Responsive image
博碩士論文 etd-0701117-163751 詳細資訊
Title page for etd-0701117-163751
論文名稱
Title
頸部脊髓挫傷對於橫膈與肋間肌運動活性的影響
The impact of cervical contusion on diaphragmatic and intercostal motor outputs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-13
繳交日期
Date of Submission
2017-08-03
關鍵字
Keywords
呼吸、頸部挫傷、肋間肌、脊髓損傷、橫膈
Intercostal, Respiratory, Spinal cord injury, Diaphragm, Cervical contusion
統計
Statistics
本論文已被瀏覽 5677 次,被下載 42
The thesis/dissertation has been browsed 5677 times, has been downloaded 42 times.
中文摘要
本實驗的首要目的為研究大鼠單側頸部脊髓挫傷對於橫膈與肋間肌的活性影響。大鼠在頸部第3節左側進行挫傷,麻醉動物在損傷當下以及損傷後3天、2與8週測量雙側橫膈與肋間肌肌電圖活性。第一個目的實驗結果表示,單側頸部挫傷會導致雙側橫膈及肋間肌的吸氣放電活性立即降低。挫傷後3天-8週,麻醉損傷動物的潮氣容積皆顯著低於未損傷動物,損傷動物的損傷對側橫膈肌電圖放電強度在3天後相較未損傷動物是增強的。當肌電圖數據使用低氧刺激(12-13 % O2,3-4 % CO2)期間所誘發的最大吸氣活性進行標準化,損傷後3天、2週損傷側橫膈的數值是顯著高於未損傷動物。低氧誘發損傷側橫膈活性增強的反應在損傷後2週減弱但在8週後恢復。雙側橫膈放電強度在損傷後8週已經與未損傷動物沒有差異。肋間肌肌電圖活性在損傷後3天-8週並沒有受到中段頸部挫傷影響。甲酚紫組織染色顯示挫傷顯著損害損傷側白質與灰質,8週後有明顯的空腔產生,損傷些微地擴大至未損傷側。第二個目的為評估急性間歇低氧刺激是否能在挫傷後不同階段恢復呼吸功能。清醒動物在損傷後3天、2與8週進行全體腔呼吸描記,記錄中度急性間歇低氧刺激前後的反應。實驗結果表示,挫傷後3天-8週,清醒動物的潮氣容積皆是顯著低於未損傷動物,但發現呼吸頻率在3天、2週是顯著提升。損傷及未損傷動物在挫傷後3天、2週、8週於急性低氧刺激期間的分鐘換氣量有顯著上升,但損傷動物在3天、2週的低氧反應是顯著低於未損傷動物。在10次急性間歇低氧(5分鐘10 % O2, 4 % CO2, 86 % N2間隔5分鐘常氧)刺激後的60分鐘內,損傷後3個時間點的潮氣容積都有顯著的增強。逆向神經追蹤劑標定單側頸部挫傷後的橫膈運動神經元顯示損傷動物損傷側橫膈運動神經元數量顯著少於損傷對側以及未損傷動物。這些結果表示中段頸部脊髓挫傷導致損傷對側橫膈活性代償性增加,損傷側橫膈則使用較大的力維持正常呼吸,肋間肌活性可能有助於脊髓損傷後穩定呼吸功能。頸部脊髓挫傷的動物仍保有呼吸神經可塑性,急性間歇低氧刺激可誘發神經可塑性,可用於治療頸部脊髓損傷急性期至慢性期的呼吸功能障礙。
Abstract
The first purpose of present study was designed to investigate the diaphragm and intercostal muscle activity following unilateral mid-cervical spinal cord contusion in rats. Electromyogram (EMG) activity of the bilateral diaphragm and T2 intercostal muscle was measured in anesthetized rats at immediate injury state, 3 days, 2 and 8 weeks post-injury. The results demonstrated that unilateral mid-cervical contusion caused an immediate reduction in inspiratory bursting in the bilateral diaphragm and intercostal muscles. From 3 days to 8 weeks post-contusion, the contused animals exhibited significant lower tidal volume than uninjured animals. The burst amplitude of the contralateral diaphragm EMG was augmented in contused animals at 3 days post-injury. When data were normalized by the maximal response during hypoxia (12-13 % O2, 3-4 % CO2), the ipsilateral diaphragm EMG of contused animals was greater than that of uninjured animals at 3 days and 2 weeks. Moreover, hypoxia-induced increases in ipsilateral diaphragm EMG activity were blunted in contused animals at 2 weeks but recovered at 8 weeks post-injury. Bilateral diaphragm EMG activity in contused animals was comparable to uninjured animals at 8 weeks post-injury. Intercostal muscle activity was not substantially changed by mid-cervical spinal cord contusion from 3 days to 8 weeks post-contusion. The histological results demonstrated a significant disruption of both grey and white matter was observed at lesion epicenter. The second aim was to investigate whether mild acute intermittent hypoxia (AIH:10 episodes of 5 min 10 % O2, 4 % CO2, with 5 min of normoxia intervals) can induce respiratory recovery at different injury state following mid-cervical spinal contusion. The ventilatory response of AIH of conscious rats was measured by the whole body plethysmography at 3 day, 2 week and 8 weeks post injury. The results demonstrated that tidal volume was decreased at the three time points, and frequency was increased in contused animals compared with uninjured animals at 3 day, 2 week. Acute hypoxia induced significant increases in the minute ventilation in both groups; however, contused animals had a weaker response at 3 day and 2 week post injury. Tidal volume of contused animals could be significantly enhanced within 60 min post-AIH at three time points. The monosynapic retrograde tracer data showed that the number of phrenic motoeurons in the contused animals was significantly reduced. These results suggest that mid-cervical spinal contusion induces a compensatory increase in contralateral diaphragmatic activity and greater utilization of a percentage of maximal inspiratory activity in the ipsilateral diaphragm. The maintenance of intercostal muscle activity may enable the animal to sustain essential breathing capacity following cervical spinal cord injury. Cervical contused animals can retain the capacity to express respiratory neuroplasticity, and AIH may be a potential neurorehabilitative therapy to restore the breathing function from the acute to chronic injury state.
目次 Table of Contents
論文審定書....................................................................................................i
中文摘要 ......................................................................................................ii
英文摘要 .....................................................................................................iii
第一章 前言 .................................................................................................1
1-1脊髓損傷..............................................................................................1
1-2呼吸功能的基本神經管制.....................................................................2
1-3頸部脊髓損傷對於呼吸功能的影響.......................................................3
1-4低氧誘發的呼吸神經可塑性.................................................................5
1-5呼吸相關神經調控物質........................................................................6
1-6目的......................................................................................................7
第二章 材料與方法 ......................................................................................9
2-1實驗動物與動物組別............................................................................9
2-2頸部脊髓挫傷手術................................................................................9
2-3麻醉動物呼吸氣流、呼吸末二氧化碳、心跳與血壓測量......................10
2-4血液參數測量......................................................................................11
2-5橫膈與肋間肌的肌電圖測量................................................................11
2-6麻醉動物生理學實驗流程...................................................................12
2-7清醒動物呼吸參數測量.......................................................................12
2-8組織學.................................................................................................13
2-9逆向神經追蹤劑標定橫膈運動神經元..................................................14
2-10數據分析與統計 ................................................................................15
第三章 結果..................................................................................................17
3-1單側頸部挫傷後對於雙側橫膈、肋間肌立即性的活性影響..................17
3-2麻醉動物的呼吸型態、呼氣末二氧化碳、心跳與血壓..........................17
3-3呼吸型態、呼氣末二氧化碳、心跳血壓對於低氧刺激的變化...............18
3-4麻醉動物的橫膈與肋間肌的肌電圖.......................................................19
3-5橫膈與肋間肌對於低氧刺激期間的肌電圖變化.....................................20
3-6甲酚紫組織學染色.................................................................................21
3-7免疫螢光染色.........................................................................................21
3-8清醒動物的呼吸型態..............................................................................22
3-9清醒動物的呼吸型態對於間歇低氧期間的變化.......................................22
3-10清醒動物的呼吸型態在間歇低氧刺激後的長期增益效應......................23
3-11逆向神經追蹤劑標定橫膈運動神經元...................................................24
第四章 討論....................................................................................................25
4-1方法討論.................................................................................................26
4-2中段頸部挫傷對呼吸型態的影響.............................................................26
4-3中段頸部挫傷對於橫膈與肋間肌活性的影響............................................27
4-4中段頸部挫傷對於血清素分佈影響..........................................................29
4-5間歇低氧刺激與長期增益效應.................................................................29
4-6生理意義..................................................................................................31
第五章 圖與說明..............................................................................................32
第六章 表與說明..............................................................................................54
參考文獻..........................................................................................................59

圖次
圖1 橫膈與肋間肌的神經管制示意圖....................................................32
圖2 撞擊裝置............................................................................................33
圖3 第二部分麻醉動物測量示意圖........................................................34
圖4 呼吸參數測量....................................................................................35
圖5 脊髓組織計算示意圖........................................................................36
圖6 頸部脊髓單側挫傷後橫膈與肋間肌立即性的反應........................37
圖7 損傷後3天-8週雙側橫膈、肋間肌肌電圖活性範例圖................38
圖8 麻醉動物的呼吸型態、呼氣末二氧化碳..........................................41
圖9 麻醉動物在低氧刺激期間的血壓、心跳..........................................42
圖10麻醉動物在低氧刺激期間的呼吸型態...........................................43
圖11麻醉動物橫膈、肋間肌的吸氣放電強度.......................................44
圖12麻醉動物在低氧刺激期間橫膈、肋間肌的反應...........................45
圖13第二部分甲酚紫組織學染色...........................................................46
圖14第二部分頸部脊髓免疫組織螢光染色...........................................47
圖15第二部分胸段脊髓免疫組織螢光染色...........................................48
圖16清醒動物的呼吸氣流範例圖...........................................................49
圖17清醒動物的呼吸型態.......................................................................50
圖18清醒動物的間歇低氧的反應...........................................................51
圖19清醒動物間歇低氧後的長期增益效應...........................................52
圖20第三部分逆向神經追蹤劑標定橫膈運動神經元...........................53


表次
表1 縮寫表................................................................................................54
表2 麻醉動物體重....................................................................................55
表3 清醒動物體重....................................................................................55
表4 麻醉動物受到低氧刺激後誘發的呼吸增強反應............................55
表5 麻醉動物呼氣末二氧化碳於低氧刺激的反應................................56
表6 麻醉動物PaO2與PaCO2在基礎值與低氧刺激反應…..................57
表7 清醒動物時間對照組之呼吸型態....................................................58
參考文獻 References
Alvarez-Argote, S., H. M. Gransee, J. C. Mora, J. M. Stowe, A. J. Jorgenson, G. C. Sieck and C. B. Mantilla (2015). "The Impact of Mid-Cervical Contusion Injury on Diaphragm Muscle Function." J Neurotrauma.33(5): 500-509

Alvarez-Argote, S., H. M. Gransee, J. C. Mora, J. M. Stowe, A. J. Jorgenson, G. C. Sieck and C. B. Mantilla (2016). "The Impact of Midcervical Contusion Injury on Diaphragm Muscle Function." J Neurotrauma 33(5): 500-509.

Awad, B. I., P. M. Warren, M. P. Steinmetz and W. J. Alilain (2013). "The role of the crossed phrenic pathway after cervical contusion injury and a new model to evaluate therapeutic interventions." Exp Neurol 248: 398-405.

Bach, K. B. and G. S. Mitchell (1996). "Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent." Respir Physiol 104(2-3): 251-260.

Baker-Herman, T. L. and G. S. Mitchell (2008). "Determinants of frequency long-term facilitation following acute intermittent hypoxia in vagotomized rats." Respir Physiol Neurobiol 162(1): 8-17.

Baussart, B., J. C. Stamegna, J. Polentes, M. Tadie and P. Gauthier (2006). "A new model of upper cervical spinal contusion inducing a persistent unilateral diaphragmatic deficit in the adult rat." Neurobiol Dis 22(3): 562-574.

Beer-Furlan, A. L., W. S. Paiva, W. M. Tavares, A. F. de Andrade and M. J. Teixeira (2014). "Brown-Sequard syndrome associated with unusual spinal cord injury by a screwdriver stab wound." Int J Clin Exp Med 7(1): 316-319.

Beth Zimmer, M., J. S. Grant, A. E. Ayar and H. G. Goshgarian (2015). "Ipsilateral inspiratory intercostal muscle activity after C2 spinal cord hemisection in rats." J Spinal Cord Med 38(2): 224-230.

Bohlman, H. H. and P. A. Anderson (1992). "Anterior decompression and arthrodesis of the cervical spine: long-term motor improvement. Part I--Improvement in incomplete traumatic quadriparesis." J Bone Joint Surg Am 74(5): 671-682.

Brown, R., A. F. DiMarco, J. D. Hoit and E. Garshick (2006). "Respiratory dysfunction and management in spinal cord injury." Respiratory care 51(8): 853-870.

Bruells, C. S., I. Bergs, R. Rossaint, J. Du, C. Bleilevens, A. Goetzenich, J. Weis, M. P. Wiggs, S. K. Powers and M. Hein (2014). "Recovery of diaphragm function following mechanical ventilation in a rodent model." PLoS One 9(1): e87460.

Childs, B. R., T. A. Moore, J. J. Como and H. A. Vallier (2015). "American Spinal Injury Association Impairment Scale Predicts the Need for Tracheostomy After Cervical Spinal Cord Injury." Spine (Phila Pa 1976) 40(18): 1407-1413.

Cummings, K. J. and R. J. Wilson (2005). "Time-dependent modulation of carotid body afferent activity during and after intermittent hypoxia." Am J Physiol Regul Integr Comp Physiol 288(6): R1571-1580.

De Troyer, A., P. A. Kirkwood and T. A. Wilson (2005). "Respiratory action of the intercostal muscles." Physiol Rev 85(2): 717-756.
Devinney, M. J., A. G. Huxtable, N. L. Nichols and G. S. Mitchell (2013). "Hypoxia-induced phrenic long-term facilitation: emergent properties." Ann N Y Acad Sci 1279: 10.1111/nyas.12085.

DiMarco, A. F. and K. E. Kowalski (2015). "Electrical activation to the parasternal intercostal muscles during high-frequency spinal cord stimulation in dogs." J Appl Physiol (1985) 118(2): 148-155.

Doperalski, N. J., M. S. Sandhu, R. W. Bavis, P. J. Reier and D. D. Fuller (2008). "Ventilation and phrenic output following high cervical spinal hemisection in male vs. female rats." Respir Physiol Neurobiol 162(2): 160-167.

Dougherty, B. J., E. J. Gonzalez-Rothi, K. Z. Lee, H. H. Ross, P. J. Reier and D. D. Fuller (2016). "Respiratory outcomes after mid-cervical transplantation of embryonic medullary cells in rats with cervical spinal cord injury." Exp Neurol 278: 22-26.

Dougherty, B. J., K. Z. Lee, E. J. Gonzalez-Rothi, M. A. Lane, P. J. Reier and D. D. Fuller (2012). "Recovery of inspiratory intercostal muscle activity following high cervical hemisection." Respir Physiol Neurobiol 183(3): 186-192.

Dougherty, B. J., K. Z. Lee, M. A. Lane, P. J. Reier and D. D. Fuller (2012). "Contribution of the spontaneous crossed-phrenic phenomenon to inspiratory tidal volume in spontaneously breathing rats." J Appl Physiol (1985) 112(1): 96-105.

Douglas, W. W. and C. C. Toh (1953). "The respiratory stimulant action of 5-hydroxytryptamine (serotonin) in the dog." J Phycol 120(3): 311-318.

el-Bohy, A. A., G. W. Schrimsher, P. J. Reier and H. G. Goshgarian (1998). "Quantitative assessment of respiratory function following contusion injury of the cervical spinal cord." Exp Neurol 150(1): 143-152.

Feldman, J. L., G. S. Mitchell and E. E. Nattie (2003). "Breathing: rhythmicity, plasticity, chemosensitivity." Annu Rev Neurosci 26: 239-266.

Forgione, N., S. K. Karadimas, W. D. Foltz, K. Satkunendrarajah, A. Lip and M. G. Fehlings (2014). "Bilateral contusion-compression model of incomplete traumatic cervical spinal cord injury." J Neurotrauma 31(21): 1776-1788.

Fregosi, R. F. and G. S. Mitchell (1994). "Long-term facilitation of inspiratory intercostal nerve activity following carotid sinus nerve stimulation in cats." J Physiol 477 ( Pt 3): 469-479.

Fuller, D. D., T. L. Baker-Herman, F. J. Golder, N. J. Doperalski, J. J. Watters and G. S. Mitchell (2005). "Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors." J Neurotrauma 22(2): 203-213.

Fuller, D. D., F. J. Golder, E. B. Olson, Jr. and G. S. Mitchell (2006). "Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats." J Appl Physiol (1985) 100(3): 800-806.

Fuller, D. D., S. M. Johnson, E. B. Olson, Jr. and G. S. Mitchell (2003). "Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury." J Neurosci 23(7): 2993-3000.

Garcia, A. J., 3rd, S. Zanella, H. Koch, A. Doi and J. M. Ramirez (2011). "Chapter 3--networks within networks: the neuronal control of breathing." Prog Brain Res 188: 31-50.

Gill, L. C., H. H. Ross, K. Z. Lee, E. J. Gonzalez-Rothi, B. J. Dougherty, A. R. Judge and D. D. Fuller (2014). "Rapid diaphragm atrophy following cervical spinal cord hemisection." Respir Physiol Neurobiol 192: 66-73.

Ginzel, K. H. and S. R. Kottegoda (1954). "The action of 5-hydroxytryptamine and tryptamine on aortic and carotid sinus receptors in the cat." J Physiol 123(2): 277-288.

Golder, F. J., D. D. Fuller, M. R. Lovett-Barr, S. Vinit, D. K. Resnick and G. S. Mitchell (2011). "Breathing patterns after mid-cervical spinal contusion in rats." Exp Neurol 231(1): 97-103.

Golder, F. J. and G. S. Mitchell (2005). "Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury." J Neurosci 25(11): 2925-2932.

Golder, F. J., L. Ranganathan, I. Satriotomo, M. Hoffman, M. R. Lovett-Barr, J. J. Watters, T. L. Baker-Herman and G. S. Mitchell (2008). "Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation." J Neurosci 28(9): 2033-2042.

Golder, F. J., P. J. Reier, P. W. Davenport and D. C. Bolser (2001). "Cervical spinal cord injury alters the pattern of breathing in anesthetized rats." J Appl Physiol (1985) 91(6): 2451-2458.

Gonzalez-Rothi, E. J., K. Z. Lee, E. A. Dale, P. J. Reier, G. S. Mitchell and D. D. Fuller (2015). "Intermittent hypoxia and neurorehabilitation." J Appl Physiol (1985) 119(12): 1455-1465.

Guz, A. (1997). "Brain, breathing and breathlessness." Respiration Physiology 109(3): 197-204.

Hagen, E. M. (2015). "Acute complications of spinal cord injuries." World J Orthop 6(1): 17-23.

Hayashi, Y., S. Jacob-Vadakot, E. A. Dugan, S. McBride, R. Olexa, K. Simansky, M. Murray and J. S. Shumsky (2010). "5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats." Exp Neurol 221(1): 68-78.

Hodges, M. R., G. J. Tattersall, M. B. Harris, S. D. McEvoy, D. N. Richerson, E. S. Deneris, R. L. Johnson, Z. F. Chen and G. B. Richerson (2008). "Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons." J Neurosci 28(10): 2495-2505.

Hoffman, M. S., F. J. Golder, S. Mahamed and G. S. Mitchell (2010). "Spinal adenosine A(2A) receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia." J Phycol 588(Pt 1): 255-266.

Hoy, K. C., Jr. and W. J. Alilain (2015). "Acute theophylline exposure modulates breathing activity through a cervical contusion." Exp Neurol 271: 72-76.

Hsu, S. H. and K. Z. Lee (2015). "Effects of serotonergic agents on respiratory recovery after cervical spinal injury." J Appl Physiol (1985) 119(10): 1075-1087.

Imagita, H., A. Nishikawa, S. Sakata, Y. Nishii, A. Minematsu, H. Moriyama, N. Kanemura and H. Shindo (2015). "Tidal volume and diaphragm muscle activity in rats with cervical spinal cord injury." J Phys Ther Sci 27(3): 791-794.

Johnson, R. A. and G. S. Mitchell (2013). "Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders." Respir Physiol Neurobiol 189(2): 419-428.

Kinkead, R., K. B. Bach, S. M. Johnson, B. A. Hodgeman and G. S. Mitchell (2001). "Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems." Comp Biochem Physiol A Mol Integr Physiol 130(2): 207-218.

Ko, M. L., M. A. King, T. L. Gordon and T. Crisp (1997). "The effects of aging on spinal neurochemistry in the rat." Brain Res Bull 42(2): 95-98.

Kong, X. Y., J. Wienecke, M. Chen, H. Hultborn and M. Zhang (2011). "The time course of serotonin 2A receptor expression after spinal transection of rats: an immunohistochemical study." Neuroscience 177: 114-126.

Koshiya, N. and P. G. Guyenet (1996). "NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla." Am J Physiol - Regulatory, Integrative and Comparative Physiology 270(6): R1273-R1278.

Kowalski, K. E., J. R. Romaniuk and A. F. DiMarco (2007). "Changes in expiratory muscle function following spinal cord section." J Appl Physiol (1985) 102(4): 1422-1428.

Lane, M. A. (2011). "Spinal respiratory motoneurons and interneurons." Respir Physiol Neurobiol 179(1): 3-13.

Lane, M. A., K. Z. Lee, D. D. Fuller and P. J. Reier (2009). "Spinal circuitry and respiratory recovery following spinal cord injury." Respir Physiol Neurobiol 169(2): 123-132.

Lane, M. A., K. Z. Lee, K. Salazar, B. E. O'Steen, D. C. Bloom, D. D. Fuller and P. J. Reier (2012). "Respiratory function following bilateral mid-cervical contusion injury in the adult rat." Exp Neurol 235(1): 197-210.

Lane, M. A., T. E. White, M. A. Coutts, A. L. Jones, M. S. Sandhu, D. C. Bloom, D. C. Bolser, B. J. Yates, D. D. Fuller and P. J. Reier (2008). "Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat." J Comp Neurol 511(5): 692-709.

Lee, K.-Z., S.-C. Chiang and Y.-J. Li (2017). "Mild Acute Intermittent Hypoxia Improves Respiratory Function in Unanesthetized Rats With Midcervical Contusion." Neurorehabil Neural Repair 31(4): 364-375.

Lee, K. Z. (2016). "Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury." J Physiol 594(20): 6009-6024.
Lee, K. Z., B. J. Dougherty, M. S. Sandhu, M. A. Lane, P. J. Reier and D. D. Fuller (2013). "Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury." Exp Neurol 249: 20-32.

Lee, K. Z., Y. J. Huang and I. L. Tsai (2014). "Respiratory motor outputs following unilateral midcervical spinal cord injury in the adult rat." J Appl Physiol (1985) 116(4): 395-405.
Lee, K. Z. and H. C. Kuo (2017). "Vagal Control of Breathing Pattern after Midcervical Contusion in Rats." J Neurotrauma 34(3): 734-745.

Lee, K. Z., M. A. Lane, B. J. Dougherty, L. M. Mercier, M. S. Sandhu, J. C. Sanchez, P. J. Reier and D. D. Fuller (2014). "Intraspinal transplantation and modulation of donor neuron electrophysiological activity." Exp Neurol 251: 47-57.

Lee, K. Z., P. J. Reier and D. D. Fuller (2009). "Phrenic motoneuron discharge patterns during hypoxia-induced short-term potentiation in rats." J Neurophysiol 102(4): 2184-2193.

Lee, K. Z., M. S. Sandhu, B. J. Dougherty, P. J. Reier and D. D. Fuller (2015). "Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury." Exp Neurol 263: 314-324.

Lipski, J., X. Zhang, B. Kruszewska and R. Kanjhan (1994). "Morphological study of long axonal projections of ventral medullary inspiratory neurons in the rat." Brain Res 640(1-2): 171-184.

Liu, S., C. Sarkar, M. Dinizo, A. I. Faden, E. Y. Koh, M. M. Lipinski and J. Wu (2015). "Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death." Cell Death Dis 6: e1582.

Lovett-Barr, M. R., I. Satriotomo, G. D. Muir, J. E. Wilkerson, M. S. Hoffman, S. Vinit and G. S. Mitchell (2012). "Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury." J Neurosci 32(11): 3591-3600.

Mantilla, C. B., S. M. Greising, W. Z. Zhan, Y. B. Seven and G. C. Sieck (2013). "Prolonged C2 spinal hemisection-induced inactivity reduces diaphragm muscle specific force with modest, selective atrophy of type IIx and/or IIb fibers." J Appl Physiol (1985) 114(3): 380-386.

Mateika, J. H. and R. F. Fregosi (1997). "Long-term facilitation of upper airway muscle activities in vagotomized and vagally intact cats." J Appl Physiol (1985) 82(2): 419-425.

McGuire, M. and L. Ling (2005). "Ventilatory long-term facilitation is greater in 1- vs. 2-mo-old awake rats." J Appl Physiol (1985) 98(4): 1195-1201.

McGuire, M., Y. Zhang, D. P. White and L. Ling (2004). "Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats." Am J Physiol Regul Integr Comp Physiol 286(2): R334-341.

Mckay, L. C., K. C. Evans, R. S. Frackowiak and D. R. Corfield (2003). "Neural correlates of voluntary breathing in humans." Journal of Applied Physiology 95(3): 1170-1178.

McKinley, W., K. Santos, M. Meade and K. Brooke (2007). "Incidence and outcomes of spinal cord injury clinical syndromes." J Spinal Cord Med 30(3): 215-224.

Mercier, L. M., E. J. Gonzalez-Rothi, K. A. Streeter, S. S. Posgai, A. S. Poirier, D. D. Fuller, P. J. Reier and D. M. Baekey (2017). "Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury." J Neurophysiol 117(2): 767-776.

Michiels, C. (2004). "Physiological and Pathological Responses to Hypoxia." Am J Pathol 164(6): 1875-1882.

Miranda, P., P. Gomez, R. Alday, A. Kaen and A. Ramos (2007). "Brown-Sequard syndrome after blunt cervical spine trauma: clinical and radiological correlations." Eur Spine J 16(8): 1165-1170.

Mitchell, G. S. and S. M. Johnson (2003). "Invited Review: Neuroplasticity in respiratory motor control." J Appl Physiol (1985) 94(1): 358-374.

Mitchell, G. S., F. L. Powell, S. R. Hopkins and W. K. Milsom (2001). "Time domains of the hypoxic ventilatory response in awake ducks: episodic and continuous hypoxia." Respir Physiol 124(2): 117-128.

Monteau, R., S. Errchidi, P. Gauthier, G. Hilaire and P. Rega (1989). "Pneumotaxic centre and apneustic breathing: interspecies differences between rat and cat." Neurosci Lett 99(3): 311-316.

Muhammed Melik Çandar1 , S. Y., Hakan Ak and Bayram Metin (2014). "Bilateral Diaphragmatic Paralysis in a Patient with Spinal Shock." Crit Care Med.

Navarrete-Opazo, A., B. J. Dougherty and G. S. Mitchell (2017). "Enhanced recovery of breathing capacity from combined adenosine 2A receptor inhibition and daily acute intermittent hypoxia after chronic cervical spinal injury." Exp Neurol 287(Pt 2): 93-101.

Navarrete-Opazo, A. and G. S. Mitchell (2014). "Recruitment and plasticity in diaphragm, intercostal, and abdominal muscles in unanesthetized rats." Journal of Applied Physiology 117(2): 180-188.

Navarrete-Opazo, A., S. Vinit, B. J. Dougherty and G. S. Mitchell (2015). "Daily acute intermittent hypoxia elicits functional recovery of diaphragm and inspiratory intercostal muscle activity after acute cervical spinal injury." Exp Neurol 266: 1-10.

Navarrete-Opazo, A., S. Vinit, B. J. Dougherty and G. S. Mitchell (2015). "Daily acute intermittent hypoxia elicits functional recovery of diaphragm and inspiratory intercostal muscle activity after acute cervical spinal injury." Exp Neurol 266: 1-10.

Navarrete-Opazo, A. A., S. Vinit and G. S. Mitchell (2014). "Adenosine 2A receptor inhibition enhances intermittent hypoxia-induced diaphragm but not intercostal long-term facilitation." J Neurotrauma 31(24): 1975-1984.

Nicaise, C., D. M. Frank, T. J. Hala, M. Authelet, R. Pochet, D. Adriaens, J. P. Brion, M. C. Wright and A. C. Lepore (2013). "Early phrenic motor neuron loss and transient respiratory abnormalities after unilateral cervical spinal cord contusion." J Neurotrauma 30(12): 1092-1099.

Nicaise, C., T. J. Hala, D. M. Frank, J. L. Parker, M. Authelet, K. Leroy, J. P. Brion, M. C. Wright and A. C. Lepore (2012). "Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury." Exp Neurol 235(2): 539-552.

Nicaise, C., R. Putatunda, T. J. Hala, K. A. Regan, D. M. Frank, J. P. Brion, K. Leroy, R. Pochet, M. C. Wright and A. C. Lepore (2012). "Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice." J Neurotrauma 29(18): 2748-2760.

Nichols, N. L., E. A. Dale and G. S. Mitchell (2012). "Severe acute intermittent hypoxia elicits phrenic long-term facilitation by a novel adenosine-dependent mechanism." J Appl Physiol (1985) 112(10): 1678-1688.

Otoshi, C. K., W. M. Walwyn, N. J. Tillakaratne, H. Zhong, R. R. Roy and V. R. Edgerton (2009). "Distribution and localization of 5-HT(1A) receptors in the rat lumbar spinal cord after transection and deafferentation." J Neurotrauma 26(4): 575-584.

Porter, W. T. (1895). "The Path of the Respiratory Impulse from the Bulb to the Phrenic Nuclei." J Physiol 17(6): 455-485.

Powell, F. L., W. K. Milsom and G. S. Mitchell (1998). "Time domains of the hypoxic ventilatory response." Respir Physiol 112(2): 123-134.

Rana, S., G. C. Sieck and C. B. Mantilla (2016). "Diaphragm Electromyographic Activity following Unilateral Mid-Cervical Contusion Injury in Rats." J Neurophysiol: jn 00727 02016.

Reid, G. and M. Rand (1951). "Physiological actions of the partially purified serum vasoconstrictor (serotonin)." Aust J Exp Biol Med Sci 29(6): 401-415.

Rikard-Bell, G. C., E. K. Bystrzycka and B. S. Nail (1985). "The identification of brainstem neurones projecting to thoracic respiratory motoneurones in the cat as demonstrated by retrograde transport of HRP." Brain Res Bull 14(1): 25-37.

Sandhu, M. S., H. H. Ross, K. Z. Lee, B. K. Ormerod, P. J. Reier and D. D. Fuller (2017). "Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury." Exp Neurol 287(Pt 2): 205-215.

Satriotomo, I., E. A. Dale, J. M. Dahlberg and G. S. Mitchell (2012). "Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in the phrenic motor nucleus." Exp Neurol 237(1): 103-115.

Smith, J. C., H. H. Ellenberger, K. Ballanyi, D. W. Richter and J. L. Feldman (1991). "Pre-Botzinger Complex - a Brain-Stem Region That May Generate Respiratory Rhythm in Mammals." Science 254(5032): 726-729.

Song, G., Y. Yu and C. S. Poon (2006). "Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat." J Neurosci 26(1): 300-310.

Sun, Y., D. Liu, P. Su, F. Lin and Q. Tang (2016). "Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy." Neurosci Lett 618: 139-145.

Tester, N. J., D. D. Fuller, J. S. Fromm, M. R. Spiess, A. L. Behrman and J. H. Mateika (2014). "Long-term facilitation of ventilation in humans with chronic spinal cord injury." Am J Respir Crit Care Med 189(1): 57-65.

Tian, G. F. and J. Duffin (1996). "Spinal connections of ventral-group bulbospinal inspiratory neurons studied with cross-correlation in the decerebrate rat." Exp Brain Res 111(2): 178-186.

Toporikova, N., M. Chevalier and M. Thoby-Brisson (2015). "Sigh and Eupnea Rhythmogenesis Involve Distinct Interconnected Subpopulations: A Combined Computational and Experimental Study(1,2,3)." eNeuro 2(2).

Turner, D. L. and G. S. Mitchell (1997). "Long-term facilitation of ventilation following repeated hypoxic episodes in awake goats." J Physiol 499 ( Pt 2): 543-550.

van Luijtelaar, M. G., J. A. Tonnaer and H. W. Steinbusch (1992). "Aging of the serotonergic system in the rat forebrain: an immunocytochemical and neurochemical study." Neurobiol Aging 13(2): 201-215.

Vinit, S., E. Keomani, T. B. Deramaudt, M. Bonay and M. Petitjean (2016). "Reorganization of Respiratory Descending Pathways following Cervical Spinal Partial Section Investigated by Transcranial Magnetic Stimulation in the Rat." PLoS One 11(2): e0148180.

White, N.-H. and N.-H. Black (2016). "Spinal cord injury (SCI) facts and figures at a glance."

Wu, J. C., Y. C. Chen, L. Liu, T. J. Chen, W. C. Huang, H. Cheng and T. P. Su (2012). "Effects of age, gender, and socio-economic status on the incidence of spinal cord injury: an assessment using the eleven-year comprehensive nationwide database of Taiwan." J Neurotrauma 29(5): 889-897.

Zabka, A. G., M. Behan and G. S. Mitchell (2001). "Long term facilitation of respiratory motor output decreases with age in male rats." J Physiol 531(Pt 2): 509-514.

Zimmer, M. B., K. Nantwi and H. G. Goshgarian (2007). "Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options." J Spinal Cord Med 30(4): 319-330.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code