Responsive image
博碩士論文 etd-0701117-151956 詳細資訊
Title page for etd-0701117-151956
論文名稱
Title
利用氫鍵限制具有聚集誘導放光聚輪烷之鏈轉動
Hydrogen bonds to impose rotational restriction of luminescent polyrotaxane with aggregation-induced emission property
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-07
繳交日期
Date of Submission
2017-08-08
關鍵字
Keywords
三苯胺、主-客複合物、聚集誘導放光、β-環糊精、限制轉動
Triphenylamine, Aggregation-induced emission, host-guest complex, β-cyclodextrin, restricted rotation
統計
Statistics
本論文已被瀏覽 5684 次,被下載 31
The thesis/dissertation has been browsed 5684 times, has been downloaded 31 times.
中文摘要
因為限制分子內轉動(restricted intramolecular rotation, RIR)為聚集誘導放光(aggregation-induced emission, AIE)的主要機制,所以本研究分別使用柔軟鏈段的聚丙基醚二胺Jeffamine(diamino-terminated poly(propylene oxide))及以β-環糊精(β-cyclodextrin)為主體(host)、Jeffamine為客體(guest)的剛硬環糊精包含複合物(inclusion compex) JCD來限制發光基團之分子轉動,以達聚集誘導放光強放光之目的。本研究首先合成一個疏水性並帶有二甲酰基的發光體TPA-2CHO,並將其與Jeffamine及JCD化學鍵連結,分別得到JC高分子及JCC聚輪烷(polyrotaxane)。JCD上之硬性β-環糊精造成JCD之剛硬性,而此剛硬之JCD有效限制TPA發光體之轉動,導致JCC之聚集誘導放光AIE發光性及強放光。相對的,柔軟之Jeffamine不能有效限制TPA之轉動,因而JC高分子只具有聚集導致螢光猝滅(aggregation-caused quenching, ACQ)發光性。在固體狀態下,JCC之發光強度更是遠優於JC,此證明限制分子內轉動RIR對聚集誘導放光AIE性質之重要性。同樣的,我們亦合成具有硬性β-環糊精之超分枝(hyperbranched)聚輪烷JCCH及JCH超分枝高分子。沒有剛硬之JCD有效限制TPA發光體之轉動,JCH高分子也是一個聚集導致螢光促滅(ACQ)的材料。此外,JCCH上之分枝結構更能有效限制分子鏈上發光體之轉動,因而JCCH具有比JCC更佳之聚集誘導放光AIE發光性及更強之放光。
我們更進一步將聚乙二醇(poly(ethylene oxide), PEO)與JCC及 JCCH混摻,製造不同的JCC/PEO和JCCH/PEO的混摻物,通過PEO主鏈上的氧與JCD上β-CD的羥基(hydroxyl)基團之氫鍵作用,此PEO之加入可以增加JCD之剛硬度,因而更有效的限制發光體之轉動,隨著PEO含量增加,JCC/PEO及 JCCH/PEO混摻物之放光增強,此亦證明分子內轉動RIR對聚集誘導放光性質之重要性。
Abstract
Because restricted intramolecular rotation (RIR) is the main mechanism responsible for the aggregation-induced emission (AIE), flexible Jeffamine (diamino-terminated poly(propylene oxide)) and rigid Jeffamine-included β-cyclodextrin (JCD) were separately used to impose effective RIR on fluorophore. A hydrophobic fluorophore of biformyl-triphenylamine (TPA-2CHO) was synthesized and used as fluorophore to chemically link with Jeffamine and JCD to result in the respective JC and JCC polyrotaxane for characterizing their luminescence. The -cyclodextrins in JCD act to rigidify JCD and effectively impose RIR on TPA fluorophore, rendering JCC with intense AIE-related emission property. In contrast, flexible Jeffamine is ineffective in hindering the rotation of TPA flurophore, thus, JC polymer is an emitter with aggregation-caused quenching (ACQ) property. Therefore, solid JCC is a much better emitter with higher emission efficiency compared with solid JC, a result demonstrating the crucial role of RIR in enhancing emission of AIE-active fluorophore.
To demonstrate the importance of RIR on AIE activity, polycondensation between biformyl triphenylamine (TPA-2CHO), triformyl triphenylamine (TPA-3CHO) and Jeffamine was performed to prepare a hyperbranced polymer JCH. Without rigid JCD effectively imposing RIR on TPA fluorophore, JCH polymer is an emitter with aggregation-caused quenching (ACQ) property. We also use TPA-2CHO, TPA-3CHO, and JCD to prepare a hyperbranced polyrotaxane JCCH,in which the rigid, branched structure was suggested to have high restriction effect on the rotation of the inherent fluorophore. Indeed, JCCH was characterized to have better AIE activity and therefore, stronger emission compared to JCC.
In addition, poly(ethylene glycol) (PEO) was mixed with JCC and JCCH to prepare different JCC/PEO and JCCH/PEO blends, respectively. Hydrogen-bond interactions between oxygen atoms of PEO and hydroxyl groups of β-CD in JCD make PEO an effective component in imposing RIR on JCC. Increasing amounts of non-emissive PEO in blends increase the emission efficiency of the corresponding JCC/PEO and JCCH/PEO blends. The important role of RIR on emission efficiency of AIE-active composite is thus verified from this result.
目次 Table of Contents
Verification letter from the Oral Examination Committee...............................................i
摘要.........................................................................................................………………ii
Abstract...................................................................................................……………....iii
Table of Contents………………………………………………….…………….……...v
List of Figure………………………………………………………………………..vii
List of Scheme.................................................................................................................x
List of Table.....................................................................................................................x
1. Introduction................................................................................................................1
1.1 Aggregation Induced Emission (AIE)……………………………….………….1
1.2 Triphenylamine (TPA)……….……………...…………………………...….….2
1.3 Cyclodextrin (CD)…………….…………………………………………...….….2
2. Experimental………….………………………………….……….…………...……7
2.1 Materials……………………….…………………………………….…………...7
2.2 Synthesis procedure………………………………...............................................8
2.3 Instrumentations………….…….……………………………………………...12
3. Results and discussion……….................................................................................13
3.1 Characterization…...…..…………………………………………………........14
3.2 AIE property of JCC compared with JC.…………………..…………………....17
3.3 The 1H NMR analysis of JCC…………….………………….….………………21
3.4 Emission behavior of JCC/PEO blends.……………….………………………24
3.5 WAXD spectra and thermal analysis of JCC/PEO blends………………………28
3.6 Emission behavior of JCCH……………………………….……….……………32
3.7 The 1H NMR analysis of JCCH………...……………….………………………39
3.8 Emission behavior of JCCH/PEO blends……………….………………………42
3.9 WAXD spectra and thermal analysis of JCCH/PEO blends……………….……45
4. Conclusions…..........................................................................................................50
5. References….....................................................................................................52
Supporting Information………...….............................................................…………58
S1. Emission behavior of TPA.....................................................................................63
S2. Emission behavior of TPA-2CHO.........................................................................65
S3. Calculation method of molecular weight………...................................................67
參考文獻 References
[1] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740.
[2] (a) J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970; (b) S. A. Jenekhe and J. A. Osaheni, Science, 1994, 265, 765.
[3] X. Zhang, Z. Chi, H. Li, B. Xu, X. Li, S. Liu, Y. Zhanga and J. Xu, J. Mater. Chem., 2011, 21, 1788.
[4] Z. Wang, J. H. Ye, J. Li, Y. Bai, W. Zhanga and W. He, RSC Adv., 2015, 5, 8912
[5] J. Zhang, B. Xu, J. Chen, L. Wang and W. Tian, J. Phys. Chem. C, 2013, 117, 23117.
[6] S. Y. Su, H. H. Lin and C. C. Chang, J. Mater. Chem., 2010, 20, 8653.
[7] B. Sun, X. Yang, L. Ma, C. Niu, F. Wang, N. Na, J. Wen and J. Ouyang, Langmuir, 2013, 29, 1956.
[8] X. Zhang, Z. Chi, B. Xu, C. Chen, X. Zhou, Y. Zhang, S. Liua and J. Xu, J. Mater. Chem., 2012, 22, 18505.
[9] H. Li, Z. Chi, B. Xu, X. Zhang, Z. Yang, X. Li, S. Liu, Y. Zhanga and J. Xu, J. Mater. Chem., 2010, 20, 6103.
[10] H. Li, Z. Chi, X. Zhang, B. Xu, S. Liu, Y. Zhang and J. Xu, Chem. Commun., 2011, 47, 11273.
[11] J. He, B. Xu, F. Chen, H. Xia, K. Li, L. Ye and W. Tian, J. Phys. Chem. C, 2009, 113, 9892.
[12] B. Xu, J. Zhang, H. Fang, S. Ma, Q. Chen, H. Sun, C. Imc and W. Tian, Polym. Chem., 2014, 5, 479.
[13] S. Dong, Z. Li and J. Qin, J. Phys. Chem. B, 2009, 113, 434.
[14] J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qina and Z. Li, J. Mater. Chem., 2012, 22, 2478.
[15] Z. Wei, Z. Y. Gu, R. K. Arvapally, Y. P. Chen, R. N. McDougald Jr, J. F. Ivy, A. A. Yakovenko, D. Feng, M. A. Omary and H. C. Zhou, J. Am. Chem. Soc., 2014, 136, 8269.
[16] N. B. Shustova, T.-C. Ong, A. F. Cozzolino, V. K. Michaelis, R. G. Griffin and M. Dincă, J. Am. Chem. Soc., 2012, 134, 15061.
[17] X. Zhang, X. Zhang, L. Tao, Z. Chi, J. Xub and Y. Wei, J. Mater. Chem. B, 2014, 2, 4398.
[18] X. Zhang, X. Zhang, B. Yang, M. Liu, W. Liu, Y. Chena and Y. Wei, Polym. Chem., 2014, 5, 356.
[19] M. C. Hsieh, C. H. Chien, C. C. Chang and T. C. Chang, J. Mater. Chem. B, 2013, 1, 2350.
[20] (a) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun.,2009, 4332; (b) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011, 40, 5361; (c) J. Mei, Y. Hong,J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater.,2014, 26, 5429; (d) R. Hu, N. L. C. Leung and B. Z. Tang, Chem. Soc. Rev., 2014, 43, 4494.
[21] M. Thelakkat, Macromol. Mater. Eng., 2002, 287, 442
[22] Y. Shirota, J. Mater. Chem., 2005, 15, 75.
[23] Y. Shirota and H. Kageyama, Chem. Rev., 2007, 107, 953.
[24] H. J. Yen and G. S. Liou, Polym. Chem., 2012, 3, 255.
[25] H. J. Yen, H. Y. Lin and G. S. Liou, Chem. Mater., 2011, 23, 1874.
[26] H. J. Yen and G. S.Liou, Chem. Mater., 2009, 21, 4062.
[27] J. Chen, H. J. Yen,W. C. Chen and G. S. Liou, J. Mater. Chem., 2012, 22, 14085.
[28] C. J. Chen, H. J. Yen, W. C. Chen and G. S. Liou, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 3709.
[29] Y. C. Hu, C. J. Chen,H. J. Yen, K. Y. Lin, J. M. Yeh, W. C. Chen and G. S. Liou, J. Mater. Chem., 2012, 22, 20394.
[30] (a) H. B. Lueck, J. L. McHale and W. D. Edwards, J. Am. Chem. Soc., 1992, 114, 2342−2348. (b) G. Meijer, G. Berden, W. L. Meerts, H. E. Hunziker, M. S. de Vries and H. R. Wendt, Chem. Phys., 1992, 163, 209−222..
[31] (a) M. Malagoli and J. L. Bredas, Chem. Phys. Lett., 2000, 327, 13− 17. (b) I. Reva, L. Lapinski, N. Chattopadhyay and R. Fausto, Phys. Chem. Chem. Phys., 2003, 5, 3844−3850.
[32] (a) D. Hellwinkel and M. Melan, Chem. Ber., 1971, 104, 1001 – 1016; (b) D. Hellwinkel, G. Aulmich and M. Melan, Chem. Ber., 1974, 107, 616 – 627; (c) D. Hellwinkel and W. Schmidt, Chem. Ber., 1980, 113, 358 – 384.
[33] A. L. Koner and W. M. Nau, Supramol. Chem., 2007, 19, 55 – 66.
[34] T. Hofler and G. Wenz, J. Inclus. Phenom. Mol., 1996, 25, 81.
[35] K. A. Udachin and J. A. Ripmeester, J. Am. Chem. Soc., 1998, 120,1080.
[36] M. T. Stone and H. L. Anderson, Chem. Commun., 2007, 2387.
[37] M. Okada, Y. Kawaguchi, H. Okumura, M. Kamachi and A. Harada, J. Polym. Sci. Pol. Chem., 2000, 38, 4839.
[38] J. Li, X. Ni, Z. Zhou and K. W. Leong, J. Am. Chem. Soc., 2003, 125,1788.
[39] M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875.
[40] T. Ooya, H. S. Choi, A. Yamashita, N. Yui, Y. Sugaya, A. Kano, A. Maruyama, H. Akita, R. Ito, K. Kogure and H. Harashima, J. Am.Chem. Soc., 2006, 128, 3852.
[41] X.Q. Guo, L. X. Song, F. Y. Du, Z. Dang and M. Wang, J. Phys.Chem. B, 2011, 115, 1139.
[42] L. X. Song, X. Q. Guo, F. Y. Du and L. Bai, Polym. Degrad.Stabil., 2010, 95, 508.
[43] Y. Liu, Y. L. Zhao, Y. Chen and M. Wang, Macromol. Rapid Commun., 2005, 26, 401.
[44] M. E. Davis, Mol. Pharmaceutics, 2009, 6, 659.
[45] D. W. Pack1, A. S. Hoffman, S. Pun and P. S. Stayton, Nat. Rev. Drug. Discov., 2005, 4, 581.
[46] H. Okumura, Y. Kawaguchi and A. Harada, Macromolecules, 2001, 34, 6338.
[47] Y. Liu, A. Qin, X. Chen, X. Y. Shen, L. Tong, R. Hu, J. Z. Sun and B.Z. Tang, Chem. Eur. J., 2011, 17, 14736.
[48] G. Liang, J. W. Y. Lam, W. Qin, J. Li, N. Xie and B. Z. Tang, Chem. Commun., 2014, 50, 1725.
[49] S. Song, H. F. Zheng, D. M. Li, J. H. Wang, H. T. Feng, Z. H. Zhu, Y. C. Chen and Y. S. Zheng., Org. Lett., 2014, 16, 2170.
[50] S. L. Deng, P. C. Huang, L. Y. Lin, D. J. Yang and J. L. Hong, RSC. Adv., 2015, 5, 19512.
[51] T. Mallegol, S. Gmouth, M. Meziane, et al., Synthesis, 2005, 11, 1771–1774.
[52] A. Harada and M. Kamachi, J. Chem. Soc., Chem. Commun., 1990, 1322.
[53] A. Harada, M. Okada, J. Li and M. Kamachi, Macromolecules., 1995, 28, 8406.
[54] G. Wenz, B. H. Han and A. Muller, Chem. Rev., 2006, 106, 782–817.
[55] M. P. Thornberry, C. Slebodnick, and Paul A. Deck, Organometallics., 2000, 19, 5352-5369.
[56] J. Chen, C.C. W. Law, J. W. Y. Lam, Young, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chem. Mater., 2003, 15, 1535-1546.
[57] M. P. Thornberry, C. Slebodnick, and Paul A. Deck, Organometallics., 2000, 19, 5352-5369.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code