Responsive image
博碩士論文 etd-0701118-110524 詳細資訊
Title page for etd-0701118-110524
論文名稱
Title
側向場激發縱模態與剪模態之氧化鋅固態微型諧振器研製
Study of longitudinal mode and shear mode by lateral field excitation with ZnO based solidly mounted resonators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-19
繳交日期
Date of Submission
2018-08-01
關鍵字
Keywords
氧化鋅、縱模態、剪模態、固態微型諧振器、橫向激發、共面電極
Shear mode, Longitudinal mode, Solidly mounted resonators, Coplanar electrode, Lateral field excitation, ZnO
統計
Statistics
本論文已被瀏覽 5657 次,被下載 0
The thesis/dissertation has been browsed 5657 times, has been downloaded 0 times.
中文摘要
隨著目前半導體技術及微奈米化製程發展,固態微型諧振器(SMR)因其為穩固性之壓電效應的微機電系統(MEMS)元件,具高諧振頻率、質量靈敏測度高、尺寸微奈米大小範圍及CMOS工藝兼容技術的特質。SMR在無線通訊、感測器、物聯網及汽車電子等應用引起巨大發展商機的浪潮,因此也將激勵新一波的市場需求與相關學術關注,是持續密切關注其前撲後繼發展之重要研究。
生物及液態感測器一般來說是在液相環境下進行,但傳統型SMR元件之縱波使用在液態環境下會有非常嚴重的能量耗散至液體,因此在液態環境下能保持能量的剪模態成為了重要物及液態感測的關鍵。本研究成功地研製及分析了基於C軸取向氧化鋅(ZnO)激發側向場之厚度純剪模態及純縱模態固態微型諧振器,以特殊光照設計的A-Type和B-Type 之8種共面電極,以鉬(Mo)和二氧化矽(SiO2)材料推疊成的布拉格反射器,並且探索共面電極設計對SMR元件頻率響應之影響。有別於過去研究方向單純只以共面電極激發出剪模態訊號,驗證電極各別激發強度集中純剪模態與純縱模態諧振元件。
對於元件選用合適壓電材料(Piezoelectric material),我們採用梅森等效電路(Mason equivalent circuit)在先進設計系統(Advanced Design System, ADS)軟體上仿真與建模型固態微型諧振器,分析常用壓電材料氮化鋁、氧化鋅在SMR元件頻率響應。對設計結果進行良率分析及優化改善,進而大幅提升複雜型電路的設計效率。為了進一步最佳化氧化鋅激勵側向場之厚度剪模態及縱模態固態微型諧振器架構設計。我們藉由COMSOL有限元件軟體(COMSOL Multiphysics),模擬SMR元件模型。分析壓電薄膜的壓電特性、壓電薄膜和電極在電場做用變形反應和在元件內的能量分布,及特徵頻率範圍下的共振信號,實作與模擬相互驗證元件設計。
Abstract
With the development of semiconductor technology and micro–nano technology in recent times, a solidly mounted resonator (SMR) has been used as a stable piezoelectric microelectromechanical system (MEMS), possessing the advantages of high resonant frequency, mass sensitivity, nano to micrometre size, and CMOS-compatibility.
The application of SMRs in wireless communication, sensors, the internet of things, vehicle electronics, etc., will bring about a large number of business opportunities, and will inspire new market demand and related academic interest, thus making it a potential research area worth investing in. Typically, biological, and liquid sensors are used in aqueous conditions. However, the use of longitudinal wavelets from a traditional solidly mounted resonator in aqueous condition dissipates large amounts of energy into the fluid. Therefore, a shear modulus that can maintain energy in an aqueous condition becomes important and is a key aspect for liquid sensors.
This study successfully develops and analyses an SMR based on a high C-axis oriented ZnO film operating in thickness-shear mode excited by a lateral electric field. Two designs, type A and B, are proposed, and eight coplanar electrodes are developed with a special coplanar electrode mask. A Bragg reflector is made from Mo and SiO2. The effects of the coplanar electrodes on the frequency response of SMR components are investigated as well. Unlike past research, in which coplanar electrodes excite only the signals in shear mode, this study verified thatexciting both pure shear and pure longitudinal resonating modes in high intensities by the electrodes.
With respect to the choice of suitable piezoelectric material for the SMR components, we simulate an SMR in the Advanced Design System using Mason's equivalent circuit and measure the frequency response of commonly used piezoelectric materials such as AlN and ZnO as components. Yield analysis and optimization are performed on the design to improve the efficiency of the complex circuit. For further improving the design of the ZnO film-based SMR operating in thickness-shear mode and longitudinal mode excited by a lateral electric field, the SMR components are modelled by COMSOL Multiphysics. The piezoelectric property, deformation of the piezoelectric film and electrode in an electric field, and energy distribution in the components are analysed, along with the resonation signal under characteristic frequencies. The SMR design in this study is verified by both actual experimentation and simulation.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xii
表目錄 xv
第一章 前言 1
1.1 研究動機 1
1.2 薄膜體聲波諧振器的發展與研究現況 4
1.2.1 薄膜體聲波諧振器之簡介 4
1.2.2 測向激勵固態微型諧振器的研究現況 7
1.3 本論文研究動機 10
1.4 本論文的內容及章節安排 10
第二章 理論分析 13
2.1 壓電現象 13
2.1.1 壓電性 13
2.1.2 壓電效應 14
2.2 薄膜特性分析 16
2.2.1 壓電性 16
2.2.2 分析壓電材料 17
2.3 氧化鋅(Zinc Oxide, ZnO)結構與特性 19
2.4 反應性射頻磁控濺鍍原理 22
2.4.1 輝光放電 22
2.4.2 磁控濺射 24
2.4.3 射頻濺射 25
2.4.4 反應性濺鍍 26
2.4.5 薄膜沉積過程 27
2.5 SMR 理論 29
2.5.1 SMR 的特點 30
2.5.2 SMR 的基本設計 31
2.6 Mason 等校電路模型 35
2.7 品質因子(Quality factor;Q) 37
2.8 有效機電耦合係數k2eff 37
第三章 實驗與步驟 38
3.1 SMR諧振器的ADS仿真步驟 38
3.2 SMR有限元件模擬 41
3.3 實驗流程 45
3.4 晶圓清洗 47
3.5 交直流濺鍍系統與薄膜沉積 49
3.6 反應性射頻磁控濺鍍系統與黃光微影製程 55
3.7 SMR的製作流程 60
3.8元件設定參數 61
3.9元件性能量測 61
第四章 結果與討論 63
4.1 布拉格反射層 63
4.1.1 探討高聲阻抗的鉬反射層 63
4.1.2 探討低聲阻抗的二氧化矽反射層 64
4.1.3 探討高低聲阻抗的布拉格反射器 65
4.2 壓電層的探討 68
4.2.1 濺鍍壓力 68
4.2.2 濺鍍功率 69
4.3 SMR 元件頻率響應量測 73
4.4 SMR 元件品質及特性 80
4.5 傾斜濺鍍ZnO壓電層的分析 82
第五章 結論與未來展望 84
參考文獻 86
參考文獻 References
[1] R. Ruby, P. Bradley, J. D. Larson and Y. Oshmyansky, “PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs)”, Electronics Letters, vol. 35, pp. 794-795, 1999.
[2] P. D. Bradley, J. D. Larson, III and R. C. Ruby, “Duplexer incorporating thin-film bulk acoustic resonators (FBARs)”, US Patent No. 6262637B1, 2001.
[3] R. Ruby, “Review and Comparison of Bulk Acoustic Wave FBAR, SMR Technology”, IEEE Ultrasonics Symposium, pp. 1029-1040, 2007.
[4] H. Martin, G. Bernhard, F. Martin and M. Kabula, “Stacked crystal resonator: A highly linear BAW device”, IEEE International Ultrasonics Symposium, pp. 889-892, 2010.
[5] E. Ginsburg, D. Etgar-Diamant and L. P. Wang, “Film bulk acoustic resonator (FBAR) process using single-step resonator layer deposition“, US Patent No. 7299529B2, Intel Corporation, 2006.
[6] J. Ellä and R. Aigner, “Coupled BAW resonator based duplexers”, US Patent No. 6963257B2, 2005.
[7] M. Takeuchi, H. Yamada and Y. Goto, “Piezoelectric resonator, manufacturing method for the same, piezoelectric filter, manufacturing method for the same, duplexer, and electronic communication device”, US Patent No. 6737940B2, 2004.
[8] J. W. Jang and K. H. Sunwoo. “Film bulk acoustic resonator and method of forming the same”, US Patent No. 6992420B2, 2006.
[9] 于毅,“RF AlN薄膜體聲波諧振器“,北京清華大學碩士論文,2004。
[10] Y. C. Chen, W. C. Shih, W. T. Chang, C. H. Yang, K. S. Kao and C. C. Cheng, “Biosensor for human IgE detection using shear-mode FBAR devices”, Nanoscale Research Letters, vol. 69, 2015.
[11] K. W. Tay, C. L. Huang and L. Wu, “Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics”, Japanese Journal of Applied Physics, vol. 43, pp. 1122-1126, 2004.
[12] 錢梁,“基於深槽隔離科技的體矽MEMS單片集成科技研究”,北京大學碩士論文,2012。
[13] C. M. Yang, K. Uehara, Y. Aota, S. K. Kim, S. Kameda, H. Nakase, Y. Isota and K. Tsubouchi, “Growth of AlN film on Mo/SiO2/Si (111) for 5 GHz-band FBAR using MOCVD”, IEEE Ultrasonics Symposium, pp. 165-168, 2005.
[14] G. Yoon and J. D. Park, “Fabrication of ZnO-based film bulk acoustic resonator devices using W/SiO/sub 2/ multilayer reflector”, Electronics Letters, vol. 36, pp. 1435-1437, 2000.
[15] J. E. A. Southin, and R. W. Whatmore, “Finite element modelling of nanostructured piezoelectric resonators (NAPIERs)”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, pp. 654-662, 2004.
[16] H. Zhang, J. Kim, W. Pang, H. Yu and E. S. Kim, “5GHz low-phase-noise oscillator based on FBAR with low TCF”, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05, vol. 1, pp. 1100-1101, 2005.
[17] 焦海龍、趙廣宏、李文博、駱 偉、金小鋒,“RF MEMS國內外現狀及發展趨勢”,北京遙測技術研究所,2018。
[18] F. H. Villa-López, G. Rughoobur, S. Thomas, A. J. Flewitt, M. Cole and J. W. Gardner, “Design and modelling of solidly mounted resonators for low-cost particle sensing”, Measurement Science & Technology, vol. 27, 2016.
[19] Y. Tang, Z. Li, J. Ma, L. Wang, J. Yang, B. Du, Q. Yu and X. Zu, “Highly sensitive surface acoustic wave (SAW) humidity sensors based on sol–gel SiO2, films: Investigations on the sensing property and mechanism”, Sensors & Actuators B Chemical, vol. 215, pp. 283-291, 2015.
[20] Y. Yao, H. Zhang, J. Sun, W. Ma, L. Lin, W. Li and J. Du, “Novel QCM humidity sensors using stacked black phosphorus nanosheets as sensing film”, Sensors & Actuators B Chemical, vol. 244, pp. 259-264, 2017.
[21] M. Nirschl, A. Rantala, K. Tukkiniemi, S. Auer, A. Hellgren, D. Pitzer, M. Schreiter and I. Vikholm-Lundin,“CMOS-integrated film bulk acoustic resonators for label-free biosensing”, Sensors, vol. 10, pp. 4180-4193, 2010.
[22] G. Wingqvist, J. Bjurström, A. Hellgren and I. Katardjiev, “Immunosensor utilizing a shear mode thin film bulk acoustic sensor.” Sensors & Actuators B Chemical, vol. 127, pp. 248-252, 2007.
[23] G. Rughoobur, M. DeMiguel-Ramos, J. M. Escolano, E. Iborra and A. J. Flewitt, “Gravimetric sensors operating at 1.1 GHz based on inclined c-axis ZnO grown on textured Al electrodes”, Scientific Reports 7, 2017.
[24] C.D. Corso, A. Dickherber, and W. D. Hunt, “Lateral field excitation of thickness shear mode waves in a thin film ZnO solidly mounted resonator”, Journal of Applied Physics, vol. 101, 2007.
[25] J. Iannacci and F. B. Kessler, “RF MEMS: AN OVERVIEW OF PACKAGING TECHNIQUES”, Retrieved January 16, 2014, from MEMS Journal on the World Wide Web: h ttp://www.memsjournal.com/2014/01/rf-mems-devices-an-overview-of-packaging-techniques-.html
[26] I. S. Song, Y. K. Park, B. J. Ha and J. S. Hwang, “Air-gap type FBAR, method for fabricating the same, and filter and duplexer using the same”, US Patent No. 7053730B2, 2006.
[27] Y. U. Kang, S. C. Kang, K. K. Paek, Y. K. Kim, S. W. Kim and B. K. Ju, “Air-gap type film bulk acoustic resonator using flexible thin substrate”, Sensors & Actuators A Physical, vol. 117, pp. 62-70, 2005.
[28] S. Taniguchi, T. Yokoyama, M. Iwaki, T. Nishihara, M. Ueda and Y. Satoh, “7E-1 An Air-Gap Type FBAR Filter Fabricated Using a Thin Sacrificed Layer on a Flat Substrate”, IEEE Ultrasonics Symposium, pp. 600-603, 2007.
[29] K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance Characterization of Thin AlN Films deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators”, Japanese Journal of Applied Physics, vol. 43, pp. 5510-5515, 2004.
[30] L. Qin, Q. Chen, H. Cheng and Q. M. Wang, “Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation”, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 57, pp. 1840-1853, 2010.
[31] R. C. Lin., K. S. Kao., C. C. Cheng and Y. C. Chen, “Deposition and structural properties of RF magnetron-sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device”, Thin Solid Films, vol. 516, pp. 5262-5265, 2008.
[32] Y. Kumar, K. Rangra and R. Agarwal, “Design and simulation of FBAR with different electrodes material configuration”, International Journal of Engineering Trends and Technology, vol. 28, pp. 294-299, 2015.
[33] T. Y. Lee, and J. T. Song, “Detection of carcinoembryonic antigen using AlN FBAR.” Thin Solid Films, vol. 518, pp. 6630-6633, 2010.
[34] G. Sharma, L. Liljeholm, J. Enlund, J. Bjurström, I. Katardjiev and K. Hjort, “Fabrication and characterization of a shear mode AlN solidly mounted resonator-silicone microfluidic system for in-liquid sensor applications”, Sensors & Actuators A Physical, vol. 159, pp. 111-116, 2010.
[35] Y. Liu, Y. Shen, F. Duan, Y. Zhang, Z. Lin, H. L. Hwang and Y. Zhang, “Solidly mounted resonators fabricated for GHz frequency applications based on MgxZn1-xO piezoelectric film”, Vacuum, vol. 141, pp. 254-258, 2017.
[36] E. Iborra, M. Clement, J. Capilla, J. Olivares and V. Felmetsger, “Low-thickness high-quality aluminum nitride films for super high frequency solidly mounted resonators”, Thin Solid Films, vol. 520, pp. 3060-3063, 2012.
[37] M. DeMiguel-Ramos, T. Mirea, J. Olivares, M. Clement, J. Sangrador and E. Iborra, “Assessment of the shear acoustic velocities in the different materials composing a high frequency solidly mounted resonator”, Ultrasonics, vol. 62, pp. 195-199, 2015.
[38] M. DeMiguel-Ramos, J. Olivares, T. Mirea, M. Clement, E. Iborra, G. Rughoobur, L. Garcia-Gancedo, A. J. Flewitt and W. I. Milne, “The influence of acoustic reflectors on the temperature coefficient of frequency of solidly mounted resonators”, IEEE International Ultrasonics Symposium, pp. 1472-1475, 2014.
[39] S. Thomas, F. H. Villa-López, J. Theunis, J. Peters, M. Cole and J. W. Gardner, “Particle Sensor Using Solidly Mounted Resonators”, IEEE Sensors Journal, vol. 16, pp. 2282-2289, 2016.
[40] C. J. Chung, Y. C. Chen, C. C. Cheng and C. M. Wang, “Superior dual mode resonances for 1/4 λ solidly mounted resonators”, IEEE International Frequency Control Symposium, pp. 250-253, 2008.
[41] J. Xiong, X. L. Sun, P. Guo, D. Zheng and H. S. Gu, “Analysis of resonance characteristics of solidly mounted resonator for mass sensing applications”, Applied Physics A, vol. 116, pp. 1573-1577, 2014.
[42] D. Chen, Y. Xu, J. Wang, L. Zhang, X. Wang and M. Liang, “The AlN based solidly mounted resonators consisted of the all-metal conductive acoustic Bragg reflectors”, Vacuum, vol. 85, pp. 302-306, 2010.
[43] T. Mirea, M. Demiguel-Ramos, M. Clement, J. Olivares, E. Iborra, V. Yantchev and I. Katardjiev, “AlN solidly mounted resonators for high temperature applications”, IEEE International Ultrasonics Symposium, pp. 1524-1527, 2014.
[44] J. B. Lee, H. J. Kim, S. G. Kim, C. S. Hwang and S. H. Hong, “Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator”, Thin Solid Films, vol. 435, pp. 179-185, 2003.
[45] D. Chen, J. Wang, D. Li, L. Zhang and X. Wang, “The c-axis oriented AlN solidly mounted resonator operated in thickness shear mode using lateral electric field excitation”, Applied Physics A, vol. 100, pp. 239-244, 2010.
[46] M. Demiguel-Ramos, T. Mirea, M. Clement, J. Olivares, J. Sangrador and E. Iborra, “Optimized tilted c-axis AlN films for improved operation of shear mode resonators”, Thin Solid Films, vol. 590, pp. 219-223, 2015.
[47] J. Wang, D. Chen, Y. Gan, X. Sun and Y. Jin, “High sensitive self-assembled monolayer modified solid mounted resonator for organophosphate vapor detection”, Applied Surface Science, vol. 257, pp. 4365-4369, 2011.
[48] J. Enlund, D. Martin, V. Yantchev and L. Katardjiev, “Solidly mounted thin film electro-acoustic resonator utilizing a conductive Bragg reflector”, Sensors & Actuators A Physical, vol. 141, pp. 598-602, 2008.
[49] D. Cannatà, M. Benetti, F. Di Pietrantonio, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu and T. Lippertc, “Nerve agent simulant detection by solidly mounted resonators (SMRs) polymer coated using laser induced forward transfer (LIFT) technique”, Sensors & Actuators B Chemical, vol. 173, pp. 32-39, 2012.
[50] J. Munir, T. Mirea, M. Miguel-Ramos, M. A. Saeed, A. B. Shaari and E. Iborra, “Effects of compensating the temperature coefficient of frequency with the acoustic reflector layers on the overall performance of solidly mounted resonators “, Ultrasonics, vol. 74, pp. 153-160, 2017.
[51] 黃鈺丞,“不同電極圖形應用於固態微型諧振器”,國立中山大學電機工程學系研究所學位論文,2016。
[52] Ultrasonic Flaw Detection Tutorial. Wave Propagation, from Olympus Scientific Solutions Americas Corps on the World Wide Web:https://www.olympus-ims.com/en/ndt-tutorials/flaw-detection/wave92propagation/
[53] G. Rughoobur, M. DeMiguel-Ramos, T. Mirea, M. Clement, J. Olivares, B. Díaz-Durán, J. Sangrador, I. Miele, W. I. Milne, E. Iborra and A. J. Flewitt, “Room temperature sputtering of inclined c-axis ZnO for shear mode solidly mounted resonators”, Applied Physics Letters, vol. 108, 2016.
[54] D. Chen, W. Ren, S. Song, J. Wang, W. Liu and P. Wang, “The High Q Factor Lateral Field–Excited Thickness Shear Mode Film Bulk Acoustic Resonator Working in Liquid”, Micromachines, vol. 7, 2016.
[55] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,pp. 7,1994。
[56] Accoustic Properties for Metals in Solid Form,from NDT Resource Center on the World Wide Web: https://www.nde-ed.org/GeneralResources/MaterialProperties/
ut/matlprop_metals.htm
[57] H. Bardaweel, O. Hattamleh, R. Richards, D. F. Bahr, C. Richards, “A Comparison of piezoelectric materials for MEMS power generation”, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, pp. 207-210, 2006.
[58] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO”, Superlattices and Microstructures, vol. 34, pp. 3-32, 2003.
[59] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore, “Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films”, IEEE Transactions on Microwave Theory and Techniques, vol. 49, pp. 769-778, 2001.
[60] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO”, J. Crystal Growth, vol.209, pp.522-525, 2000
[61] X. H. Li, A. P. Huang, M. K. Zhu, S. L. Xu, J. Chen, H. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films”, Materials Letters, vol. 57, pp. 4655-4659, 2003.
[62] W. Walter and S. Y. Chu, “Physical and structural properties of ZnO sputtered films”, Materials Letters, vol. 55, pp. 67-72, 2002.
[63] D. C. Look., D. C. Reynolds., C. W. Litton and R. L. Jones, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Applied Physics Letters, vol. 81, pp. 1830-1832, 2002.
[64] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Applied Surface Science, vol. 142, pp. 233-236, 1999.
[65] 施敏著,張俊彥譯,“半導體元件之物理與技術”,儒林,pp. 425,1990。
[66] H. Hartnagel, A. L. Dawar, A. K. Jain, A. K and C. Jagadish, “Semiconducting transparent thin films”, Institute of Physics Pub, 1995.
[67] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp. 134-136, 1991.
[68] E. Janczak-Bienk, H. Jensen and G. Sørensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films”, Materials Science & Engineering A, vol. 140, pp. 696-701, 1991.
[69] I. Petrov, P. B. Barna, L. Hultman and J. E. Greene, “Microstructural evolution during film growth”, Journal of Vacuum Science and Technology A, vol. 21, 2003.
[70] W. E. Newell, “Face-mounted piezoelectric resonators”, Proceedings of the IEEE, vol. 53, pp. 575-581, 1965.
[71] K. M. Lakin, K. T. Mccarron and R. E. Rose, “Solidly mounted resonators and filters”, IEEE Ultrasonics Symposium. Proceedings. An International Symposium, vol. 2, pp. 905-908, 1995.
[72] R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 292-296, 2000.
[73] K. Nakamura and H. Kanbara, “Theoretical Analysis of A Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave Multilayers”, IEEE International Frequency Control Symposium, pp. 876-881, 1998.
[74] H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Japanese Journal of Applied Physics, vol. 39, pp. 3049-3053, 2000.
[75] W. C. Shih, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, P. L. Ting and H. H. Yeh, “Simulation of solidly mounted resonator using mason model and its implementation”, Sensors and Materials, vol. 29, pp. 405-410, 2017.
[76] 楊畯閎,“剪模態氮化鋁薄膜體聲波共振器之液態感測研製”,國立中山大學電機工程學系研究所學位論文,2011。
[77] M. Clement, E. Iborra, J. Olivares, M. Demiguel-Ramos, T. Mirea and J. Sangrador, “On the effectiveness of lateral excitation of shear modes in AlN layered resonators”, Ultrasonics, vol. 54, pp. 1504-1508, 2014.
[78] S. Gevorgian and A. Vorobiev, “ADS Based 1D Model of Solidly Mounted FBARs Including Longitudinal and Shear Waves”, Integrated Ferroelectrics, vol. 134, pp. 75-80, 2012.
[79] W. A. Cady, “RCA clean replacement”, Journal of the Electrochemical Society, vol. 143, pp. 2064-2067, 1996.
[80] 劉彥宏,“以雙壓電層研製固態微型諧振器”,國立中山大學電機工程學系研究所學位論文,2015。
[81] R. C. Lin, Y. C. Chen and K. S. Kao, “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators”, Applied Physics A, vol. 89, pp. 475-479, 2007.
[82] W. Wang, C. Zhang, Y. Liu and T. Ding, “Impedance analysis for lateral field excited acoustic wave sensors ☆”, Sensors & Actuators B Chemical, vol. 156, pp. 969-975, 2011.
[83] C. J. Zhou, Y. Yang and T. L. Ren, “Finite element analysis of lateral field excited thickness shear mode film bulk acoustic resonator”, Compel - International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 31, pp. 1892-1900, 2012.
[84] D. Rosén, J. Bjurström and I. Katardjiev, “Suppression of spurious lateral modes in thickness-excited FBAR resonators”, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 52, pp. 1889-1992, 2005.
[85] S. Tanifuji, Y. Aota, H. Oguma, S. Kameda and T. Takagi, “Spurious vibration suppression by film thickness control for FBAR”, IEEE Ultrasonics Symposium, vol. 219, pp. 2193-2196, 2008.
[86] S. Tanifuji, Y. Aota, H. Oguma, S. Kameda and T. Takagi, “Spurious vibration suppression by film thickness control for FBAR”, IEEE Ultrasonics Symposium, vol. 219, pp. 2193-2196, 2008.
[87] 趙欣茹,“新型側向場激勵薄膜體聲波諧振器的研究”,浙江大學研究所學位論文,2014。
[88] S. Wu, Z. X. Lin, M. S. Lee, R. Ro, “Bulk acoustic wave analysis of crystalline plane oriented ZnO films”, Journal of Applied Physics, vol. 102, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code