Responsive image
博碩士論文 etd-0701119-164907 詳細資訊
Title page for etd-0701119-164907
論文名稱
Title
採用濕式化學製程開發氧化鋅與過渡金屬二硫屬化物系列相關低維度奈米複合物以做為高效能光催化材料之研究
Wet chemical synthesis of ZnO and transition metal dichalcogenide based low-dimensional nanocomposites for highly efficient photocatalytic activity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
234
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-25
繳交日期
Date of Submission
2019-08-01
關鍵字
Keywords
侷域化表面電漿共振、C-ZnO@MoS2複合材料、二維奈米片、水熱法、金/氧化鋅奈米柱、光致發光、氧化鋅奈米柱、液相剝離法、氧化鋅/二硫化鉬奈米複合材料、光催化
LSPR, C-ZnO@MoS2 composites, ZnO/MoS2 nanocomposites, hydrothermal method, Au-dots/ZnO NRs, photoluminescence, LPE, 2D nanosheets, photocatalysis, ZnO nanorods
統計
Statistics
本論文已被瀏覽 5630 次,被下載 140
The thesis/dissertation has been browsed 5630 times, has been downloaded 140 times.
中文摘要
本論文說明了在低溫 (˃2000C) 下通過一系列簡便的水溶液方法合成低維奈米結構. 我們開始通過一步水溶液法在鋁摻雜氧化鋅 (AZO) 基板上製造垂直排列的氧化鋅奈米柱 (NRs). 為了加強光致發光 (PL) 特性, 氧化鋅奈米柱陣列在各種溫度下進行退火。我們發現退火溫度強烈影響鄰近能帶邊緣 (NBE) 和可見光(缺陷相關)螢光, 我們由此得知獲得更好的光學性質所需的最佳退火條件. 由PL研究得到了一些重要發現,例如NBE的增強是由於激活與氫施體 (Ho) 相關的輻射復合, 並且可見光螢光的減少主要是因為來自氧化鋅表面的OH基團的湮滅. 這一有趣的發現促使我們進一步合成氧化鋅複合材料, 以便我們可以在可見光照射下的光催化應用中利用其有趣的光學性質.
接著, 我們將金奈米等離子體顆粒沉積在氧化鋅奈米柱陣列上以製備貴金屬/半導體複合材料. 有趣的是, 這種金/氧化鋅平台具有驚人的紫外與可見光催化活性以及強烈的發光性能. 可見光活性之光催化反應是由局部表面等離子體共振 (LSPR) 激發輔助, 而在UV輻射下的強吸收和電荷分離是增強其催化性能的原因. 此外, 光學性質的增強主要是由於局部場增強效應和激子與LSPR之間的耦合. 我們首次指出等離子體增強的光催化性能不一定需要付出金/氧化鋅中增強的近帶邊螢光的代價.優異的發光性能和光催化活性的結果促使我們將低維氧化鋅奈米結構與一些具有地殼豐度的二維材料結合起來, 以取代昂貴的貴金屬. 因此, 我們通過兩個簡單的步驟製備了分佈有氧化鋅奈米顆粒的二維超薄二硫化鉬奈米片的異質奈米結構. 首先以超聲輔助液相剝離技術 (LPE)在乙醇/水溶劑中剝離得到超薄二硫化鉬奈米片, 隨後採用濕化學方法將氧化鋅奈米顆粒散佈到二硫化鉬表面上. 在這種情況下,超薄二硫化鉬奈米片可作為各種濃縮小氧化鋅點成核的基板, 對於氧化鋅/二硫化鉬奈米複合材料的光催化活性量測,我們採用有機染料污染物和四環素(一種常見的抗生素)作為可見光照射下的模型化合物. 我們發現這些複合材料在可見光下具有極高的催化效率, 其中污染物降解的反應速率比商業P25-TiO2光催化劑高約8倍.氧化鋅和二硫化鉬的協同作用實現了異維複合物優異的光催化活性. 最重要的是, 氧化鋅和二硫化鉬之間的異質結構形成有利於光生活性電荷載流子的分離, 從而提高光催化性能. 此外, 本論文提出了光催化降解的暫定機制, 為探索由原子級具有成本效益的薄層材料構造的奈米級複合材料提供了有價值的見解. 最後, 我們通過簡單的一步水熱法合成了介觀孔洞C-ZnO奈米結構, 並通過簡單的熱處理將液相剝離的2D MoS2奈米片與C-ZnO結合, 得到C-ZnO@MoS2複合材料. 我們在可見光照射下評價光催化活性, 並且發現通過在C-ZnO上引入MoS2奈米片, 有機染料分子的光降解效率顯著增強. 這種顯著的光活性可歸因於MoS2奈米片加強可見光吸收以在系統中產生電子和電洞, 並且它們通過ZnO和MoS2之間的電荷交換實現它們的空間分離. 碳, MoS2和ZnO之間的協同效應使C-ZnO@MoS2複合材料成為合適的可見光驅動的光催化劑.
Abstract
This dissertation describes the synthesis of low-dimensional nanostructures via a series of facile aqueous solution methods at low temperature (<2000C). We started with the fabrication of vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates by a single-step aqueous solution method. In order to strengthen photoluminescence (PL) property, ZnO nanorod arrays were annealed at various temperature. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions, this eventually leads to the understanding of the optimum annealing condition to achieve enhanced optical properties. Some important findings were found from the PL study, for example, the enhancement of NBE is due to the activation of radiative recombinations associated to hydrogen donors (Ho), and the reduction of visible emission is mainly because of the annihilation of OH groups from the ZnO surface. This interesting finding motivated us to synthesis ZnO hybrids so that we can exploit its promising optical properties in the photocatalysis application under UV or visible light illumination.
Next, the plasmonic Au nanoparticles were deposited on the ZnO nanorod arrays to fabricate a noble metal/semiconductor hybrid structures. Interestingly, this Au/ZnO platform exhibits amazing UV-Vis photocatalytic activity alongside the strong luminescent properties. The visible-light active photocatalysis is assisted by localized surface plasmon resonance (LSPR) excitations while the strong absorption and charge separation under UV irradiation is responsible for enhanced catalytic performance. Besides, the enhancement in optical properties is mainly due to local field enhancement effect and the coupling between exciton and LSPR. For the first time, we showed that the plasmonic enhancement of photocatalytic performance is not necessarily a trade-off for enhanced near-band-edge emission in Au/ZnO. The excellent emission property and photocatalytic activity results motivated us to combine low-dimensional ZnO nanostructures with some earth-abundant two-dimensional (2D) materials as a replacement of expensive noble metals. Thus, we prepared heterodimensional nanostructures of 2D ultrathin MoS2 nanosheets interspersed with ZnO nanoparticles by using a facile two-step method. Foremost sonication-aided liquid phase exfoliation technique (LPE) was used to exfoliate ultrathin MoS2 nanosheets in ethanol/water solvent, subsequently a wet chemical process was employed to realize interspersion of ZnO nanoparticles onto the MoS2 surface. In this case, ultra-thin MoS2 nanosheets acted as the support for the nucleation of various concentrated small ZnO dots. The photocatalytic activity of the ZnO/MoS2 nanocomposites was performed with organic dye pollutants and tetracycline, a common antibiotic, as a model compound under visible-light irradiation. We found extremely high catalytic efficiency with these composites under visible light, where the reaction rate of pollutant degradation is about eight times higher than those of commercial P25-TiO2 photocatalysts. This outstanding photocatalytic activity of the heterodimensional hybrids results from the synergetic effects of ZnO and MoS2. Most importantly, the heterojunction formation between ZnO and MoS2 facilitates the separation of photogenerated active charge carriers, leading to the enhancement of photocatalytic performance. Moreover, a tentative mechanism for photocatalytic degradation was proposed in this report, which can provide valuable insights for the exploration of cost-effective nanoscale hybrids constructed from atomically thin layered materials. Finally, we have synthesized mesoporous C-ZnO nanostructured via a facile one-step hydrothermal process, and then liquid-exfoliated 2D MoS2 nanosheets were integrated with the C-ZnO through simple thermal treatment to obtain C-ZnO@MoS2 composites. The photocatalytic activity was evaluated under visible light irradiation and we found the significant enhancement in photodegradation of organic dye molecules by the introduction of MoS2 nanosheet on C-ZnO. Such a significant photoactivity could be attributed to the MoS2 nanosheets that strengthen the visible-light absorption to create the electrons and holes in the system and their favourable separation occur by the electron transaction between ZnO, and MoS2. The synergistic effect between carbon, MoS2 and ZnO makes C-ZnO@MoS2 composites a suitable visible-light driven photocatalyst.
目次 Table of Contents
Dissertation Examination Report……………………………………………………….….. i
Acknowledgment……………………………………………………………………...…... ii
摘要…………………………………………………….………………………………...….. iii
Abstract……………………………………………………………………………………… v
Publications ……………………………...…………………………………………...…... viii
Contents ………………………………………………………………………………....… xv
List of Figures …………………………………………………………………......…….… xx
List of Tables ……………………………………………………………………..……. xxviii
Chapter 1 Introduction …………………………………………………………………….. 1
References …………………………………………………………………………… 3
Chapter 2 Background ……………………………………………………………………... 6
2.1 Nanostructured Semiconductors and Photocatalysis ………………………… 5
2.1.1 Fundamentals of semiconductor photocatalysis ……………………… 6
2.1.2 Nanostructured materials in photocatalysis ………………………….. 9
2.2 Properties of Zinc Oxide ……………………………………………………. 10
2.2.1 Zinc oxide nanostructures …………………………………………... 10
2.2.2 Crystal structure and chemical binding……………………………… 12
2.2.3 Electronic band structure ……………………………………………. 14
2.2.4 Luminescence and lattice dynamics ………………………………… 16
2.2.5 Electrical properties ………………………………………………… 20
2.3 Photocatalytic Activity of Zinc Oxide ………………………………………. 20
2.3.1 Advancement of ZnO photocatalysts in removing contaminants …... 21
2.3.2 Photocatalysis under visible-light illumination …………….……… 23
2.4 2D Transition Metal Dichalcogenides (TMDs) ………….…………………. 26
2.4.1 Crystal and electronic band structure of 2D TMDs ………………… 27
2.4.2 Fabrication methods ………………………………………………… 31
2.4.3 Fundamentals and role of co-catalyst ……………………………….. 35
2.4.4 2D TMD based photocatalysts …………………..………………….. 38
References ………………………………………………………………………….. 41
Chapter 3 Experimental Procedures …………………………………………………….. 53
3.1 Materials Growth Methodologies …………………………………………... 53
3.1.1 Wet chemical synthesis ……………………………………………... 53
3.1.2 Spin coating process ………………………………………………… 55
3.1.3 Hydrothermal method .……………………………………………… 56
3.1.4 Photochemical process ……………………………………………… 57
3.1.5 Sonication assisted liquid exfoliation method ………………………. 58
3.2 Materials Characterization ………………………………………………….. 60
3.2.1 Electron microscopy ………………………………………………... 60
3.2.2 X-ray diffraction ……………………………………………………. 66
3.2.3 X-ray photoelectron spectroscopy ………………………………….. 68
3.2.4 UV-vis spectrophotometer .…………………………………………. 69
3.2.5 Raman spectroscopy ………………………………………………... 70
3.2.6 Photoluminescence spectroscopy (He-Cd laser) ……………………. 71
References …………………………………………………………………………... 73
Chapter 4 Aqueous Solution Growth of ZnO Nanorod Arrays on AZO Substrate and Annealing Effect on Optical Properties ……………..…………………………………… 74
4.1 Introduction ………………………………………………………… 74
4.2 Experimental ………………………………………………………... 75
4.3 Results and Discussions …………………………………………….. 76
4.3.1 Evaluation of the as-grown sample …………………………. 76
4.3.2 Annealing effects on structural and optical properties ……… 79
4.3.3 Investigation of the PL characteristics at low-temperatures ... 81
4.3.4 Origin of enhanced optical properties ……………………… 85
4.4 Conclusions ………………………………………………………… 87
References ………………………………………………………………….. 87
Chapter 5 Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties ………………………………………………………………………………….. 91
5.1 Introduction …………………………………………………………. 91
5.2 Experimental ………………………………………………………... 94
5.3 Results and Discussions …………………………………………….. 96
5.3.1 Characterization of ZnO NRs and Au/ZnO hybrids ………... 96
5.3.2 Photocatalytic activities of Au/ZnO NRs ………………….. 104
5.3.3 Photocatalytic degradation mechanism ………………….… 110
5.3.4 The optical properties of Au/ZnO NRs ………………….… 114
5.3.5 Reusability of the Au/ZnO substrate. ………………….…... 124
5.4 Conclusions ………………………………………………………... 129
References …………………………………………………………………. 129
Chapter 6 Synthesis of Quasi-0D/2D ZnO/MoS2 Nanocomposites for Highly Enhanced Visible-Light-Driven Photocatalysis …………………………………………………….. 134
6.1 Introduction ……………………………………………………….. 134
6.2 Experimental ………………………………………………………. 138
6.3 Results and Discussions ………………………………………….... 140
6.3.1 Structural and morphological studies …………………….... 140
6.3.2 Surface elemental and compositional analysis ………….…. 147
6.3.3 Optical property studies …………………………………… 151
6.3.4 Photocatalytic activity studies ……………………………... 155
6.3.5 Stability of the prepared photocatalyst …………………….. 164
6.3.6 Mechanism of photocatalytic activity ……………………… 165
6.4 Conclusions ……………………………………...………………… 172
References …………………………………………………………………. 173
Chapter 7 Excellent Photocatalytic Performance of the Mesoporous C-ZnO@MoS2 Nanocomposites under Visible-Light Irradiation ……...……………………………… 179
7.1 Introduction…………………………………………………………...... 179
7.2 Experimental …………… …………………………..………………… 182
7.3 Results and discussions ………………………………………………... 185
7.3.1 Structural and morphological investigations ………….……... 185
7.3.2 Surface elemental and compositional analysis ……...……….. 188
7.3.3 Optical property studies …………………………………….... 191
7.3.4 Photocatalytic activity studies ……………………………….. 192
7.3.5 Mechanism of photocatalytic activity ……………………….. 196
7.4 Conclusion …………………………………………………………….. 199
References …………………………………………………………………. 199
Chapter 8 Conclusions ..…………………………………………………………………. 203
…………… 5
2.1.1 Fundamentals of semiconductor photocatalysis ……………………… 6
2.1.2 Nanostructured materials in photocatalysis ………………………….. 9
2.2 Properties of Zinc Oxide ……………………………………………………. 10
2.2.1 Zinc oxide nanostructures …………………………………………... 10
2.2.2 Crystal structure and chemical binding……………………………… 12
2.2.3 Electronic band structure ……………………………………………. 14
2.2.4 Luminescence and lattice dynamics ………………………………… 16
2.2.5 Electrical properties ………………………………………………… 20
2.3 Photocatalytic Activity of Zinc Oxide ………………………………………. 20
2.3.1 Advancement of ZnO photocatalysts in removing contaminants …... 21
2.3.2 Photocatalysis under visible-light illumination …………….……… 23
2.4 2D Transition Metal Dichalcogenides (TMDs) ………….…………………. 26
2.4.1 Crystal and electronic band structure of 2D TMDs ………………… 27
2.4.2 Fabrication methods ………………………………………………… 31
2.4.3 Fundamentals and role of co-catalyst ……………………………….. 35
2.4.4 2D TMD based photocatalysts …………………..………………….. 38
References ………………………………………………………………………….. 41
Chapter 3 Experimental Procedures …………………………………………………….. 53
3.1 Materials Growth Methodologies …………………………………………... 53
3.1.1 Wet chemical synthesis ……………………………………………... 53
3.1.2 Spin coating process ………………………………………………… 55
3.1.3 Hydrothermal method .……………………………………………… 56
3.1.4 Photochemical process ……………………………………………… 57
3.1.5 Sonication assisted liquid exfoliation method ………………………. 58
3.2 Materials Characterization ………………………………………………….. 60
3.2.1 Electron microscopy ………………………………………………... 60
3.2.2 X-ray diffraction ……………………………………………………. 66
3.2.3 X-ray photoelectron spectroscopy ………………………………….. 68
3.2.4 UV-vis spectrophotometer .…………………………………………. 69
3.2.5 Raman spectroscopy ………………………………………………... 70
3.2.6 Photoluminescence spectroscopy (He-Cd laser) ……………………. 71
References …………………………………………………………………………... 73
Chapter 4 Aqueous Solution Growth of ZnO Nanorod Arrays on AZO Substrate and Annealing Effect on Optical Properties ……………..…………………………………… 74
4.1 Introduction ………………………………………………………… 74
4.2 Experimental ………………………………………………………... 75
4.3 Results and Discussions …………………………………………….. 76
4.3.1 Evaluation of the as-grown sample …………………………. 76
4.3.2 Annealing effects on structural and optical properties ……… 79
4.3.3 Investigation of the PL characteristics at low-temperatures ... 81
4.3.4 Origin of enhanced optical properties ……………………… 85
4.4 Conclusions ………………………………………………………… 87
References ………………………………………………………………….. 87
Chapter 5 Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties ………………………………………………………………………………….. 91
5.1 Introduction …………………………………………………………. 91
5.2 Experimental ………………………………………………………... 94
5.3 Results and Discussions …………………………………………….. 96
5.3.1 Characterization of ZnO NRs and Au/ZnO hybrids ………... 96
5.3.2 Photocatalytic activities of Au/ZnO NRs ………………….. 104
5.3.3 Photocatalytic degradation mechanism ………………….… 110
5.3.4 The optical properties of Au/ZnO NRs ………………….… 114
5.3.5 Reusability of the Au/ZnO substrate. ………………….…... 124
5.4 Conclusions ………………………………………………………... 129
References …………………………………………………………………. 129
Chapter 6 Synthesis of Quasi-0D/2D ZnO/MoS2 Nanocomposites for Highly Enhanced Visible-Light-Driven Photocatalysis …………………………………………………….. 134
6.1 Introduction ……………………………………………………….. 134
6.2 Experimental ………………………………………………………. 138
6.3 Results and Discussions ………………………………………….... 140
6.3.1 Structural and morphological studies …………………….... 140
6.3.2 Surface elemental and compositional analysis ………….…. 147
6.3.3 Optical property studies …………………………………… 151
6.3.4 Photocatalytic activity studies ……………………………... 155
6.3.5 Stability of the prepared photocatalyst …………………….. 164
6.3.6 Mechanism of photocatalytic activity ……………………… 165
6.4 Conclusions ……………………………………...………………… 172
References …………………………………………………………………. 173
Chapter 7 Excellent Photocatalytic Performance of the Mesoporous C-ZnO@MoS2 Nanocomposites under Visible-Light Irradiation ……...……………………………… 179
7.1 Introduction…………………………………………………………...... 179
7.2 Experimental …………… …………………………..………………… 182
7.3 Results and discussions ………………………………………………... 185
7.3.1 Structural and morphological investigations ………….……... 185
7.3.2 Surface elemental and compositional analysis ……...……….. 188
7.3.3 Optical property studies …………………………………….... 191
7.3.4 Photocatalytic activity studies ……………………………….. 192
7.3.5 Mechanism of photocatalytic activity ……………………….. 196
7.4 Conclusion …………………………………………………………….. 199
References …………………………………………………………………. 199
Chapter 8 Conclusions ..…………………………………………………………………. 203
參考文獻 References
Chapter 1
[1] A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens and Z. Hens, Senosrs and Actuators B: Chemical 2010, 146, 111–115.
[2] S. Vempati, J. Mitra and P. Dawson, Nanoscale Res. Lett. 2012, 7, 470.
[3] P. K. Baviskar, P. R. Nikam, S. S. Gargote, A. Ennaoui and B. R. Sankapal, J. Alloys Compd. 2013, 551, 233–242.
[4] Y. Wang, X. Fan and J. Sun, Mater. Lett. 2009, 63, 350–352.
[5] S. Kuriakose, B. Satpati and S. Mohapatra, Phys. Chem. Chem. Phys. 2014, 16, 12741–12749.
[6] Q. Wang, B. Geng and S. Wang, Environ. Sci. Technol. 2009, 43, 8968–8973.
[7] H. Zhang, J. Feng, J. Wang and M. Zhang, Mater. Lett. 2007, 61, 5202–5205.
[8] A. Fujishima and K. Honda, Nature, 1972, 238, 37–38.
[9] K. Rajeshwar and N. R. De Tacconi, Chem. Soc. Rev. 2009, 38, 1984–1998.
[10] B. Tryba, J. Hazard. Mater. 2008, 151, 623–627.
[11] K. Sridharan, E. Jang and T. J. Park, Appl. Catal. B Environ. 2013, 142–143, 718–728.
[12] K. T. G. Carvalho, A. E. Nogueira, O. F. Lopes, G. Byzynski and C. Ribeiro, Ceram. Int. 2017, 43, 3521–3530.
[13] Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah and M. Y. Han, Adv. Mater. 2012, 24, 2310–2314.
[14] C. Yu, K. Yang, Y. Xie, Q. Fan, J. C. Yu, Q. Shu and C. Wang, Nanoscale 2013, 5, 2142–2151.
[15] Y. Chen, D. Zeng, K. Zhang, A. Lu, L. Wang and D. L. Peng, Nanoscale 2014, 6, 874–881.
[16] J. Xu, Y. Chang, Y. Zhang, S. Ma, Y. Qu and C. Xu, Appl. Surf. Sci. 2008, 255, 1996–1999.
[17] K. Chang, X. Hai and J. Ye, Adv. Energy Mater. 2016, 6, 1502555.
[18] J. Yi, X. She, Y. Song, M. Mao, K. Xia, Y. Xu, Z. Mo, J. Wu, H. Xu and H. Li, Chem. Eng. J. 2018, 335, 282–289.

Chapter 2
[1] A. Mills and S. Le Hunte, J. Photochem. Photobiol. A Chem. 1997, 108, 1–35.
[2] A. Fujishima and K. Honda, Nature, 1972, 238, 37–38.
[3] A. J. Nozik, Appl. Phys. Lett. 1977, 29, 189–222.
[4] F. T. Wagner and G. A. Somorjai, J. Am. Chem. Soc. 1980, 102, 5494–5502.
[5] X. Zhou, N. Liu, T. Yokosawa, A. Osvet, M. E. Miehlich, K. Meyer, E. Spiecker and P. Schmuki, ACS Appl. Mater. Interfaces 2018, 10, 29532–29542.
[6] J. M. Coronado, F. Fresno, M. D. Hernández-Alonso and R. Portela, Green Energy Technol. 2013.
[7] S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang and Z. Mi, Nano Futur. 2017, 1, 022001.
[8] R. Molinari, L. Palmisano, V. Loddo, S. Mozia and A. W. Morawski, in Handbook of Membrane Reactors 2013, 2, 808–845.
[9 ] K. Kabra, R. Chaudhary and R. L. Sawhney, Ind. Eng. Chem. Res. 2004, 43, 7683–7696.
[10] K. Yu, S. Yang, H. He, C. Sun, C. Gu and Y. Ju, J. Phys. Chem. A 2009, 113, 10024–10032.
[11] W. Liu, M. Wang, C. Xu, S. Chen and X. Fu, J. Mol. Catal. A Chem. 2013, 368–369, 9–15.
[12] M. N. Abellán, B. Bayarri, J. Giménez and J. Costa, Appl. Catal. B Environ. 2007, 74, 233–241.
[13] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 1995, 95, 69–96.
[14] K. M. Reddy, S. V. Manorama and A. R. Reddy, Mater. Chem. Phys. 2003, 78, 239–245.
[15] R. Ferrando, J. Jellinek and R. L. Johnston, Chem. Rev. 2008, 108, 845–910.
[16] M. M. Mahlambi, C. J. Ngila and B. B. Mamba, J. Nanomater. 2015, 2015, 5.
[17] C. Minero, G. Mariella, V. Maurino, D. Vione and E. Pelizzetti, Langmuir 2000, 16, ` 8964–8972.
[18] C. Minero, G. Mariella, V. Maurino and E. Pelizzetti, Langmuir, 2000, 16, 2632–2641.
[19] T. Pradeep and Anshup, Thin Solid Films 2009, 517, 6441–6478.
[20] L. Zhang and T. J. Webster, Nano Today 2009, 4, 66–80.
[21] J. D. Mackenzie and E. P. Bescher, Acc. Chem. Res. 2007, 40, 810–818.
[22] N. Savage and M. S. Diallo, in Journal of Nanoparticle Research 2005, 7, 331–342.
[23] I. Dror, D. Baram and B. Berkowitz, Environ. Sci. Technol. 2005, 39, 1283–1290.
[24] G. Manimegalai, S. Shanthakumar and C. Sharma, Int. Nano Lett. 2014, 4, 105.
[25] N. Manav, V. Dwivedi and A. K. Bhagi, in Green Chemistry in Environmental Sustainability and Chemical Education 2018, 93–99.
[26] D. Rawtani, N. Khatri, S. Tyagi and G. Pandey, J. Environ. Manage. 2018, 206, 749–762.
[27] W. Peng, L. Han and Z. Wang, Chem. - A Eur. J. 2014, 20, 8483–8487.
[28] C.-H. Kuo, J.-M. Wu and S.-J. Lin, Nanoscale Res. Lett. 2013, 8, 69.
[29] S. K. Gupta, A. Joshi and K. Manmeet, in Journal of Chemical Sciences, 2010, 122, 57–62.
[30] A. B. Djuriić, A. M. C. Ng and X. Y. Chen, Prog. Quantum Electron. 2010, 34, 191–259.
[31] L. Schmidt-Mende and J. L. MacManus-Driscoll, Mater. Today, 2007, 10, 40–48.
[32] A. B. Djurišić and Y. H. Leung, Small 2006, 2, 944–961.
[33] Z. Lin Wang, J. Phys. Condens. Matter 2004, 16, 829
[34] A. Kolodziejczak-Radzimska and T. Jesionowski, Materials (Basel). 2014, 7, 2833–2881.
[35] M. A. Behnajady, N. Modirshahla and R. Hamzavi, J. Hazard. Mater. 2006, 133, 226–232.
[36] Z. L. S. Seow, A. S. W. Wong, V. Thavasi, R. Jose, S. Ramakrishna and G. W. Ho, Nanotechnology 2009, 20, 045604.
[37] F. Xu, M. Dai, Y. Lu and L. Sun, J. Phys. Chem. C 2010, 114, 2776–2782.
[38] M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai and C. Lee, Mater. Lett. 2013, 92, 104–107.
[39] T. Omata, Y. Tani, S. Kobayashi, K. Takahashi, A. Miyanaga, Y. Maeda and S. Otsuka-Yao-Matsuo, Appl. Phys. Lett. 2012, 100, 061104.
[40] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks and R. P. H. Chang, Chem. Mater. 2005, 17, 1001–1006.
[41] A. Umar and Y. B. Hahn, Nanotechnology 2006, 17, 2174.
[42] Y. Xu, J. Jin, X. Li, Y. Han, H. Meng, T. Wang and X. Zhang, Mater. Res. Bull. 2016, 76, 235–239.
[43] M.-Z. Chen, S.-H. Yang and S.-C. Jeng, ACS Appl. Nano Mater. 2018, 1, 1879–1885.
[44] J. Luo, S. Y. Ma, A. M. Sun, L. Cheng, G. J. Yang, T. Wang, W. Q. Li, X. B. Li, Y. Z. Mao and D. J. Gz, Mater. Lett. 2014, 137, 17–20.
[45] X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang and R. Liu, Sci. Rep. 2014, 4, 4596.
[46] J. E. Jaffe and A. C. Hess, Phys. Rev. B 1993, 48, 7903.
[47] Ü. D. Özgür, V. Avrutin and H. Morkoç, in Molecular Beam Epitaxy 2013.
[48] C. Klingshirn, Phys. Status Solidi Basic Res. 2007, 244, 3027–3073.
[49] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck and A. V. Rodina, Phys. Status Solidi Basic Res. 2004, 241, 231–260.
[50] F. J. Himpsel, Adv. Phys. 1983, 32, 1–51.
[51] A. Janotti and C. G. Van De Walle, Phys. Rev. B - Condens. Matter Mater. Phys. 2007, 76, 165202.
[52] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doǧan, V. Avrutin, S. J. Cho and H. Morko̧, J. Appl. Phys. 2005, 98, 041301.
[53] C. G. Van De Walle, Phys. Rev. Lett. 2000, 85, 1012.
[54] J.-P. Leburton, Acta Crystallogr. Sect. A Found. Crystallogr. 2002, A58, 414.
[55] N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin and B. Monemar, J. Appl. Phys. 2003, 93, 126.
[56] T. C. Damen, S. P. S. Porto and B. Tell, Phys. Rev. 1966, 142, 570.
[57] R. H. Callender, S. S. Sussman, M. Selders and R. K. Chang, Phys. Rev. B 1973, 7, 3788.
[58] N. H. Nickel and K. Fleischer, Phys. Rev. Lett. 2003, 90, 197402.
[59] M. Rajalakshmi, A. K. Arora, B. S. Bendre and S. Mahamuni, J. Appl. Phys. 2000, 87, 2445.
[60] J. Cui, Mater. Charact. 2012, 64, 43–52.
[61] H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology 2009.
[62] R. Qiu, D. Zhang, Y. Mo, L. Song, E. Brewer, X. Huang and Y. Xiong, J. Hazard. Mater. 2008, 156, 80–85.
[63] J. Fenoll, E. Ruiz, P. Hellín, P. Flores and S. Navarro, Chemosphere 2011, 85, 1262–1268.
[64] N. Daneshvar, M. H. Rasoulifard, A. R. Khataee and F. Hosseinzadeh, J. Hazard. Mater. 2007, 143, 95–101.
[65] S. Siuleiman, N. Kaneva, A. Bojinova, K. Papazova, A. Apostolov and D. Dimitrov, Colloids Surfaces A Physicochem. Eng. Asp. 2014, 460, 408–413.
[66] S. Chakrabarti and B. K. Dutta, J. Hazard. Mater. 2004, 112, 269–278.
[67] N. Sobana and M. Swaminathan, Sep. Purif. Technol. 2007, 56, 101–107.
[68] K. Byrappa, A. K. Subramani, S. Ananda, K. M. Lokanatha Rai, R. Dinesh and M. Yoshimura, Bull. Mater. Sci. 2006, 29, 433–438.
[69] Q. I. Rahman, M. Ahmad, S. K. Misra and M. Lohani, Mater. Lett. 2013, 91, 170–174.
[70] J. Xie, H. Wang, M. Duan and L. Zhang, Appl. Surf. Sci. 2011, 257, 6358–6363.
[71] M. C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou, Y. F. Yue, V. N. Nesterov, G. Qian and B. Chen, Chem. Commun. 2011, 47, 11715–11717.
[72] B. Pare, S. B. Jonnalagadda, H. Tomar, P. Singh and V. W. Bhagwat, Desalination 2008, 232, 80–90.
[73] S. K. Pardeshi and A. B. Patil, Sol. Energy 2008, 82, 700–705.
[74] E. S. Elmolla and M. Chaudhuri, Desalination 2010, 252, 46–52.
[75] R. A. Palominos, M. A. Mondaca, A. Giraldo, G. Peñuela, M. Pérez-Moya and H. D. Mansilla, Catal. Today 2009, 144, 100–105.
[76] W. Yu, J. Zhang and T. Peng, Appl. Catal. B Environ. 2016, 181, 220–227.
[77] M. W. Kadi, D. McKinney, R. M. Mohamed, I. A. Mkhalid and W. Sigmund, Ceram. Int. 2016, 42, 4672–4678.
[78] O. Bechambi, S. Sayadi and W. Najjar, J. Ind. Eng. Chem. 2015, 32, 201–210.
[79] B. P. Nenavathu, A. V. R. Krishna Rao, A. Goyal, A. Kapoor and R. K. Dutta, Appl. Catal. A Gen. 2013, 459, 106–113.
[80] M. Ahmad, E. Ahmed, Y. Zhang, N. R. Khalid, J. Xu, M. Ullah and Z. Hong, Curr. Appl. Phys. 2013, 13, 697–704.
[81] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade and A. Z. Moshfegh, Thin Solid Films 2016, 605, 2–19.
[82] O. Yayapao, S. Thongtem, A. Phuruangrat and T. Thongtem, in Ceramics International 2013, 39, S563–S568.
[83] R. Ullah and J. Dutta, J. Hazard. Mater. 2008, 156, 194–200.
[84] O. Yayapao, T. Thongtem, A. Phuruangrat and S. Thongtem, Mater. Lett. 2013, 90, 83–86.
[85] Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang and Y. Liu, ACS Appl. Mater. Interfaces 2010, 2, 2915–2923.
[86] Y. Liu, G. Li, R. Mi, C. Deng and P. Gao, Sensors Actuators, B Chem. 2014, 191, 537–544.
[87] J. Li, F. Zhao, L. Zhang, M. Zhang, H. Jiang, S. Li and J. Li, RSC Adv. 2015, 5, 67610–67616.
[88] C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu and X. Qu, J. Hazard. Mater. 2010, 176, 807–813.
[89] S. T. Ren, G. H. Fan, M. L. Liang, Q. Wang and G. L. Zhao, J. Appl. Phys. 2014, 115, 064301.
[90] M. T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M. M. Müller, H. J. Kleebe, J. Ziegler and W. Jaegermann, Inorg. Chem. 2012, 51, 7764–7773.
[91] Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang and Y. Liu, J. Phys. Chem. C 2010, 114, 7920–7925.
[92] X. Wang, G. Liu, G. Q. Lu and H. M. Cheng, in International Journal of Hydrogen Energy 2010, 35, 8199–8205.
[93] C. S. Nanorods, S. Khanchandani, S. Kundu, A. Patra and A. K. Ganguli, J. Phys. Chem. 2012, 116, 23653–23662.
[94] X. Wang, L. Yin, G. Liu, L. Wang, R. Saito, G. Q. Lu and H. M. Cheng, Energy Environ. Sci. 2011, 4, 3976–3979.
[95] F. Xu, Y. Yuan, H. Han, D. Wu, Z. Gao and K. Jiang, Cryst. Eng. Comm. 2012, 14, 3615–3622.
[96] P. Kundu, P. A. Deshpande, G. Madras and N. Ravishankar, J. Mater. Chem. 2011, 21, 4209–4216.
[97] L. Zheng, S. Han, H. Liu, P. Yu and X. Fang, Small 2016, 12, 1527–1536.
[98] E. Benavente, F. Durán, C. Sotomayor-Torres and G. González, J. Phys. Chem. Solids 2018, 113, 119–124.
[99] Y. Wu, F. Xu, D. Guo, Z. Gao, D. Wu and K. Jiang, Appl. Surf. Sci. 2013, 274, 39–44.
[100] R. C. Pawar and C. S. Lee, Appl. Catal. B Environ. 2014, 144, 57–65.
[101] Y. Liu, S. Xie, H. Li and X. Wang, ChemCatChem 2014, 6, 2522–2526.
[102] Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature 2001, 414, 625–627.
[103] W. Tu, Y. Zhou and Z. Zou, Adv. Funct. Mater. 2013, 23, 4996–5008.
[104] X. Ning, S. Meng, X. Fu, X. Ye and S. Chen, Green Chem. 2016, 18, 3628–3639.
[105] K. Rajeshwar and N. R. De Tacconi, Chem. Soc. Rev. 2009, 38, 1984–1998.
[106] B. Tryba, J. Hazard. Mater. 2008, 151, 623–627.
[107] Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah and M. Y. Han, Adv. Mater. 2012, 24, 2310–2314.
[108] B. Han and Y. H. Hu, Energy Sci. Eng. 2016, 4, 285–304.
[109] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli and F. Wang, Nano Lett. 2010, 10, 1271–1275.
[110] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol. 2011, 6, 147–150.
[111] K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805.
[112] S. Das, M. Kim, J. W. Lee and W. Choi, Crit. Rev. Solid State Mater. Sci. 2014, 39, 231–252.
[113] RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, KisA, B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat Nano 2011, 6, 147–150.
[114] B. Radisavljevic, M. B. Whitwick and A. Kis, ACS Nano 2011, 5, 9934–9938.
[115] H. M. Hill, A. F. Rigosi, K. T. Rim, G. W. Flynn and T. F. Heinz, Nano Lett. 2016, 16, 4831–4837.
[116] H. Jiang, J. Phys. Chem. C 2012, 116, 7664–7671.
[117] B. L. Abrams and J. P. Wilcoxon, Crit. Rev. Solid State Mater. Sci. 2005, 30, 153–182.
[118] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 2004, 306, 666–669.
[119] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi and A. Javey, Nano Lett. 2012, 12, 3788–3792.
[120] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V Khotkevich, S. V Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.
[121] D. Braga, I. Gutiérrez Lezama, H. Berger and A. F. Morpurgo, Nano Lett. 2012, 12, 5218–5223.
[122] D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid and C. N. R. Rao, ACS Nano 2012, 6, 5635–5641.
[123] H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati and C. N. R. Rao, Angew. Chemie - Int. Ed. 2010, 49, 4059–4062.
[124] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist and V. Nicolosi, Science 2011, 331, 568–571.
[125] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Nano Lett. 2011, 11, 5111–5116.
[126] K. Lee, H. Y. Kim, M. Lotya, J. N. Coleman, G. T. Kim and G. S. Duesberg, Adv. Mater. 2011, 23, 4178–4182.
[127] B. Mohanty, M. Ghorbani-Asl, S. Kretschmer, A. Ghosh, P. Guha, S. K. Panda, B. Jena, A. V. Krasheninnikov and B. K. Jena, ACS Catal. 2018, 8, 1683–1689.
[128] P. Sekar, E. C. Greyson, J. E. Barton and T. W. Odom, J. Am. Chem. Soc. 2005, 127, 2054–2055.
[129] C. Altavilla, M. Sarno and P. Ciambelli, Chem. Mater. 2011, 23, 3879–3885.
[130] J. W. Seo, Y. W. Jun, S. W. Park, H. Nah, T. Moon, B. Park, J. G. Kim, Y. J. Kim and J. Cheon, Angew. Chemie - Int. Ed. 2007, 46, 8828–8831.
[131] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science 2009, 324, 1312–1314.
[132] J. Wintterlin and M. L. Bocquet, Surf. Sci. 2009, 603, 1841–1852.
[133] J. Hwang, M. Kim, D. Campbell, H. A. Alsalman, J. Y. Kwak, S. Shivaraman, A. R. Woll, A. K. Singh, R. G. Hennig, S. Gorantla, M. H. Rümmeli and M. G. Spencer, ACS Nano 2013, 7, 385–395.
[134] M. A. Fanton, J. A. Robinson, C. Puls, Y. Liu, M. J. Hollander, B. E. Weiland, M. Labella, K. Trumbull, R. Kasarda, C. Howsare, J. Stitt and D. W. Snyder, ACS Nano 2011, 5, 8062–8069.
[135] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan and J. Lou, Small 2012, 8, 966–971.
[136] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. Te Lin, K. Di Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li and T. W. Lin, Adv. Mater. 2012, 24, 2320–2325.
[137] X. Wang, H. Feng, Y. Wu and L. Jiao, J. Am. Chem. Soc. 2013, 135, 5304–5307.
[138] X. Zou and Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148–5180.
[139] T. K. Townsend, N. D. Browning and F. E. Osterloh, Energy Environ. Sci. 2012, 5, 9543–9550.
[140] K. Sayama, H. Arakawa and K. Domen, Catal. Today 1996, 28, 175–182.
[141] K. Yamaguti and S. Sato, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1985, 81, 1237–1246.
[142] P. D. Tran, L. Xi, S. K. Batabyal, L. H. Wong, J. Barber and J. S. Chye Loo, Phys. Chem. Chem. Phys. 2012, 14, 11596–11599.
[143] J. Yu, Y. Hai and M. Jaroniec, J. Colloid Interface Sci. 2011, 357, 223–228.
[144] J. Yu and J. Ran, Energy Environ. Sci. 2011, 4, 1364–1371.
[145] M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata and K. Domen, J. Phys. Chem. C 2010, 114, 11215–11220.
[146] A. Ye, W. Fan, Q. Zhang, W. Deng and Y. Wang, Catal. Sci. Technol. 2012, 2, 969–978.
[147] F. Nan, P. Li, J. Li, T. Cai, S. Ju and L. Fang, J. Phys. Chem. C 2018, 122, 15055–15062.
[148] S. U. M. Khan, M. Al-Shahry and W. B. Ingler, Science 2002, 297, 2243–2245.
[149] Y. Zhang, N. Zhang, Z. R. Tang and Y. J. Xu, ACS Nano 2012, 6, 9777–9789.
[150] J. Fu and S. E. Skrabalak, J. Mater. Chem. A 2016, 4, 8451–8457.
[151] S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S. S. K. Ma, F. Zhang, K. Domen and C. Li, Angew. Chemie - Int. Ed. 2015, 54, 8498–8501.
[152] T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff, Science 2007, 317, 100–102.
[153] J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont and T. F. Jaramillo, ACS Catal. 2014, 4, 3957–3971.
[154] M. S. Faber and S. Jin, Energy Environ. Sci. 2014, 7, 3519–3542.
[155] D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, Nano Lett. 2013, 13, 6222–6227.
[156] M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, J. Am. Chem. Soc. 2013, 135, 10274–10277.
[157] Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song and S. Jin, J. Am. Chem. Soc. 2016, 138, 7965–7972.
[158] Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang and L. Cao, Nano Lett. 2015, 15, 486–491.
[159] Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito, J. Han, X. Guo, Z. Tang, T. Fujita, A. Hirata and M. W. Chen, Adv. Mater. 2014, 47, 8023–8028.
[160] G. Chen, D. Li, F. Li, Y. Fan, H. Zhao, Y. Luo, R. Yu and Q. Meng, Appl. Catal. A Gen. 2012, 443–444, 138–144.
[161] L. Karimi, Polish J. Chem. Technol. 2017, 19, 56–60.
[162] W. C. Peng, X. Wang and X. Y. Li, Nanoscale 2014, 6, 8311-8317.
[163] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang and H. Zhang, Small 2013, 9, 140–147.

Chapter 3
[1] P. X. Gao, J. Song, J. Liu, and Z. L. Wang, in Advanced Materials 2007, 19, 67–72.
[2] C. Y. Lee, S. Y. Li, P. Lin, and T. Y. Tseng, J. Nanosci. Nanotechnol. 2005, 5, 1088–1094.
[3] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Angew. Chemie - Int. Ed. 2003, 42, 3031–3034.
[4] J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Püsche, P. Geithner and L. Ley, J. Appl. Phys. 2005, 97, 044315.
[5] C. Backes, B. M. Szydłowska, A. Harvey, S. Yuan, V. Vega-Mayoral, B. R. Davies, P.-l. Zhao, D. Hanlon, E. J. G. Santos, M. I. Katsnelson, W. J. Blau, C. Gadermaier, J. N. Coleman, ACS Nano 2016, 10, 1589 – 1601.

Chapter 4
[1] Y. I. Alivov, Ü. Özgür, S. Doǧan, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J. Xie, Q. Fan and H. Morko̧, Appl. Phys. Lett. 2005, 86, 241108.
[2] H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, J. Phys. Chem. C 2008, 112, 20546–20548.
[3] H. T. Hsueh, S. J. Chang, W.Y. Weng, C.L. Hsu, T.J. Hsueh, F.Y. Hung, S.L. Wu, B.T. Dai, IEEE Trans. Nanotechnol. 2012, 11,127–133.
[4] H. Huang, G. Fang, X. Mo, L. Yuan, H. Zhou, M. Wang, H. Xiao, X. Zhao, Appl. Phys. Lett. 2009, 94, 063512.
[5] S. Chu, J.H. Lim, L.J. Mandalapu, Z. Yang, J.L. Li, Appl. Phys. Lett. 2008, 92, 152103.
[6] J.K. Wu, W.J. Chen, Y.H. Chang, Y.F. Chen, D.R. Hang, C.T. Liang, J.Y. Lu. Nanoscale Res. Lett. 2013, 8, 387.
[7] P. Yu, Z.K. Tang, G.K. Wong, Y. Segawa, M. Kawasaki, 23th International Conference on the Physics of Semiconductors: 21-26 July 1996, Berlin. Edited by Scheffler M, Zimmermann R. Singapore, World Scientific, 1996, 1453.
[8] H-C. Wang, C-H. Liao, Y-L. Chueh, C-C. Lai, L-H. Chen, R.C-C. Tsiang, Opt. Mater. Express 2013, 3,237–247.
[9] M.A. Gluba, N.H. Nickel, K. Hinrichs, J. Rappich, J. Appl. Phys. 2013, 113, 043502.
[10] R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, and H. Kalt, Phy. Status Solidi B, 2006, 243, 853–857.
[11] M. M. C. Chou, D. R. Hang, C. Chen, S. C. Wang, and C. Y. Lee, Mater. Chem. Phys. 2011, 125, 791.
[12] M. M. C. Chou, D. R. Hang, C. Chen, and Y. H. Liao, Thin Solid Films, 2010, 519, 3627.
[13] C. Chen, Y.T. Lan, M. M-C Chou, D-R. Hang, T. Yan, H. Feng, C.Y. Lee, S.Y. Chang, Cryst. Growth Des. 2012, 12, 6208.
[14] C. C. Ting, C. H. Li, C. Y. Kuo, C. C. Hsu, H. C. Wang and M. H. Yang, Thin Solid Films, 2010, 518, 4156.
[15] W-J. Chen, J-K. Wu, J-C. Lin, S-T. Lo, H-D. Lin, D-R. Hang, M.F. Shih, C-T. Liang,
Y.H. Chang, Nanoscale Res. Lett. 2013, 8, 313.
[16] N. U. H. Alvi, S. Hussain, J. Jensen, O. Nur, M. Willander, Nanoscale Res. Lett. 2011, 6, 628.
[17] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doǧan, V. Avrutin, S. J. Cho and H. Morko̧, J. Appl. Phys. 2005, 98, 041301.
[18] J. Sengupta, R. K. Sahoo and C. D. Mukherjee, Mater. Lett. 2012, 83, 84–87.
[19] J.I. Pankove, Optical Processes in Semiconductors, New York: Dover, 1971.
[20] D. R. Hang, S. Emdadul Islam, K. Hari Sharma, C. Chen, C. Te Liang and M. M. C. Chou, Semicond. Sci. Technol. 2014, 29, 085004.
[21] D-R. Hang, K. H. Sharma, S. E. Islam, C. Chen and M. M. C. Chou, Appl. Phys. Express, 2014, 7, 041101.
[22] D. R. Hang, M. Chou, J. L. Lin, and M. Heuken, J. Cryst Growth 2009, 311, 2919.
[23] X. H. Huang, C. B. Tay, Z. Y. Zhan, C. Zhang, L. X. Zheng, T. Venkatesan, and S. J. Chua, Cryst. Eng. Comm. 2011, 13, 7032.
[24] A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski and T. Voss, Appl. Phys. Lett. 2011, 98, 131111.
[25] S. H. Lee, J. S. Lee, W. B. Ko, J. I. Sohn, S. N. Cha, J. M. Kim, Y. J. Park and J. P. Hong, Appl. Phys. Express, 2012, 5, 095002.
[26] L. L. Yang, Q. X. Zhao, M. Willander, J. H. Yang and I. Ivanov, J. Appl. Phys. 2009, 105, 053503.
[27] G. Brauer, W. Anwand, D. Grambole, W. Skorupa, Y. Hou, A. Andreev, C. Teichert, K. H. Tam, and A. B. Djurišić, Nanotechnology 2007, 18:195301.
[28] M. H. Du and K. Biswas, Phys. Rev. Lett. 2011, 106, 115502.
[29] R. Xie, T. Sekiguchi, T. Ishigaki, N. Ohashi, D. Li, D. Yang, B. Liu, and Y. Bando, Appl. Phys. Lett. 2006, 88, 134103.
[30] N. S. Norberg and D. R. Gamelin, J. Phys. Chem. B, 2005, 109, 20810.
[31] G. A. Shi, M. Stavola, S. J. Pearton, M. Thieme, E. V. Lavrov, and J. Weber, Phys. Rev. B 2005, 72, 195211.
[32] G. J. Exarhos and S. K. Sharma, Thin Solid Films, 1995, 270, 27.
[33] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys. Lett. 2003, 83, 1689.
[34] M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, J. Appl. Phys. 2000, 87, 2445.

Chapter 5
[1] J. Becker, K. R. Raghupathi, S. P. Jordan, K. Dan, T. Ranjit, J. Phys. Chem. C 2011, 115, 13844–13850.
[2] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919–9986.
[3] W. Peng, L. Han, Z. Wang, Chem. Eur. J. 2014, 20, 8483.
[4] W.-J. Chen, J.-K. Wu, J.-C. Lin, S.-T. Lo, H.-D. Lin, D.-R. Hang, M. F. Shih, C.-T. Liang, Y. H. Chang, Nanoscale Res. Lett. 2013, 8, 313.
[5] A. Z. Sadek, W. Wlodarski, Y. X. Li, W. Yu, X. Li, X. Yu, K. Kalantar-zadeh, Thin Solid Films 2007, 515, 8705–8708.
[6] J. L. Campbell, M. Breedon, K. Latham, K. Kalantar-zadeh, Langmuir 2008, 24, 5091–5098.
[7] J. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc. 2008, 130, 13885–13891.
[8] T. Wang, R. Lv, P. Zhang, C. Li, J. Gong, Nanoscale 2015, 7, 77–81.
[9] G. Colón, M.C. Hidalgo, J.A. Navío, E. Pulido Melián, O. González Díaz, J.M. Doña Rodríguez, Appl. Catal. B 2008, 83, 30.
[10] S. K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 2007, 141, 581.
[11] L. Zhu, M. Hong, G. W. Ho, Sci. Rep. 2015, 5, 11609.
[12] M. T. Qamar, M. Aslam, I. M. I. Ismail, N. Salah, A. Hameed, ACS Appl. Mater. Interfaces 2015, 7, 8757–8769.
[13] Q. Wang, B. Geng, S. Wang, Environ. Sci. Technol. 2009, 43, 8968–8973.
[14] L. Sun, D. Zhao, Z. Song, C. Shan, Z. Zhang, B. Li, D. Shen, J. Colloid Interface
Sci. 2011, 363, 175–181.
[15] Y. Chen, D. Zeng, K. Zhang, A. Lu, L. Wang, D.-L. Peng, Nanoscale 2014, 6, 874.
[16] M. Wu, W.-J. Chen, Y.-H. Shen, F.-Z. Huang, C.-H. Li, S.-K. Li, ACS Appl. Mater. Interfaces 2014, 6, 15052–15060.
[17] X. Li, Y. Zhang, X. Ren, Opt. Express 2009, 17, 8735.
[18] C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, H. J. Fan, Appl. Phys. Lett. 2010, 96, 071107.
[19] S. T. Kochuveedu, J. H. Oh, Y. R. Do, D. H. Kim, Chem. Eur. J. 2012, 18, 7467.
[20] R. Udayabhaskar, B. Karthikeyan, P. Sreekanth, R. Philip, RSC Adv. 2015, 5, 13590–13597.
[21] S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, Y. Tao, Appl. Phys. Lett. 2011, 99, 181116.
[22] K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, H. D. Sun, Appl. Phys. Lett. 2009, 94, 151102.
[23] K. Wu, Y. Lu, H. He, J. Huang, B. Zhao, Z. Ye, J. Appl. Phys. 2011, 110, 023510.
[24] M. M. Brewster, X. Zhou, M.-Y. Lu, S. Gradecˇak, Nanoscale 2012, 4, 1455–1462.
[25] a) X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, C. Z. Jiang, Europhys. Lett. 2011, 93, 57009; b) Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, Y. W. Wang, Appl. Phys. Lett. 2011, 98, 033103.
[26] R. Viter, Z. Balevicius, A. A. Chaaya, I. Baleviciute, S. Tumenas, L. Mikoliunaite, A. Ramanavicius, Z. Gertnere, A. Zalesska, V. Vataman, V. Smyntyna, D. Erts, P. Miele, M. Bechelany, J. Mater. Chem. C 2015, 3, 6815–6821.
[27] M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Weie, J. Zhu, J. Mater. Chem. 2011, 21, 7723.
[28] T. Rakshit, S. P. Mondal, I. Manna, S. K. Ray, ACS Appl. Mater. Interfaces 2012, 4, 6085–6095.
[29] L. K. Ono, B. R. Cuenya, J. Phys. Chem. C 2008, 112, 4676–4686.
[30] T. Wang, B. Jin, Z. Jiao, G. Lu, J. Ye, Y. Bi, J. Mater. Chem. A 2014, 2, 15553–15559.
[31] T. H. Yang, L. D. Huang, Y. W. Harn, C. C. Lin, J. K. Chang, C. I. Wu, J. M. Wu, Small 2013, 9, 3169–3182.
[32] J. Zhang, X. Liu, S. Wu, B. Cao, S. Zheng, Sens. Actuators B 2012, 169, 61–66.
[33] M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury, C. K. Cheng, Catal. Sci. Technol. 2015, 5, 2522–2531.
[34] C. S. Turchi, D. F. Ollis, J. Catal. 1990, 122, 178–192.
[35] Z. Sun, C. Wang, J. Yang, B. Zhao, J. R. Lombardi, J. Phys. Chem. C 2008, 112, 6093–6098.
[36] D.-R. Hang, K. H. Sharma, S. E. Islam, C. Chen, M. M. C. Chou, Appl. Phys. Express 2014, 7, 041101.
[37] S. Kuriakose, B. Satpati, S. Mohapatra, Phys. Chem. Chem. Phys. 2014, 16, 12741 –12749.
[38] S. J. Chen, Y. C. Liu, Y. M. Lu, J. Y. Zhang, D. Z. Shen, X. W. Fan, J. Cryst. Growth 2006, 289, 55.
[39] Y. M. Hu, C. Y. Wang, S. S. Lee, T. C. Han, W. Y. Chou, G. J. Chen, J. Raman Spectrosc. 2011, 42, 434–437.
[40] D.-R. Hang, S. E. Islam, K. H. Sharma, S.-W. Kuo, C.-Z. Zhang, J.-J. Wang, Nanoscale Res. Lett. 2014, 9, 632.
[41] R. Cuscó, E. Alarcn-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M. J. Callahan, Phys. Rev. B 2007, 75, 165202.
[42] J. Zhao, X. Yan, Y. Yang, Y. Huang, Y. Zhang, Mater. Lett. 2010, 64, 569–572.
[43] Y. Dong, C. Feng, P. Jiang, G. Wang, K. Li, H. Miao, RSC Adv. 2014, 4, 7340–7346.
[44] M. K. Lee, T. G. Kim, W. Kim, Y. M. Sung, J. Phys. Chem. C 2008, 112, 10079–10082.
[45] Y. Matsumoto, R. Kanemoto, T. Itoh, S. Nakanishi, M. Ishikawa, V. Biju, J. Phys. Chem. C 2008, 112, 1345–1350.
[46] J.-C. Bian, F. Yang, Z. Li, J.-L. Zeng, X.-W. Zhang, Z.-D. Chen, J. Z. Y. Tan, R.-Q. Peng, H.-Y. He, J. Wang, Appl. Surf. Sci. 2012, 258, 8548–8551.
[47] B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, Appl. Phys. B 2001, 79, 51.
[48] J. Li, H. C. Ong, Appl. Phys. Lett. 2008, 92, 121107.
[49] M. Liu, M. Pelton, P. Guyot-Sionnest, Phys. Rev. B 2009, 79, 035418.
[50] K. Saravanan, B. K. Panigrahi, R. Krishnan, K. G. M. Nair, J. Appl. Phys. 2013, 113, 033512.
[51] D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, M. M. C. Chou, Semicond. Sci. Technol. 2014, 29, 085004.

Chapter 6
[1] S. K. Khetan, T. J. Collins, Chem. Rev. 2007, 107, 2319– 2364.
[2] K. H. Wammer, M. T. Slattery, A. M. Stemig, J. L. Ditty, Chemosphere 2011, 85, 1505–1510.
[3] R. A. Palominos, M. A. Mondaca, A. Giraldo, G. PeÇuela, M. P_rez-Moya, H. D. Mansilla, Catal. Today 2009, 144, 100–105.
[4] P. T. P. Hoa, S. Managaki, N. Nakada, H. Takada, A. Shimizu, D. H. Anh, P. H. Viet, S. Suzuki, Sci. Total Environ. 2011, 409, 2894 – 290.
[5] A. Fujishima, K. Honda, Nature 1972, 238, 37–38.
[6] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234 – 5244.
[7] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919– 9986.
[8] J. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc. 2008, 130, 13885 – 13891.
[9] M. Wu, W.-J. Chen, Y.-H. Shen, F.-Z. Huang, C.-H. Li, S.-K. Li, ACS Appl. Mater. Interfaces 2014, 6, 15052– 15060.
[10] D.-R. Hang, S. E. Islam, C.-H. Chen, K. H. Sharma, Chem. Eur. J. 2016, 22, 14950 –14961.
[11] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J. R. Gong, J. Am. Chem. Soc. 2011, 133, 10878 – 10884.
[12] M. Kang, S. Rathi, I. Lee, L. Li, M. A. Khan, D. Lim, Y. Lee, J. Park, S. J. Yun, D.-H. Youn, C. Jun, G.-H. Kim, Nanoscale 2017, 9, 1645 – 1652.
[13] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez, Chem. Soc. Rev. 2015, 44, 3691 – 3718.
[14] Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 2016, 28, 1917 – 1933.
[15] H. Li, Y. Shi, M.-H. Chiu, L.-J. Li, Nano Energy 2015, 18, 293 – 305.
[16] C.-W. Liu, C. Chuang, Y. Yang, R. E. Elmquist, Y.-J. Ho, H.-Y. Lee, C.-T. Liang, 2D Mater. 2017, 4, 025007.
[17] C. Chuang, M. Matsunaga, F.-H. Liu, T.-P. Woo, L.-H. Lin, K. Oto, Y. Ochiai, C.-T. Liang, N. Aoki, Appl. Phys. Lett. 2016, 108, 123105.
[18] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, K. S. Novoselov, Science 2013, 340, 1311 – 1314.
[19] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263 – 275.
[20] a) E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 2018, 24, 18 – 31; b) Y.-J. Yuan, H.-W. Lu, Z.-T. Yu, Z.-G. Zou, ChemSusChem 2015, 8, 4113– 4127.
[21] M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, B. Xiang, Chem. Commun. 2014, 50, 15447– 5449.
[22] D.-R. Hang, K. H. Sharma, C.-H. Chen, S. E. Islam, Chem. Eur. J. 2016, 22, 12777–12784.
[23] W. Tu, Y. Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, Z. Zou, Adv. Funct. Mater. 2013, 23, 1743 – 1749.
[24] Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, C. Xie, ACS Catal. 2013, 3, 1477 – 1485.
[25] M. Z. Rahman, C. W. Kwong, K. Davey, S. Z. Qiao, Energy Environ. Sci. 2016, 9, 709–728.
[26] Z. Zhang, D. Jiang, D. Li, M. He, M. Chen, Appl. Catal. B 2016, 183, 113 – 123.
[27] Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, H. Zhang, Small 2014, 10, 3537–3543.
[28] Y. Liu, Y. X. Yu, W. D. Zhang, J. Phys. Chem. C 2013, 117, 12949 – 12957.
[29] M.-Q. Yang, C. Han, Y.-J. Xu, J. Phys. Chem. C 2015, 119, 27234 – 27246.
[30] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 2013, 9, 140 – 147.
[31] L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 2016, 12, 1527 – 1536.
[32] Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, Nano Lett. 2011, 11, 4168.
[33] J. Chen, X.-J. Wu, L. Yin, B. Li, X. Hong, Z. Fan, B. Chen, C. Xue, H. Zhang, Angew. Chem. Int. Ed. 2015, 54, 1210 – 1214; Angew. Chem. 2015, 127, 1226 – 1230.
[34] R. Marschall, Adv. Funct. Mater. 2014, 24, 2421– 2440.
[35] D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, M. M. C. Chou, Semicond. Sci. Technol. 2014, 29, 085004.
[36] D.-R. Hang, K. H. Sharma, S. E. Islam, C. Chen, M. M. C. Chou, Appl. Phys. Express 2014, 7, 041101.
[37] J.-K. Wu, W.-J. Chen, Y. H. Chang, Y. F. Chen, D.-R. Hang, C.-T. Liang, J.-Y. Lu, Nanoscale Res. Lett. 2013, 8, 387.
[38] Y. Li, W. Xie, X. Hu, G. Shen, X. Zhou, Y. Xiang, X. Zhao, P. Fang, Langmuir 2009, 26, 591– 597.
[39] a) Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, Z.-Q. Zhu, J. Appl. Phys. 2014, 116, 064305; b) Y.-J. Yuan, F. Wang, B. Hu, H.-W. Lu, Z.-T. Yu, Z.-G. Zou, Dalton Trans. 2015, 44, 10997 – 11003.
[40] S. Guo, X. Li, J. Zhu, T. Tong, B. Wei, Small 2016, 12, 5692 – 5701.
[41] a) S. Kumar, N. L. Reddy, H. S. Kushwaha, A. Kumar, M. V. Shankar, K. Bhattacharyya, A. Halder, V. Krishnan, ChemSusChem 2017, 10, 3588 – 3603; b) S. Kumar, V. Sharma, K. Bhattacharyya, V. Krishnan, Mater. Chem. Front. 2017, 1, 1093–1106.
[42] L. Niu, J. N. Coleman, H. Zhang, H. Shin, M. Chhowalla, Z. Zheng, Small 2016, 12, 272 – 293.
[43] C. Backes, T. M. Higgins, A. Kelly, C. Boland, A. Harvey, D. Hanlon, J. N. Coleman, Chem. Mater. 2017, 29, 243 – 255.
[44] E. Varrla, K. R. Paton, C. Backes, A. Harvey, R. J. Smith, J. McCauley, J. N. Coleman, Nanoscale 2014, 6, 11810 – 11819.
[45] X. Zhang, Z. Lai, Z. Liu, C. Tan, Y. Huang, B. Li, M. Zhao, L. Xie, W. Huang, H. Zhan, Angew. Chem. Int. Ed. 2015, 54, 5425 – 5428; Angew. Chem. 2015, 127, 5515–5518.
[46] H. Li, Q. Zhang, C. Yap, B. K. Tay, T. Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater. 2012, 22, 1385 – 1390.
[47] Y. Liu, S. Xie, H. Li, X. Wang, ChemCatChem 2014, 6, 2522– 2526.
[48] Y. C. Wang, J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, S. Zhuiykov, N. V. Medhekar, M. S. Strano, K. Kalantar-zadeh, ACS Nano 2013, 7, 10083 – 10093.
[49] P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Nanotechnology 2016, 27, 225403.
[50] G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, G. Dresselhaus, Phys. Rev. B 1999, 60, 2883 – 2892.
[51] B. Chakraborty, H. S. S. Ramakrishna Matte, A. K. Sood, C. N. R. Rao, J. Raman Spectrosc. 2013, 44, 92 – 96.
[52] L. Ze, G. Yueqiu, L. Xujun, Z. Yong, Appl. Surf. Sci. 2017, 399, 330 – 336.
[53] J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963–969.
[54] Z. Jin, S. Shin, D. H. Kwon, S.-J. Han, Y.-S. Min, Nanoscale 2014, 6, 14453–14458.
[55] M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Wei, J. Zhu, J. Mater. Chem. 2011, 21, 7723 – 7729.
[56] F. Kayaci, S. Vempati, C. Ozgit-Akgun, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 2014, 6, 5735 – 5745.
[57] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805.
[58] D. Kozawa, R. Kumar, A. Carvalho, K. K. Amara, W. Zhao, S. Wang, M. Toh, R. M. Ribeiro, A. H. Castro Neto, K. Matsuda, G. Eda, Nat. Commun. 2014, 5, 4543.
[59] D.-R. Hang, S. E. Islam, K. H. Sharma, S.-W. Kuo, C.-Z. Zhang, J.-J. Wang, Nanoscale Res. Lett. 2014, 9, 632.
[60] M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W. B. Yu, M. Wu, O. Deparis, Y. Li, B. L. Su, Appl. Catal. B 2016, 199, 187 – 198.
[61] D. H. Zhang, Q. P. Wang, Z. Y. Xue, Appl. Surf. Sci. 2003, 207, 20 – 25.
[62] J. Z. Ou, A. F. Chrimes, Y. Wang, S.-Y. Tang, M. S. Strano, K. Kalantarzadeh, Nano Lett. 2014, 14, 857 – 863.
[63] W. Gu, Y. Yan, C. Zhang, C. Ding, Y. Xian, ACS Appl. Mater. Interfaces 2016, 8, 11272–11279.
[64] a) H.-B. Fan, S.-Y. Yang, P.-F. Zhang, H.-Y. Wei, X.-L. Liu, C.-M. Jiao, Q.-S. Zhu, Y.-H. Chen, Z.-G. Wang, Chin. Phys. Lett. 2007, 24, 2108 – 2111; b) H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 2010, 20, 561– 572.
[65] J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Appl. Phys. Lett. 2013, 102, 012111.
[66] J. H. Kim, J. Lee, J. H. Kim, C. C. Hwang, C. Lee, J. Y. Park, Appl. Phys. Lett. 2015, 106, 251606.
[67] Y. Feng, J. Shen, Q. Cai, H. Yang, Q. Shen, New J. Chem. 2015, 39, 1132 – 1138.
[68] Z. H. Shah, J. Wang, Y. Ge, C. Wang, W. Mao, S. Zhang, R. Lu, J. Mater. Chem. A 2015, 3, 3568 – 3575.
[69] W.-K. Jo, N. C. S. Selvam, Dalton Trans. 2015, 44, 16024 – 16035.
[70] S. Kumar, V. Sharma, K. Bhattacharyya, V. Krishnan, New J. Chem. 2016, 40, 5185–5197.
[71] Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Cao, Angew. Chem. Int. Ed. 2008, 47, 2402 – 2406; Angew. Chem. 2008, 120, 2436 – 2440.
[72] Y. G. Yao, L. Tolentino, Z. Z. Yang, X. J. Song, W. Zhang, Y. S. Chen, C. P. Wong, Adv. Funct. Mater. 2013, 23, 3577 – 3583.
[73] C. Backes, B. M. Szydłowska, A. Harvey, S. Yuan, V. Vega-Mayoral, B. R. Davies, P.-l. Zhao, D. Hanlon, E. J. G. Santos, M. I. Katsnelson, W. J. Blau, C. Gadermaier, J. N. Coleman, ACS Nano 2016, 10, 1589 – 1601.

Chapter 7
[1] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu and X. Wang, Chem. Soc. Rev. 2014, 43, 5234.
[2] S. H. S. Chan, T. Y. Wu, J. C. Juan, and C. Y. Teh, J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158.
[3] D-R. Hang, K. H. Sharma, C-H. Chen and S. E. Islam, Chem. - A Eur. J. 2016, 22, 12777–12784.
[4] D-R. Hang, S. E. Islam, C-H. Chen and K. H. Sharma, Chem. - A Eur. J. 2016, 22, 14950–14961.
[5] J. Shi, R. Tong, X. Zhou, Y. Gong, Z. Zhang, Q. Ji, Y. Zhang, Q. Fang, L. Gu, X. Wang, Z. Liu and Y. Zhang, Adv. Mater. 2016, 28, 10664–10672.
[6] H. Li, K. Yu, C. Li, B. Guo, X. Lei, H. Fu, and Z. Zhu, J. Mater. Chem. A 2015, 3, 20225–20235.
[7] A. B. Djuriić, A. M. C. Ng and X. Y. Chen, Prog. Quantum Electron. 2010, 34, 191–259.
[8] D-R. Hang, S. E. Islam, K. H. Sharma, S-W. Kuo, C-Z. Zhang and J-J. Wang, Nanoscale Res. Lett. 2014, 9, 632.
[9] L. Liu, K. Hong, X. Ge, D. Liu, and M. Xu, J. Phys. Chem. C, 2014, 118, 15551–15555.
[10] R. Gupta, N. Krishna Rao Eswar, J. M. Modak, and G. Madras, RSC Adv. 2016, 6, 85675–85687.
[11] A. E. Kandjani, Y. M. Sabri, S. R. Periasamy, N. Zohora, M. H. Amin, A. Nafady and S. K. Bhargava, Langmuir 2015, 31, 10922-10930.
[12] X. Zhang, J. Qin, R. Hao, L. Wang, X. Shen, R. Yu, S. Limpanart, M. Ma and R. Liu, J. Phys. Chem. C 2015, 119, 20544–20554.
[13] W. Yu, J. Zhang and T. Peng, Appl. Catal. B Environ. 2016, 181, 220–227.
[14] S. Cho, J.-W. Jang, J. S. Lee, and K.-H. Lee, Cryst. Eng. Comm. 2010, 12, 3929.
[15] S. A. Ansari, S. G. Ansari, H. Foaud and M. H. Cho, New J. Chem. 2017, 41, 9314–9320.
[16] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang and H. Zhang, Small 2013, 9, 140–147.
[17] F. Wang, L. Liang, L. Shi, M. Liu and J. Sun, Dalt. Trans. 2014, 43, 16441–16449.
[18] Z. Wang, S. Liu, J. Zhang, J. Yan, Y. Zhao, C. Mahoney, R. Ferebee, D. Luo, J. Pietrasik, M. R. Bockstaller and K. Matyjaszewski, Langmuir 2017, 33, 12276–12284.
[19] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev and A. Kis, Nat. Rev. Mater. 2017, 2, 17033.
[20] L. Gong, L. Yan, R. Zhou, J. Xie, W. Wu, and Z. Gu, J. Mater. Chem. B 2017, 5, 1873–1895.
[21] H. Chen, Z. Chen, B. Ge, Z. Chi, H. Chen, H. Wu, C. Cao and X. Duan, Chem. Mater. 2017, 29, 10019–10026.
[22] E. Parzinger, B. Miller, B. Blaschke, J. A. Garrido, J. W. Ager, A. Holleitner and U. Wurstbauer, ACS Nano 2015, 9, 11302–11309.
[23] Q. Xiang, J. Yu, and M. Jaroniec, J. Am. Chem. Soc. 2012, 134, 6575–8.
[24] Y. J. Yuan, F. Wang, B. Hu, H. W. Lu, Z. T. Yu and Z. G. Zou, Dalt. Trans. 2015, 44, 10997–11003.
[25] L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du and Y. Yang, Energy Environ. Sci. 2018, 11, 106–114.
[26] S. Kumar, N. L. Reddy, H. S. Kushwaha, A. Kumar, M. V. Shankar, K. Bhattacharyya, A. Halder and V. Krishnan, ChemSusChem, 2017, 10, 3588–3603.
[27] L. Shen and C. Wang, RSC Adv. 2015, 5, 88989–88995.
[28] Y. P. Zhu, M. Li, Y. L. Liu, T. Z. Ren and Z. Y. Yuan, J. Phys. Chem. C 2014, 118, 10963–10971.
[29] K. Kotsis and V. Staemmler, Phys. Chem. Chem. Phys. 2006, 8, 1490.
[30] H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 2007, 99, 127201.
[31] D. K. Mishra, J. Mohapatra, M. K. Sharma, R. Chatterjee, S. K. Singh, S. Varma, S. N. Behera, S. K. Nayak, and P. Entel, J. Magn. Magn. Mater. 2013, 329, 146–152.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code