, H. J., Wu, S. D., Lin, Z. W., Huang, G. J., and Lin, Y. H. (2012a). Cloning and characterization of a sweet potato calmodulin SPCAM that participates in ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. Journal of Plant Physiology. 169, 529-541.
Chen, H. J., Lin, Z. W., Huang, G. J., and Lin, Y. H. (2012b). Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence, H 2 O 2 elevation and senescence-associated gene expression. Journal of Plant Physiology. 169. 1892-1902.
Chen, S. L., Li, J. K., Wang, S. S., Huttermann, A., and Altman, A. (2001). Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees-Structure and Function. 15, 186-194.
Corpas, F. J., Chaki, M., Fernandez-Ocana, A., Valderrama, R., Palma, J. M., Carreras, A., Begara-Morales, J. C., Airaki, M., del Rio, L. A., and Barroso, J. B. (2008). Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant and Cell Physiology. 49, 1711-1722.
Correa-Aragunde, N., Graziano, M., and Lamattina, L. (2004). Nitric oxide plays a central role in determining lateral root development in tomato. Planta. 218. 900-905.
Creus, C. M., Graziano, M., Casanovas, E. M., Pereyra, M. A., Simontacchi, M., Puntarulo, S., ... and Lamattina, L. (2005). Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta. 221. 297-303.
De Michele, R., Vurro, E., Rigo, C., Costa, A., Elviri, L., Di Valentin, M., Careri, M., Zottini, M., di Toppi, L. S., and Lo Schiavo, F. (2009). Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiology. 150, 217-228.
Del Rio, L. A. (2015). ROS and RNS in plant physiology: an overview. Journal of Experimental Botany. 66, 2827-2837.
Falqueto, A. R., Cassol, D., Magalhães Júnior, A. M. D., Oliveira, A. C. D., and Bacarin, M. A. (2009). Physiological analysis of leaf senescence of two rice cultivars with different yield potential. Pesquisa Agropecuária Brasileira. 44, 695-700.
Freschi, L. (2013). Nitric oxide and phytohormone interactions: current status and perspectives. Frontiers in Plant Science. 4. 398-398.
Gallie, D. R. (2015). Ethylene receptors in plants - why so much complexity? F1000prime reports. 7, 39-39.
Gan, S., and Amasino, R. M. (1997). Making sense of senescence (Molecular genetic regulation and manipulation of leaf senescence). Plant Physiology. 113, 313-319.
Grbic, V., and Bleecker, A. B. (1995). Ethylene Regulates the Timing of Leaf Senescence in Arabidopsis. The Plant Journal. 8, 595-602.
Guo, F. Q., Okamoto, M., and Crawford, N. M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science. 302, 100-103.
Guo, H., and Ecker, J. R. (2004). The ethylene signaling pathway: new insights. Current Opinion in Plant Biology. 7, 40-49.
Hernandez, J. A., and Almansa, M. S. (2002). Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum. 115, 251-257.
Hoeberichts, F. A., and Woltering, E. J. (2003). Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. Bioessays. 25, 47-57.
Hu, X., Neill, S. J., Tang, Z., and Cai, W. (2005). Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiology. 137. 663-670.
Humbeck, K., Quast, S., and Krupinska, K. (1996). Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant, Cell and Environment, 19, 337-344.
Hung, S. H., Yu, C. W., and Lin, C. H. (2005). Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of Academia Sinica. 46, 1-10.
Ismail, A., Takeda, S., and Nick, P. (2014). Life and death under salt stress: same players, different timing? Journal of Experimental Botany. 65, 2963-2979.
Jibran, R., A Hunter, D., and P Dijkwel, P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals.Plant Molecular Biology. 82, 547-561.
Johnson, P. R., and Ecker, J. R. (1998). The ethylene gas signal transduction pathway: a molecular perspective. Annual Review of Genetics. 32, 227-254.
Kim, C. Y., Liu, Y., Thorne, E. T., Yang, H., Fukushige, H., Gassmann, W., Hildebrand, D., Sharp, R. E., and Zhang, S. (2003). Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. The Plant Cell. 15, 2707-2718.
Leshem Y (2001). Nitric oxide in plants. London, UK: Kluwer Academic Publishers.
Lin, J. N., and Kao, C. H. (1998). Effect of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. Botanical Bulletin of Academia Sinica 39, 161-165.
Liu, Y., Wu, R., Wan, Q., Xie, G., and Bi, Y. (2007). Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant and Cell Physiology. 48, 511-522.
Luna, C., Seffino, L. G., Arias, C., and Taleisnik, E. (2000). Oxidative stress indicators as selection tools for salt tolerance in Chloris gayana. Plant Breeding. 119, 341-345.
Lutts, S., Kinet, J. M., and Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Annals of Botany. 78, 389-398.
Ma, S., Gong, Q., and Bohnert, H. J. (2006). Dissecting salt stress pathways. Journal of Experimental Botany 57, 1097-1107.
Ma, W., Smigel, A., Walker, R. K., Moeder, W., Yoshioka, K., and Berkowitz, G. A. (2010). Leaf senescence signaling: The Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiology. 154. 733-743.
Manai, J., Gouia, H., and Corpas, F. J. (2014). Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. Journal of Plant Physiology. 171, 1028-1035.
Misra, A. N., Misra, M., and Singh, R. (2011). Nitric oxide: A ubiquitous signaling molecule with diverse role in plants. African Journal of Plant Science. 5. 57-74.
Miller, G., Shulaev, V., and Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum. 133, 481-489.
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment. 33, 453-467.
Mittelheuser, C. J., and Van Steveninck, R. F. M. (1969). Stomatal Closure and Inhibition of Transpiration Induced by (Rs)-Abscisic Acid. Nature 221, 281-282. Molassiotis, A., and Fotopoulos, V. (2011). Oxidative and nitrosative signaling in plants: two branches in the same tree? Plant Signaling and Behavior. 6. 210-214.
Morgan, P. W., and Drew, M. C. (1997). Ethylene and plant responses to stress. Physiologia Plantarum. 100, 620-630.
Mueller-Roeber, B., and Balazadeh, S. (2014). Auxin and its role in plant senescence. Journal of Plant Growth Regulation. 33, 21-33.
Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, 651-681.
Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., and Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany. 53, 1237-1247.
Noctor, G., and Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology. 49, 249-279.
Ouaked, F., Rozhon, W., Lecourieux, D., and Hirt, H. (2003). A MAPK pathway mediates ethylene signaling in plants. The EMBO Journal. 22, 1282-1288.
Pagnussat, G. C., Simontacchi, M., Puntarulo, S., and Lamattina, L. (2002). Nitric oxide is required for root organogenesis. Plant Physiology. 129, 954-956.
Poór, P., Kovács, J., Szopkó, D., and Tari, I. (2013). Ethylene signaling in salt stress-and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma. 250, 273-284.
Reddy, A. S., Reddy, V. S., and Golovkin, M. (2000). A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochemical and Biophysical Research Communications. 279, 762-769.
Sevengor, S., Yasar, F., Kusvuran, S., and Ellialtioglu, S. (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research. 6, 4920-4924.
Shalata, A., Mittova, V., Volokita, M., Guy, M., and Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiologia Plantarum. 112, 487-494.
Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 2012, 1-26.
Singha, S., and Choudhuri, M. A. (1990). Effect of Salinity (Nacl) Stress on H2O2 metabolism in vigna and oryza seedlings. Biochemie und Physiologie der Pflanzen 186, 69-74.
Sousa, J. L., Proenca, C., Freitas, M., Fernandes, E., and Silva, A. M. (2016). New polyhydroxylated flavon-3-ols and 3-hydroxy-2-styrylchromones: synthesis and ROS/RNS scavenging activities. European Journal of Medicinal Chemistry. 119, 250-259.
Tewari, R. K., Kim, S., Hahn, E. J., and Paek, K. Y. (2008). Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in panax ginseng. Plant Biotechnology Reports. 2, 113-122.
Tewari, R. K., Watanabe, D., and Watanabe, M. (2012). Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of brassica napus leaf protoplasts. Planta. 235, 99-110.
Valderrama, R., Corpas, F. J., Carreras, A., Fernandez-Ocana, A., Chaki, M., Luque, F., Gomez-Rodriguez, M. V., Colmenero-Varea, P., Del Rio, L. A., and Barroso, J. B. (2007). Nitrosative stress in plants. FEBS Lett. 581, 453-461.
Wang, K. L. C., Li, H., and Ecker, J. R. (2002). Ethylene biosynthesis and signaling networks. The Plant Cell. 14, 131-151.
Wang, W., Vinocur, B., and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 218, 1-14.
Xu, F., Meng, T., Li, P. L., Yu, Y. Q., Cui, Y. J., Wang, Y. X., Gong, Q. Q., and Wang, N. N. (2011). A Soybean dual-specificity Kinase, GmSARK, and Its arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant Physiology. 157, 2131-2153.
Yamasaki, H. (2005). The NO world for plants achieving balance in an open system. Plant Cell and Environment. 28, 78-84.
Yang, T., and Poovaiah, B. W. (2000). An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. Journal of Biological Chemistry. 275, 38467-38473.
Ye, Y., Li, Z., and Xing, D. (2013). Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell and Environ. 36, 1-15.
Zhao, M., Zhao, X., Wu, Y., and Zhang, L. (2007a). Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. Journal of Plant Physiology. 164, 737-745.
Zhao, M. G., Tian, Q. Y., and Zhang, W. H. (2007b). Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiology. 144, 206-217.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code