Responsive image
博碩士論文 etd-0701117-151052 詳細資訊
Title page for etd-0701117-151052
論文名稱
Title
發光雜環分子之聚集誘導發光行為及其微孔洞衍生物
Luminescent heterocyclic compounds with aggregation induced emission property and their microporous derivatives
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-07
繳交日期
Date of Submission
2017-08-08
關鍵字
Keywords
奎寧、金屬離子、金屬錯合物、抑制分子轉動、聚集誘導發光、超分支共聚物、二氧化碳捕捉、腈的環化三聚、共價有機骨架
metal ion complex, metal ion, Covalent organic framework, restriction of intramolecular rotation (RIR), Quinine, Aggregation-induced emission (AIE), cyclotrimerization of nitrile, hyperbranched copolymer, CO2 uptake
統計
Statistics
本論文已被瀏覽 5684 次,被下載 17
The thesis/dissertation has been browsed 5684 times, has been downloaded 17 times.
中文摘要
中性鹼,通常被認為是非發光性化合物,實際上是具有常規聚集誘導發光(AIE)性質的熒光。 由於抑制分子內旋轉(RIR)是造成AIE性質的主要機制,因此奎寧鹼的發光效率可通過金屬錯合進一步增強。 通過與金屬離子的錯合,奎寧的旋轉鍵限制阻礙,從而進一步提高發光效率。 因此,RIR與AIE相關的發光行為是本研究的重點。
在第二節中, 本研究分別從小分子喹諾酮TPA-3CN和超分支聚喹啉HPQu衍生物微孔共價有機骨架(COF),並具有優異的二氧化碳捕獲性能。 在高溫下,TPA-3CN的腈基進行環化三聚,得到固化的TPA-3CN,然後用KOH對其進行化學活化,得到COF-3CN進行分析。 HPQu進行類似化學活化程序得到了COF-Qu。 COF-3CN和COF-Qu的微孔結構吸附的孔徑分別為1.6 nm和1.7 nm,最大(Brunauer,Emmet和Teller)表面積分別為1482 m2 g-1和381 m2 g-1。 更重要的是,COF-3CN和COF-Qu在25 ℃和1atm下顯示出3.28 mmol g-1和1.01 mmol g-1的二氧化碳吸附量。 COF-3CN的這種高二氧化碳吸收是由於高微孔結構中的高氮含量。
Abstract
Neutral base, as generally recognized as non-emissive compound, is actually fluorescent with the conventional aggregation-induced emission (AIE) property. As restricted intramolecular rotation (RIR) is the main mechanism responsible for AIE property, the emission efficiency of quinine base can be further reinforced by metal complexation. By complexation with metal ion, the rotatable bonds of quinine can be hampered in rotation, thus rendering further enhancement on emission efficiency. RIR in relation to AIE-related emission behavior is therefore the focus of this study. In chapter 2, Microporous covalent organic frameworks (COFs) were derived from small-mass quinolone TPA-3CN and hyperbranched polyquinoline HPQu, respectively, in this study and characterized to have outstanding CO2 capture performances. At high temperature, nitrile groups of TPA-3CN proceeded cyclotrimerization to obtained cured TPA-3CN, which was then chemically activated by KOH to result in COF-3CN for characterization. Similar chemical activation procedure on HPQu afforded COF-Qu. The microporpus structures of COF-3CN and COF-Qu have an adsorption pore size of 1.6 nm and 1.7 nm and a maximum (Brunauer, Emmet and Teller) surface area of 1482 m2 g-1 and 381 m2 g-1, respectively. More importantly, COF-3CN and COF-Qu showed a CO2 adsorption capacity of 3.28 mmol g-1 and 1.01 mmol g-1 at 25 oC and 1 atm. This high CO2 uptake of COF-3CN is due to the high N content in the highly microporous structure.
目次 Table of Contents
Chinese Abstract.............................................…………………………………......…...i
English Abstract....................................................……………………………………...ii
Outline of Contents...…………………….....………....………....………….....…….......iv
List of Figure……………………………………………………………..…...…..............vii
List of Scheme............................................................................................…...........xi
List of Table...............................................................................................................xii
Chapter 1.
1.1. Introduction......................................................................................................1
1.1.1 Fluroescence of quinine……………………………...…………………….….......1
1.1.2 Aggregation Induced Emission Phenomenon (AIE)……………...………….....2
1.1.3 Metal complexes of quinine with metal ion………………………...………........3
1.2. Experimental…..................................................................................................5
1.2.1. Materials.........................................................................................................5
1.2.2 instrumentation…………………………………………………………….............5
1.3. Results and discussion.....................................................................................6
1.3.1 Solid emission of quinine base………………………………………………......6
1.3.2 AIE property of quinine base……………………………………………….........9
1.3.3 AIE of quinine metal complexes……………………………………………......13
1.3.4 RIR by NMR analysis..……………………………………..……………...........16
1.4. Conclution………............................................................................................18
1.5. References …................................................................................................19
Chapter 2.
2.1. intruduction....................................................................................................22
2.2. Experimental….............................................................................................28
2.2.1. Materials...................................................................................................28
2.2.2. Synthesis……………………………………………………………………....28
2.2.3. instrumentation……………………………………… …………………...…..37
2.3. Results and discussion...............................................................................39
2.3.1. Emission of TPA-3CN and TPA-2CN and HPQu…….……………...…….43
2.3.2. DSC and TGA thermograms of TPA-3CN and HPQu………………...…...51
2.3.3 The Raman spectra of COF-3CN and COF-Qu…………………………….56
2.3.4 The XPS spectra of COF-3CN and COF-Qu……………….……………….57
2.3.5. The BET spectra of COF-3CN and COF-Qu……………………...………..59
2.3.6. The PXRD spectra of COF-3CN………………………….……….…..……..62
2.3.7. CO2 capture of COF-3CN and COF-Qu……………………..…….……….65
2.4. Conclution……….........................................................................................67
2.5. References…………..…………………………………………………………..68
Supporting information…………………………………...…………………..……..74
參考文獻 References
chap1.
1. Adedibu C. Tella*and Joshua A. Obaleye, J. Nepal Chem. Soc., vol, 2010, 25.
2. W. H. Melhuish, J. Phys. Chem., 1961, 65, 229.
3. Barrow, D. A.; Lentz, B. R., Chem Phys Let., 1984, 104, 163-167.
4. Eisenbrand, J.; Raisch, M. Z. Anal Chem, 1961, 179, 352.
5. Pringsheim, P. Fluorescence and Phosphorescence; In-terscience: New York, 1949; p 328.
6. Pant, D.; Tripathi, U. C.; Joshi, G. C.; Tripathi, H. B.; Pant, D. D, J Photochem Photobiol–A., 1990, 51, 313.
7. Babko, A. K.; Kostyshina, A. P. Ukr Khim Zh, 1969, 35, 837.
8. Jonathan H. Gutow, J. Chem. Edu., 2005, 82, 2, 302-305.
9. J. E. Sabol and M. G. Rockley, J. Photochem. Photobiol. A., 1987, 40, 245.
10. J. N. Demes and G. A. Graby, J. Phys. Chem., 1971, 75, 991.
11. W.H. Melhuish, J. Phys. Chem., 1960, 64, 762.
12. S.G. Schulman, R.M. Threatte, A.C. Capomacchia, W.L. Poul., J. Pharm. Sci., 1974, 63, 876.
13. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740–1741.
14. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, J. Mater. Chem., 2001, 11, 2974–2978.
15. Z. Li, Y. Dong, B. Mi, Y. Tang, M. Häussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok and B. Z. Tang, J. Phys. Chem. B, 2005, 109, 10061–10066.
16. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chem. Mater., 2003, 15, 1535–1546.
17. P. L. Nostro, J. R. Lopes and C. Cardelli, Langmuir., 2001, 17, 4610–4615.
18. Z. Zhao, C. Y. K. Chan, S. Chen, C. Deng, J. W. Y. Lam , C. K. W. Jim, Y. Hong, P. Lu, Z. Chang, X. Chen, P. Lu, H. S. Kwok, H. Qiu, B. Z. Tang, J. Mater. Chem., 2012, 22, 4527–4534.
19. J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qin, Z. Li, J. Mater. Chem., 2012, 22, 2478–2484.
20. J. Huang, N. Sun, J. Yang, R. Tang, Q. Li, D. Ma, J. Qin, Z. Li, J. Mater. Chem., 2012 , 22 , 12001–12007 .
21. J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma , D. Qin, Z. Li, Adv. Funct. Mater., 2013, 23, 2329–2337.
22. X. Chen, X. Y. Shen, E. Guan, Y. Liu, A. Qin, J. Z. Sun, B. Z. Tang, Chem. Commun., 2013, 49, 1503–1505.
23. X. Wang, J. Hu, T. Liu, G. Zhang, S. Liu, J. Mater. Chem., 2012, 22, 8622–8628.
24. X. Huang, X. Gu, G. Zhang, D. Zhang, Chem. Commun., 2012, 48, 12195–12197.
25. Y. Hong, J.W.Y. Lam and B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388.
26. A.J. Qin, J.W.Y. Lam and B. Z. Tang, Prog. Polym. Sci., 2012, 37, 182–209.
27. J. Z. Liu, J. W. Y. Lam and B. Z. Tang, J. Inorg. Organomet. Polym., 2009, 19, 249–285.
28. Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009, 4332–4353.
29. Jeong-Sik Yeom, Mi-Sook Won, Yoon-Bo Shim *, Journal of Electroanalytical Chemistry, 1999, 463, 16–23.
30. Moustafa T. Gabr and F. Christopher Pigge*, Dalton Trans., 2016, 45,14039.
31. N. L. C. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Y. Lam and B. Z. Tang, Chem. – Eur. J., 2014,20, 15349–15353; (b) G.-F. Zhang, Z.-Q. Chen, M. P. Aldred, Z. Hu, T. Chen, Z. Huang, X. Meng and M.-Q. Zhu, Chem. Commun., 2014, 50, 12058–12060.
32. T. Lai, R. H. Chien, S. W. Kuo and J. L. Hong, Macromolecules., 2011, 44, 6546-6556.
33. C. M. Yang, Y. W. Lai, S. W. Kuo and J. L. Hong, Langmuir., 2012, 28.
chap2.
1. Zhonggang Wang, Bufeng Zhang, Hao Yu, Lixian Sun, Chengli Jiao and Wanshuang Liu, Chem. Commun., 2010, 46, 7730–7732.
2. P. M. Budd, Science, 2007, 316, 210–211.
3. N. B. McKeown and P. M. Budd, Macromolecules, 2010, 43, 5163–5176.
4. C. D. Wood, B. E. Tan, A. Trewin, H. J. Niu, D. Bradshaw, M. J. Rosseinsky, Y. Z. Khimyak, N. L. Campbell, R. Kirk, E. Sto‥ chel and A. I. Cooper, Chem. Mater., 2007, 19, 2034–2048.
5. S. W. Yuan, B. Dorney, D. White, S. Kirklin, P. Zapol, L. P. Yu and D. J. Liu, Chem. Commun., 2010, 46, 4547–4549.
6. A.P.Coˆ te’ , A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger and O. M. Yaghi, Science, 2005, 310, 1166–1170.
7. M. O’Keeffe and O. M. Yaghi, Science, 2007, 316, 268–272.
8. San-Yuan Ding and Wei Wang*, Chem. Soc. Rev., 2013, 42, 548—568.
9. S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders and J. F. Stoddart, Angew. Chem., Int. Ed., 2002, 41, 898.
10. A. P. Coˆte’, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger and O. M. Yaghi, Science, 2005, 310, 1166.
11. E. L. Spitler and W. R. Dichtel, Nat. Chem., 2010, 2, 672.
12. P. Coˆ te’ , H. M. EI-Kaderi, H. Furukawa, J. R. Hunt and O. M. Yaghi, J. Am. Chem. Soc., 2007, 129, 12914–12915.
13. M. P. Tsyurupa and V. A. Davankov, React. Funct. Polym., 2006, 66, 768–779.
14. C. D. Wood, B. E. Tan, A. Trewin, H. J. Niu, D. Bradshaw, M. J. Rosseinsky, Y. Z. Khimyak, N. L. Campbell, R. Kirk, E. Sto‥ chel and A. I. Cooper, Chem. Mater., 2007, 19, 2034–2048;
15. J. Germain, J. Hradil, J. M. J. Fre’chet and F. Svec, Chem. Mater., 2006, 18, 4430–4435.
16. J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and A. I. Cooper, Angew. Chem., Int. Ed., 2007, 46, 8574–8578.
17. J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, J. T. A. Jones, Y. Z. Khimyak and A. I. Cooper, J. Am. Chem. Soc., 2008, 130, 7710–7720.
18. P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem., Int. Ed., 2008, 47, 3450–3453.
19. P. Kuhn, A. Forget, D. S. Su, A. Thomas and M. Antonietti, J. Am. Chem. Soc., 2008, 130, 13333–13337.
20. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.
21. H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O’Keeffe, O. M. Yaghi, Science 2007, 316, 268.
22. Shijie Ren , Michael J. Bojdys , Robert Dawson , Andrea Laybourn , Yaroslav Z. Khimyak , Dave J. Adams , and Andrew I. Cooper, Adv. Mater. 2012, 24, 2357–2361.
23. F. Svec , J. Germain , J. M. J. Frechet , Small 2009 , 5 , 1098 – 1111.
24. P. Kaur , J. T. Hupp , S. T. Nguyen , ACS Catal. 2011 , 1 , 819 – 835.
25. R. Dawson , A. I. Cooper , D. J. Adams , Prog. Polymer Sci. 2012 , 37, 530– 563.
26. Thomas , Angew. Chem., Int. Ed. 2010 , 49 , 8328– 8344.
27. J. X. Jiang , A. I. Cooper , Topics Curr. Chem. , 2010 , 293 , 1 – 33.
28. N. B. McKeown , P. M. Budd , Chem. Soc. Rev. 2006 , 35 , 675 – 683 .
29. C. D. Wood , B. Tan , A. Trewin , H. Niu , D. Bradshaw , M. J. Rosseinsky , Y. Z. Khimyak , N. L. Campbell , R. Kirk , E. Stoeckel , A. I. Cooper , Chem. Mater. 2007 , 19 , 2034 – 2048.
30. M. G. Schwab , A. Lennert , J. Pahnke , G. Jonschker , M. Koch , I. Senkovska ,
31. M. Rehahn , S. Kaskel , J. Mater. Chem. 2011 , 21 , 2131 – 2135.
32. T. Ben , H. Ren , S. Ma , D. Cao , J. Lan , X. Jing , W. Wang , J. Xu , F. Deng , J. M. Simmons , S. Qiu , G. Zhu , Angew. Chem., Int. Ed. 2009 , 48 , 9457 – 9460.
33. D. Yuan , W. Lu , D. Zhao , H.-C. Zhou , Adv. Mater. 2011 , 23 , 3723 – 3725.
34. R. Dawson , A. Laybourn , R. Clowes , Y. Z. Khimyak , D. J. Adams , A. I. Cooper , Macromolecules 2009 , 42 , 8809 – 8816 ;
35. Q. A. Wang , J. Z. Luo , Z. Y. Zhong , A. Borgna , Energy. Environ. Sci. 2011 , 4 , 42 .
36. R. Dawson , A. I. Cooper , D. J. Adams , Prog. Polym. Sci. 2012 , 37 ,530
37. Yali Luo , Buyi Li , Wei Wang , Kangbing Wu , and Bien Tan *, Adv. Mater. 2012, 24, 5703–5707.
38. Lee, K. B. & Sircar, S. AIChE J. 2008, 54, 2293–2302.
39. Hao, G. P. et al. J. Am. Chem. Soc. 2011, 11378–11388.
40. R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas and F. Schu‥th, Angew. Chem., Int. Ed., 2009, 48, 6909.
41. C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas and L. Prati, Nano Lett., 2010, 10, 537.
42. C. E. Chan-Thaw, A. Villa, L. Prati and A. Thomas, Chem.–Eur. J., 2011, 17, 1052.
43. Sevilla, M., Valle-Vigon, P. & Fuertes, A. B. Funct. Mater. 2011, 2781–2787.
44. Hao, G. P., Li, W. C., Qian, D. & Lu, A. H. Adv. Mater. 2010, 853–857.
45. Wang, L. & Yang, R. T. J. Phys. Chem. C 2012, 1099–1106.
46. Zhao, Y. F. et al. J. Mater. Chem. 2012, 19726–19731.
47. Ashourirad, B., Sekizkardes, A. K., Altarawneh, S. & El-Kaderi, H. M. Chem. Mater. 2015, 1349–1358.
48. Wei, J. et al. Adv. Funct. Mater. 2013, 2322–2328.
49. Ma, X. Y., Cao, M. H. & Hu, C. W. J. Mater. Chem. A 2013, 913–918.
50. Luo, F. et al. Angew. Chem. Int. Ed. 2014, 9298–9301.
51. Nugent, P. et al. Nature 2013, 80–84.
52. Lu, W. G. et al. Angew. Chem. Int. Ed. 2012, 7480–7484.
53. Patel, H. A. et al. Nature Commun. 2013, 1357–1364.
54. Gao, X., Zou, X. Q., Ma, H. P., Meng, S. & Zhu, G. S. Adv. Mater. 2014, 3644–3648.
55. Org. Synth. 1948, 28, 11
56. Zhang, C. M. et al. Int. J. Hydrogen Energy 2013, 9243–9250.
57. Wang, J. C. & Kaskel, S. J. Mater. Chem. 2012, 23710–23725.
58. Jheng-Guang Li, Cheng-Ying Tsai and Shiao-Wei Kuo *, Polymers 2014, 6, 1794-1809.
59. Su, F.B.; Zhao, X.S.; Wang, Y.; Zeng, J.H.; Zhou, Z.C.; Lee, J.Y, J. Phys. Chem. B 2005, 109, 20200–20206.
60. Su, F.B.; Zeng, J.H.; Bao, X.Y.; Yu, Y.S.; Lee, J.Y.; Zhao, X.S, Chem. Mater. 2005, 17, 3960–3967.
61. Vinu, A.; Srinivasu, P.; Takahashi, M.; Mori, T.; Balasubramanian, V.V.; Ariga, K, Microporous Mesoporous Mater. 2007,100, 20–26.
62. Wang, T.; Zhang, C.X.; Sun, X.; Guo, Y.X.; Guo, H.; Tang, J.; Xue, H.R.; Liu, M.Z.; Zhang, X.X.; Zhu, L.; et al, J. Power Sources 2012, 212, 1–12.
63. Reshetenko, T.V.; Avdeeva, L.B.; Ismagilov, Z.R.; Pushkarev, V.V.; Cherepanova, S.V.; Chuvilin, A.L.; Likholobov, V.A, Carbon 2003, 41, 1605–1615.
64. Qiang Dong, Gang Wang*, Han Hu, Juan Yang, Bingqing Qian, Zheng Ling, Jieshan Qiu*, Journal of Power Sources, 2013, 243, 350-353.
65. A. Janes, H. Kurig, E. Lust, Carbon, 2007, 45, 1226.
66. Akram Alabadi1,2, Hayder A. Abbood3, Qingyin Li1, Ni Jing1 & Bien Tan1, Scientific Reports, 2016, 13.
67. Yuanzhi Zhu, Danyun Xu, Qingshan Zhao, Yang Li, Wenchao Peng, Guoliang Zhang, Fengbao Zhang & Xiaobin Fan, Scientific Reports, 2015, 12.
68. Yang, G., Han, H., Du, C., Luo, Z. & Wang, Y. Facile, Polymer 2010, 51, 6193–6202.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code