Responsive image
博碩士論文 etd-0702101-131700 詳細資訊
Title page for etd-0702101-131700
論文名稱
Title
液動壓拋光法刀具磨耗研究
A Study on Tool Wear of Hydrodynamic Polishing Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
220
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-27
繳交日期
Date of Submission
2001-07-02
關鍵字
Keywords
液動壓拋光加工法、刀具磨耗
Tool Wear, Hydrodynamic Polishing Process
統計
Statistics
本論文已被瀏覽 5704 次,被下載 2488
The thesis/dissertation has been browsed 5704 times, has been downloaded 2488 times.
中文摘要
論文摘要
本論文的目的在研究液動壓拋光法刀具磨耗的特性與效應。期能藉由磨耗特性的瞭解,進而充分掌握其對加工的效應,並有助於高、超精密加工之應用。研究的方法包括實驗研究與理論分析兩部分: 第一部分在利用實驗的方法掌握可能影響刀具磨耗的參數及操作條件,並了解參數及操作條件與刀具磨耗之間的關係。第二部分則在建立一套理論模式用來解釋各個參數及操作條件與刀具磨耗之定性關係。
在掌握操作條件方面,將透過實驗了解在非接觸(non-contact)與半接觸(semi-contact)的潤滑條件下,各操作參數對刀具磨耗的影響以及刀具的磨耗對加工率的效應。其中操作參數包括拋光刀具之轉速、粗度、負載、磨漿之黏度以及工件之特性。在建立理論模式方面,主要由能量的角度,並結合動力學穩態平衡(steady state)、最小位能法則( principle of minimum potential energy) 與彈液動壓理論 (elasto-hydrodynamic theory),分析單一磨粒在不同的接觸方式與材料參數下,對刀具或工件移除能力(removal capability of an abrasive particle)之影響。此外,理論研究中也應用機率的原理,假設刀具表面具不規則波紋的機率分布之特性,計算非接觸與半接觸潤滑條件下刀具與工件的磨耗率。並探討潤滑條件(刀具轉速)與材料參數對刀具或工件磨耗率的效應。
在實驗結果的部分;刀具磨耗的過程中,刀具表面波度( waviness)與刀具的曲率半徑(radius of curvature )均以特定的趨勢改變。尤其,在半接觸潤滑條件下的刀具磨耗率不必然比非接觸潤滑條件下的刀具磨耗率高。實驗數據顯示,刀具磨耗對工件加工率的效應與刀具所處的潤滑條件息息相關。實驗數據也指出,在非接觸潤滑條件下工件的加工率與加工累加時間的趨勢與重半接觸潤滑條件下的趨勢有很大的差異。
在理論分析的部分;首先建立單一磨粒對刀具或工件的移除能力與材料參數(例如表面吸附能)關聯的的數學模式。並藉由電腦模擬探討材料參數對單一磨粒移除能力的定性特性。分析指出,在接觸的情況下,單一磨粒對刀具或工件的移除能力與材料參數之間的關係並非是單調的(monotonous)。一般而言,磨粒對刀具的移除能力與刀具表面吸附能以及速度係數成反向的關係。而與工件表面吸附能以及速度係數成正向的關係。而磨粒對工件的移除能力則相反。隨著磨粒被刀具包覆深度的增加,磨粒對刀具的移除能力可能有三種型態,其一為上升。其二則呈現先上升然後下降。其三為直接下降的趨勢。而磨粒對工件的移除能力,隨著磨粒被刀具包覆深度的增加,則均呈現上升的趨勢。在非接觸的情況下,單一磨粒的移除能力除了材料表面吸附能與速度係數的效應與接觸情況時相似外,磨粒對刀具或工件的移除能力均與局部薄膜厚度成反向的關係。另外,在非接觸與接觸的情況下,增加操作速度將增加磨粒移除能力,但不會影響磨粒移除能力的特性與趨勢。
此外,理論也透過機率理論推導刀具與工件磨耗率與不同潤條件以及材料參數的數學模式。分析指出,刀具或工件的磨耗率與潤滑條件以及材料參數之間的關係也不是單調的。在非接觸的條件下,當刀具轉速增加時,刀具與工件的磨耗率均呈現先上升而後下降的單峰趨勢。然而此峰值將隨材料參數的改變而增加或減少。另外一方面,在半接觸的潤滑條件下,在某些特定的材料參數下,當刀具轉速增加時,工件與刀具的磨耗率均呈現上升而後下降的單峰趨勢。當潤滑區域可涵蓋半接觸與非接觸的潤滑區時,工件與刀具的磨耗率與刀具角速度的關係呈現雙峰的特性。且半接觸潤滑條件工件的磨耗率高於非接觸條件的磨耗率。然而,半接觸潤滑條件刀具的磨耗率不必然高於非接觸條件的磨耗率。特別地,在半接觸潤滑條件下,經由增加刀具的表面吸附能與速度係數,刀具的磨耗率呈現較為複雜的形式。且磨耗率可能會有顯著的降低或增加。亦即是在半接觸潤滑條件下的刀具的磨耗率可能低於、也有可能遠高於非接觸潤滑條件下的刀具的磨耗率,此論點應可解釋實驗的現象。因此,選擇不同的潤滑區域或材料表吸附能與速度係數應會有機會得到較低的刀具磨耗率或較高的工件磨耗率。最後,不同工件表面吸附能對刀具與工件磨耗率的實驗可初步檢測所建立的磨耗理論模式可解釋實驗趨勢。
此外,研究顯示實驗數據的定性趨勢與理論分析預測的趨勢一致。而且刀具或工件的磨耗率之間許多的定性關係將可藉由彈液動壓理論和液動壓拋光法的理論模式得到適當的解釋。
Abstract
Abstract
The tool wear characteristics of the hydrodynamic polishing process under various lubricating conditions are examined in this study. Both the experimental and theoretical studies will be done in this paper. In the experimental study, the relationships between tool wear and its possible influential factors will be examined. In the theoretical study, the mathematical model will be established to interpret the qualitative and quantitative relationships between tool wear characteristics and various operating parameters.
For the experimental study, a series of experiments will be done to investigate the effect of various factors on the tool wear and machining rate, under non-contact or semi-contact lubricating condition. The factors may include the tool’s angular speed, the applied load, the tool’s surface irregularities, the slurry viscosity, and the properties of tool, workpiece and abrasive particle (such as surface energy). To establish the mathematical model, the principle of dynamics, law of minimum potential energy and elasto-hydrodynamic lubricating theorem of hydrodynamic polishing process are adopted to derive the removal rate model of a particle under differential contact conditions or under various material parameters (such as surface energies or speed constants) from the energy point of view. In addition, the wear rate of tool is to be analyzed. To deal with the random nature of tool’s surface irregularities, the probability theory is applied to calculate the average wear rate of tool, under semi-contact or non-contact condition or under various material parameters.
It is shown that both the tool waviness and radius of tool curvature changed and had specific trends in the wear process. Especially, the wear rate of tool under semi-contact lubricating condition was not necessarily large than that under the non-contact one. The experimental data indicated that the effects of tool wear on machining rate highly depended on the lubricating condition of tool. The trend of machining rate versus accumulated machining time under non-contact lubricating condition was very different from that under the semi-contact one.
A mathematical model relating the removal capability of an abrasive particle at the tool’s or workpiece’s surface and various operating parameters are proposed. The qualitative properties of removal capability the under different material parameters and various contact conditions are obtained by the computer simulations. The analysis indicates that the relationships between the removal capability and various material parameters (such as surface energies of adhesion or operating conditions) are not monotonic. Under the contact condition, it is shown that the tool’s surface energy of adhesion and the speed constant has a negative effect on the removal capability at tool’s surface. On the other hand, the surface energy of adhesion on work and the speed constants have a positive effect on the removal capability at tool’s surface. For the workpiece, the converse implications are also true. Three types of patterns for removal capability at tool’s surface due to the degree of embedding of a particle were obtained. There are increase or first increase then decrease or decrease directly, respectively. Under non-contact condition, it is shown that the removal capability has a negative relationship with local film thickness.
In addition, a mathematical model relating the tool or work piece wear rate and various operating parameters are also proposed. The qualitative properties of tool wear rate under various lubricating conditions are obtained by the simple statistic analysis. The analysis indicates that the relationships between tool and workpiece wear rate and various parameters are also not monotonic. Under non-contact condition, the tool or workpiece wear rate will first increase then decrease due to the tool periphery speed increase. The magnitude of wear rate will decrease or increase due to the material parameters. Under the semi-contact condition, the up-and-down trend is also occurred in the relationship between tool or workpiece wear rate and the tool periphery speed. Accordingly, the relationships between wear rate and tool periphery speed, in a lubricating range covering the non-contact and semi-contact conditions, will reveal a twin-peak pattern. Generally, the workpiece wear rate under the semi-contact condition is not less than the non-contact one. However, the tool wear rate under the semi-contact condition is not necessarily large than the non-contact one. For a specific condition, under the semi-contact condition, the magnitude of the tool wear rate under different speed will increase or decrease by choosing different tool’s surface adhesive energy and speed constant and the relationship between tool wear rate and tool speed will become complex. The wear rate could increase or decrease significantly. In other word, the tool wear rate under the semi-contact condition may be smaller or large than the non-contact one. Hence, a tool with large surface adhesive energy and speed constant should have a lower tool wear rate or higher work wear rate under certain lubricating regime. Finally, the experimental study tests that the proposed model is closely related with the experimental data.
The study showed that the qualitative trends of experimental data are consistent with the analytical predictions. Some of the qualitative relationships between tool wear and machining rate could be properly explained from the elasto-hydrodynamic lubrication theorem and the proposed wear theorem for hydrodynamic polishing process.


目次 Table of Contents
目錄

謝辭 i
論文摘要 ii
目錄 vii
圖索引 ix
表索引 xiv
符號說明 xvi
第一章 緒論 1
1.1 前言 1
1.2 一般拋光法的應用 3
1.3 液動壓拋光法簡介 5
1.4 拋光法刀具磨耗的現象 6
1.5 磨耗機制之回顧 7
1.6 拋光法刀具磨耗文獻回顧 11
1.7 內容介紹 13

第二章 液動壓拋光法加工率特性之回顧 15
2.1 非接觸潤滑條件的加工率 15
2.2 半接觸潤滑條件的加工率 18

第三章 液動壓拋光法刀具磨耗之實驗研究 25
3.1 實驗規劃 25
3.2 實驗建立 26
3.3 實驗結果 29
3.4 實驗討論 33

第四章 單一磨粒移除能力理論模式之建立與特性分析 38
4.1 單一磨粒移除能力理論模式之建立 39
4.2 單一磨粒移除能力之特性分析 50
4.2.1 接觸情況下單一磨粒之移除能力之特性分析 50
4.2.2 非接觸情況下單一磨粒之移除能力之特性分析 59

第五章 液動壓拋光法整體磨粒磨耗模式之建立與特性分析 63
5.1 半接觸潤滑條件的磨耗率 64
5.1.1 刀具或工件磨耗率模式之建立 64
5.1.2 刀具或工件磨耗率之計算 67
5.2 半接觸潤滑條件磨耗率的定性特性分析 74
5.2.1 刀具轉速對刀具或工件磨耗率的影響 74
5.2.2 工作物材料參數對刀具或工件磨耗率的影響 75
5.3 非接觸潤滑條件的磨耗率 86
5.4 非接觸潤滑條件磨耗率的定性特性分析 87
5.5 綜合討論 88
5.6 工件表面吸附能之實驗檢測 90

第六章 結論 93

參考文獻 96


圖索引

圖1.1: 液動壓拋光法加工系統示意圖 104
圖1.2: 形狀誤差補償示意圖 105
圖2.1: 非接觸潤滑條件下加工率與刀具轉速或磨漿黏度的關係 示意圖 106
圖2.2: 刀具表面不規則波紋接觸的機率分布 107
圖2.3: 半接觸潤滑條件下加工率與刀具轉速或磨漿黏度的關係 示意圖 108
圖2.4: 潤滑條件包含非接觸與半接觸潤滑區加工率與刀具轉 速或磨漿黏度的預測關係圖 109
圖3.1: 潤滑區包含非接觸與半接觸潤滑條件,加工率與磨漿黏 度及刀具轉速乘積的實驗關係圖 110
圖3.2: 非接觸潤條件下,磨漿黏度0.025N s/m2,加工率與加工累加時間的實驗關係圖 111
圖3.3: 半接觸潤條件下,磨漿黏度0.011N s/m2,加工率與加工累加時間的實驗關係圖 112
圖3.4: 半接觸潤條件下,磨漿黏度0.004N s/m2,加工率與加工累加時間的實驗關係圖 113
圖3.5: 在非接觸潤滑條件下,磨漿黏度0.025 N s/m2與刀具轉速3000 rpm,加工時間 (a) 65 minutes (b) 305 minutes與(c) 485 minutes後,刀具表面某一特定位置的波形變化 114
圖4.1: 磨粒從點A滾滑到點B的示意圖 115
圖4.2: 圓形磨粒與平板的接觸直徑與包覆深度的示意圖 116
圖4.3: 磨粒作用於刀具表面原子的示意圖 117

圖4.4: 磨粒接觸直徑比與磨粒包覆深度的關係圖 118
圖4.5: 接觸狀態下,磨粒行為與刀具滑動吸附能的關係 119
圖4.6: 接觸狀態下,磨粒行為與刀具滾動吸附能的關係 121
圖4.7: 接觸狀態下,磨粒行為與工件滑動吸附能的關係 123
圖4.8: 接觸狀態下,磨粒行為與工件滾動吸附能的關係 125
圖4.9: 接觸狀態下,磨粒行為與刀具滑動係數的關係 127
圖4.10: 接觸狀態下,磨粒行為與刀具滾動係數的關係 129
圖4.11: 接觸狀態下,磨粒行為與工件滑動係數的關係 131
圖4.12: 接觸狀態下,磨粒行為與工件滾動係數的關係 133
圖4.13: 接觸狀態下,磨粒行為與磨粒包覆程度的關係(磨粒易於刀具上純滾動,tar固定) 135
圖4.14: 接觸狀態下,磨粒行為與磨粒包覆程度的關係(磨粒易於刀具上純滾動,tar改變) 138
圖4.15: 接觸狀態下,磨粒行為與磨粒包覆程度的關係(磨粒易於刀具上純滾動,tar迅速改變) 141
圖4.16: 接觸狀態下,磨粒行為與磨粒包覆程度的關係(磨粒易於刀具滾滑並存,tar固定) 144
圖4.17: 接觸狀態下,磨粒行為與磨粒包覆程度的關係(磨粒易於刀具滾滑並存,tar改變) 147
圖4.18: 接觸狀態下,磨粒行為與磨粒包覆程度的關係(磨粒易於刀具滾滑並存,tar迅速改變) 150
圖4.19: 接觸狀態時,不同操作速度下,磨粒行為與磨粒包覆程度的關係(磨粒易於刀具上純滾動,tar改變) 153
圖4.20: 非接觸狀態下,磨粒行為與刀具滾動吸附能的關係 156
圖4.21: 非接觸狀態下,磨粒行為與工件滾動吸附能的關係 158
圖4.22: 非接觸狀態下,磨粒行為與刀具滾動係數的關係 160
圖4.23: 非接觸狀態下,磨粒行為與工件滾動係數的關係 162
圖4.24: 非接觸狀態下,磨粒對刀具的行為與局部薄膜厚度的關係 164
圖4.25: 非接觸狀態下,磨粒對工件的行為與局部薄膜厚度的關係 166
圖4.26: 非接觸狀態時,不同操作速度下,磨粒對刀具的行為與局部薄膜厚度的關係 168
圖5.1: 刀具接觸面積比與薄膜厚度的示意圖 170
圖5.2: 接觸磨粒密度比與薄膜厚度的示意圖 171
圖5.3: 非接觸磨粒密度比與薄膜厚度的示意圖 172
圖5.4: 非接觸與接觸磨粒數目與刀具轉速的示意圖 173
圖5.5: 刀具表面不規則波度接觸磨粒的機率分布 174
圖5.6: 半非接觸潤滑條件下,傳輸功率與刀具轉速的關係(a)磨粒在刀具上純滾動時傳遞至刀具的功率(b) 磨粒在刀具上純滾動時傳遞至工件的功率(c)磨粒在刀具上滾滑並存時傳遞至刀具的功率(d)磨粒在刀具上滾滑並存時傳遞至工件的功率 175
圖5.7(a)(b):半非接觸潤滑條件下,磨粒在刀具上純滾動,增加刀具滾動吸附能,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 177
圖5.7(c)(d):半非接觸潤滑條件下,磨粒在刀具上純滾動,增加刀具滾動係數,傳輸功率與刀具轉速的關係(c)傳遞至刀具的功率(d)傳遞至工件的功率 178
圖5.8(a)(b):半非接觸潤滑條件下,磨粒在刀具上純滾動,增加工件滑動吸附能,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 179
圖5.8(c)(d):半非接觸潤滑條件下,磨粒在刀具上純滾動,增加工件滾動係數,傳輸功率與刀具轉速的關係(c)傳遞至刀具的功率(d)傳遞至工件的功率 180
圖5.9(a)(b):半非接觸潤滑條件下,磨粒在刀具上純滾動,增加工件滑動吸附能,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 181
圖5.9(c)(d):半非接觸潤滑條件下,磨粒在刀具上純滾動,增加工件滾動係數,傳輸功率與刀具轉速的關係(c)傳遞至刀具的功率(d)傳遞至工件的功率 182
圖5.10(a)(b):半非接觸潤滑條件下,磨粒在刀具上純滾動,刀具滾動係數隨磨粒包覆深度增加,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 183
圖5.11(a)(b):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,增加刀具滑動吸附能,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 184
圖5.11(c)(d):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,增加刀具滾動係數,傳輸功率與刀具轉速的關係(c)傳遞至刀具的功率(d)傳遞至工件的功率 185
圖5.12(a)(b):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,增加刀具滾動吸附能,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 186
圖5.12(c)(d):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,增加刀具滾動係數,傳輸功率與刀具轉速的關係(c)傳遞至刀具的功率(d)傳遞至工件的功率 187
圖5.13(a)(b):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,增加工件滑動吸附能,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 188
圖5.13(c)(d):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,增加工件滾動係數,傳輸功率與刀具轉速的關係(c)傳遞至刀具的功率(d)傳遞至工件的功率…………...……… 189
圖5.14(a)(b):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,增加工件滑動吸附能,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 190
圖5.14(c)(d):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,增加工件滾動係數,傳輸功率與刀具轉速的關係(c)傳遞至刀具的功率(d)傳遞至工件的功率 191
圖5.15(a)(b):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,刀具滾動與滑動係數隨磨粒包覆深的度增加,傳輸功率與刀具轉速的關係(a)傳遞至刀具的功率(b)傳遞至工件的功率 192
圖5.15(c)(d):半非接觸潤滑條件下,磨粒在刀具上滾滑並存,刀具滾動係數隨磨粒包覆深的度增加,傳輸功率與刀具轉速的關係(c)傳遞至刀具的功率(d)傳遞至工件的功率 193
圖5.16: 非接觸潤滑條件下,傳輸功率與剪應力的關係 194
圖5.17: 非接觸潤滑條件下,傳遞至刀具的功率與刀具轉速的關係 195
圖5.18: 非接觸潤滑條件下,增加刀具滑動吸附能或滾動係數,傳遞至刀具的功率與刀具轉速的關係 196
圖5.19: 非接觸潤滑條件下,傳遞至工件的功率與刀具轉速的關係 197
圖5.20: 潤滑區域包含非接觸與半接觸條件下,傳遞至工件的功率與刀具轉速的關係 198
圖5.21: 潤滑區域包含非接觸與半接觸條件下,傳遞至刀具的功率與刀具轉速的關係 201
圖5.22: 在半接觸潤滑條件下,選擇不同的材料參數,傳遞至刀具的功率與工件傳輸功率的比值與刀具轉速的關係 204
表索引

表3.1: 在不同的潤滑條件下加工率的實驗結果 207
表3.2: 在不同的刀具轉速下,磨漿黏度0.025 Ns/m2,加工率與加工累加時間的實驗結果 209
表3.3: 在不同的刀具轉速下,磨漿黏度0.011 Ns/m2,加工率與加工累加時間的實驗結果 211
表3.4: 在不同的刀具轉速下,磨漿黏度0.004 Ns/m2,加工率與加工累加時間的實驗結果 210
表3.5(a): 磨漿黏度0.025Ns/m2不同轉速下刀具的磨耗歷程刀具磨耗深度以及曲率半徑與加工累加時間的實驗結果 211
表3.5(b): 磨漿黏度0.025Ns/m2不同轉速下刀具的磨耗歷程 刀具表面波度與加工累加時間的實驗結果 212
表3.6(a): 磨漿黏度0.011Ns/m2不同轉速下刀具的磨耗歷程刀具磨耗深度以及曲率半徑與加工累加時間的實驗結果 213
表3.6(b): 磨漿黏度0.011Ns/m2不同轉速下刀具的磨耗歷程 刀具表面波度與加工累加時間的實驗結果 214
表3.7(a): 磨漿黏度0.004Ns/m2不同轉速下刀具的磨耗歷程刀具磨耗深度以及曲率半徑與加工累加時間的實驗結果 215
表3.7(b): 磨漿黏度0.004Ns/m2不同轉速下刀具的磨耗歷程 刀具表面波度與加工累加時間的實驗結果 216
表4.1: 接觸情況下,磨粒行為與刀具或工件滾、滑吸附能的關係 217
表4.2: 接觸情況下,磨粒行為與刀具或工件滾、滑係數的關係 218
表5.1: 磨粒在刀具上容易純滾動的材料參數下,接觸與非接觸條件,單一磨粒對刀具與工件之平均磨耗率 219

表5.2: 磨粒在刀具上容易滾滑動並純的材料參數下,接觸與非接觸條件,單一磨粒對刀具與工件之平均磨耗率 220
表5.3: 刀具轉速6000rpm,磨漿黏度0.002 Ns/m2,不同工件的加工率與相對應的刀具形貌變化之的實驗結果 221
表5.4: 刀具轉速3000rpm,磨漿黏度0.004 Ns/m2,不同工件的加工率與相對應的刀具形貌變化之的實驗結果 222



參考文獻 References
參考文獻
【1】N. Taniguchi, “The state of the art of nanotechnology for processing of ultra-precision and ultra-fine products,” precis. Eng., 1994, Vol.16, No.1, pp.4-24.
【2】F. S. Soares, et al., “Floating polishing process and analysis of float polished quartz,” Applied Optics, 1994, Vol.33, No.1, pp.89-95.
【3】A. J. Leistner, et al., “Polishing study using Teflon and pitch laps to produce flat and super smooth surfaces,” Applied Optics, 1992, Vol.31, No.10, pp.1472-1482.
【4】Y. Higashi, et al., “New machining method for marking precise very smooth mirror surfaces made from Cu and Al alloys for synchrotron optics,” Rev. Sci. Instrum., 1989, Vol.60, No.7, pp.2120-2123.
【5】S. L. Riedinger, et al., “Chemimechanical polishing of cadmium telluride with bromine-methanol solutions,” Material Science and Engineering, B15, 1992, pp. 9-12.
【6】L. M. Cook, “Chemical process in glass polishing,” Journal of Non-Crysalt. Solids, 1990, No.120, pp.152-164.
【7】Siva. Sivaram, et al., “Planarizing interlevel dielectrics by chemical–mechanical polishing,” Solid state Technology, 1992, pp.87-91.
【8】M. Hoshino, et al., “Chemical-mechanical polishing of metalorganic chemical-vapor-deposited gold for LSI interconnection,” Japanese Journal of Applied Physics, 1993, Vol.32, Part 2, No.3B, pp.329-394.
【9】H. Landis, et al., “Integration of chemical-mechanical polishing into CMO intergrated circuit manufacturing,” Thin Solid Film, 1992, No.220, pp.1-7.
【10】T. Karaki, S. Miyake and J. Watanable, “Facilitation mechanism of polishing rate in mechanical polishing of Si single crystal,” Bull. Japan Soc. of Prec. Engg., 1981, Vol.15, No.1, pp.14-20.
【11】T. Kasai and T. Karaki-Doy, “Tribology from a view point of ultraprecision,” Japanese of Tribology, 1992, Vol. 37, No. 5, pp.539-547.
【12】 T. Kasai, K Hori and T. Karaki-Doy, “Improvement of conventional polishing conditions for obtaining super smooth surfaces of glass and metal works,” Annals of CIRP, 1990,Vol.39, No.1, pp.321-324.
【13】T. kasai, F. Matumoto and A. Kobayashi, “Newly developed fully automatic polishing machining machines for obtainable super-smooth surfaces of compound semiconductor wafers,” Annals of CIRP , 1988, Vol. 37, No.1, pp.537-540.
【14】M. Lkeda, “Study on grinding and polishing method with lip type tools for obtaining middle class diameter spherical lenses,” Int. J. Japan Soc. Prec. Eng., Mar, 1993, Vol.27, No.1, pp.41-46.
【15】M. Ikeda, “Theoretical analysis and spherical polishing with newly proposed non-contact spherical polishing method using lip type tools,” Int. J. Japan Soc. Prec. Eng., June, 1993, Vol.27, No.2, pp.107-112.
【16】 T. Nakamura, K. Akamatsu and N. Arakawa, “A bowl feed and double sides polishing for silicon wafer for VLSI,” Bull. Japan Soc. of Precision Engineering, 1985, Vol.12, No.19, pp.120-125.
【17】G. Siekman, “Polishing of brittle amorphous ally,” Wear, 1987, No.117, pp.359-374.
【18】 J. Haisman, et al., “Damage free tribochemical polishing of diamond at room temperature: a finishing technology,” Precision Engineering, 1992, Vol.14, No.1, pp.20-27.
【19】 J. Khan, “A lapping and polishing process to achieve high quality alumina surfaces for applications in device fabrication,” Thin Solid Film, 1992, No.220, pp.222-226.
【20】A. Une and Y. Uneo, “Newly-designed polishing machine,” Bull. Japan Soc. of Prec. Engg., Mar,1980, Vol.14, No.1, pp.43-47.
【21】A. Une and Y. Uneo, “Flatness control lapping polishing machine,” Precision Engineering, Mar, April, 1992, Vol.4, No.2, pp.93-99.
【22】A. Une and Y. Uneo, “Influence of work plate support on flatness in polishing,” Bull. Japan Soc. of Prec. Engg., Mar, 1980, Vol.14, No. 4, pp.71-75.
【23】 K. Saito, “ Finishing and polishing of free-form surface,” Bull. Japan Soc. of Prec. Engg., 1984, Vol.18, No.2, pp.104-109.
【24】 S. Iiyama, “Damage free polishing for InP substrates,” Bull. Japan Soc .of Prec. Engg., 1983, Vol. 17, No.4, pp.285-286.
【25】 K. Tanaka, Y. Tanaka and M. Ido, “Shape generation process of optical glass and polisher in pitch-polishing,” Bull. Japan Soc. of Prec. Engg., 1981, Vol.15, No.3, pp.207-208.
【26】 R. A. Jones, “Optimization of computer controlled polishing,” appl. Opt., 1977,Vol.16, No.1,pp. 218-224.
【27】R. A. Jones, and K. Geril, “Automated cylindrical polishing of grazing incidence X-ray mirrors,” Opt. Eng., 1982, Vol.21, No6, pp.1051-1056.
【28】R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng., 1983, Vol.22, No2, pp.1051-1056.
【29】R. A. Jones, “Computer-controlled optical surfacing with orbital tool motion,” Opt. Eng., 1982, Vol.25, No6, pp.782-790.
【30】R. A. Jones, “Computer simulation of smoothing during Computer-controlled optical,” Opt. Eng., 1995, Vol.34, No7, pp.1162-1169.
【31】 Y. T. Su, S. Y. Wang and J. S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear, 1995,Vol.188, pp. 77-87.
【32】 Y. T. Su, C. C Horng, J. Y. Sheen and J. S. Hsiau, “A Process planning strategy for removing non-axially symmetric form error by hydrodynamic polishing process,” Int. Mach. Tools Manufact., 1996, Vol.36, No. 2, pp. 1227-1245.
【33】Y. T. Su, C. C Horng, S. Y. Wang and J. S. H. Jang, “Ultra-precision machining by hydrodynamic polishing process,” Int. Mach. Tools Manufact., 1996, Vol.36, No. 2, pp.275-291.
【34】Y. T. Su and J. Y. Sheen, “A process planning strategy for removing arbitrary and axially symmetric profile by a polishing process,” Int. Mach. Tools Manufact, 1999,Vol.39, pp.187-207.
【35】Y. T .Su, C. C Horng and H. K. Guo, “Effect of tool surface irregularities on machining rate of hydrodynamic polishing process,” Wear, 1996, Vol.199, pp.89-99.
【36】Y. T. Su, T. C. Hung and Y. Y. Chang, On machining rate of hydrodynamic polishing process under semi-contact lubricating condition, Wear, 1998, Vol. 220, pp.22-33.
【37】Y. T. Su and Y. C. Kao, “An experimental study on machining rate distribution of hydrodynamic polishing process,” Wear, 1999, Vol.224 pp.95-105.
【38】S. Y. Wang and Y. T. Su, “An investigation on machinability of different materials by hydrodynamic polishing process,” Wear, 1997, Vol.211, pp.185-197.
【39】張永沂, “液動壓拋光於半接觸潤滑狀態下之加工率特性究”,國立中山大學機械系碩士論文,中華民國八十五年。
【40】王述宜, “液動壓拋光特性之研究”,國立中山大學機械系博士論文,中華民國八十四年。
【41】洪春棋, “複合式液動壓拋光特性之研究”,國立中山大學機械系博士論文,中華民國八十五年。
【42】賴國智,蘇耀藤, “複合式拋光系統之設計與加工率特性之分析,”次世代製造技術研討會論文集,1997,新竹,41-48.
【43】柯俊勇,蘇耀藤, “應用拋光法於晶圓平面控制之探討,” 中國機械工程學會第十三屆研討會論文集,1996,台北,103-109.
【44】Y. Dowson and Z. M. Jin, “Micro elastohydrodynamic lubrication of low-elastic-modulus solids on rigid substrates,” J. Phys. D: Appl. Phys, 1992, Vol.25, pp.116-123.
【45】 E. Rabinowicz, Friction and wear of materials, John Wiley & Sons, New York, 1965.
【46】I. M. Huntchings, Tribology, Edward Arnold, G.B., 1992.
【47】N. P. Suh, Tribophysics, Prentice-Hall, New Jersey,1986.
【48】M. H. Jones and D. Scott, Industrial Tribology, Elsevier, New York, 1991.
【49】Horst Czichos, Tribology , Elsevier, New York,1978.
【50】Warren R. DeVries, Analysis of Material Removal Processes, Springer-Verlag, New York, 1992.
【51】F. E. Gorczyca, Application of Metal Cutting Theory, Industrial press, New York, 1987.
【52】M. C. Shaw, Metal Cutting Principles, Clarendon press, Oxford, 1984.
【53】邱源成, 切削加工學講義 , 國立中山大學, 1988.
【54】邱源成, 磨潤學講義 , 國立中山大學, 1988.
【55】Y. T. Su, “Investigation of removal rate properties of a floating polishing process,” J. of the Electrochemical Society, 2000, Vol. 147, pp. 2290-2296.
【56】Z. Chen, et al., “Diamond tips and nanometer-scale mechanical polishing,” Applied Surface Science, 1992, No.70/71, pp.407-412.
【57】E. Rabinowicz, “Practical uses of the surface energy criterion,” Wear, 1964, No.7, pp.9-22.
【58】R. L. Aghan and L. E. Samuels. “ Mechanisms of abrasive polishing,” Wear, 1970, No.16, pp.293-301.
【59】E. Rabinowicz and A. Mutis, “Effect of abrasive particle size on wear,” Wear, 1965, No.8, pp.381-390.
【60】C. Y. Chen, C. C. Yu, S. H. Shen and M. Ho, “Operational aspects of chemical polishing polish pad profile optimization,” Journal of the Electrochemical Society, 2000, Vo147, No.10, pp.3922-3930.
【61】W. D. Li, D. W. Shin, M. Tomozawa and S. P. Murarka, “The effect of the polishing pad treatments on the Chemical-Mechanical Polishing of SiO2-films,” Thin Solid Films, 1995, Vol.270, No.1-2, pp.601-606.
【62】D. J. Stein and D. L. Hetherington, “Prediction of tungsten CMP pad life using blanket removal rate data and endpoint data obtained from process temperature and carrier motor current measurements,” Proceedings of the SPIE, 1999, Vol.3743, pp.112-119.
【63】G. Byrene, B. Mullany and P. Young, “Effect of pad wear on the chemical mechanical polishing of silicon wafers,” Manufacturing Technology, 1999, Vol.48, No.3, pp.143-146.
【64】I. Ali and S. R. Roy, “Pad conditioning in inter layer dielectric CMP”, Solid State Technology, 1997, Vol.40, pp.185-186.
【65】Y. S. Xie and B. Bhushan, “Effect of particle-size, polishing pad and contact pressure in free abrasive polishing,” Wear, 1996, Vol.200, No1-2, pp. 281-295.
【66】D. Wang, J. Lee and K. Holland, “Von Misses stress in chemical-mechanical polishing processes,” Journal of the Electrochemical Society, 1997, Vol.144, pp.1121-1127.
【67】K. Nakamuta, S. Kishii and Y. Arimoto, “Reconditioning-free polishing for interlayer-dielectric planarization,” Japanese Journal of Applied Physics Part 1, 1997, Vol.36, No.3B, pp.1525-1528.
【68】K. Achuthan, J. Curry, M. Lacy, D. Campbell and S. V. Babu, “Investigate of pad deformation and condition during the CMP of silicon dioxide films,” Journal of Electronic Materials, 1996, Vol25, No.10, pp.1628-1632.
【69】Y. S. Xie, “Fundamental wear studies with magnetic particles and head cleaning agents used in magnetic tapes,” Wear, 1996, Vol.202, No.1, pp.3-16.
【70】Z. Stavreva, D. Zeidler, M. Ploetner and K. Drescher, “Characteristics in chemical-mechanical polishing of copper: Comparison of polishing pads,” Applied Surface Science, 1997, Vol.108, No.1, pp.39-44.
【71】H. Liang, F. Kaufman, R. Sevilla and S. Anjur, “Elastic emission machining,” Wear, 1987, Vol.211, No.2, pp.271-279.
【72】K. G. Budinski, “Needs and applications in precision-measurement and monitoring of wear,” Journal of Testing and Evaluation, 1997, Vol..25, No.2, pp.226-232.
【73】T. K. Yu, C. C. Yu, Orlowski and Marius, “Statistical polishing pad model for Chemical-Mechanical polishing,” International Electron Devices Meeting Proceedings of 1993, 1993, Vol.9, pp.865-868.
【74】C. Rogers, J. Coppeta and L. Racz, “Analysis of flow between a wafer and pad during CMP processes,” Solid State Technology, 1997, Vol.40, No.7, pp.187-194.
【75】Smekalin and Konstanantin, “CMP dishing effects in shallow trench isolation,” Journal of Electronic Materials, 1998, Vol.27, No.10, pp.1082-1087.
【76】F. G. Shi, “Modeling of chemical-polishing with soft pads,” Materials Science & Processing, 1998, Vol.67, No.2, pp.249-252.
【77】Bin Zhao and F. G. Shi, “Chemical mechanical polishing: Threshold pressure and Mechanism,” Electrochemical and Solid-state Letters, 1999, Vol.2, No.3, pp.145-147.
【78】J. Tichy, J. A. Levert, L. Shan, and S. Danyluk,“ Contact Mechanics and lubricatio Hydrodynamics of chemical mechanical polishing,” J. of The electrochemical Society, 1999, Vol.146, No.4, pp.1523-1528.
【79】Y. Mori, K. Yamauchi and K. Endo, “Elastic emission machining,” Int. J. Jpn. Soc. Precis. Eng., 1987, Vol.9, No.3, pp.126-128.
【80】Y. Mori, K. Yamauchi and K. Endo, “Mechanism of atomic removal in elastic emission machining,” Int. J. Jpn. Soc. Precis. Eng., 1988, Vol.110, No.1, pp.24-28.
【81】Y. Mori and K. Endo, “ Interaction force between solids surfaces (part I): An atomistic estimation of interaction force,” Jpn. J. of Trib., 1992, Vol.37, No.5, pp.525-537.
【82】 Y. Mori and K. Yamauchi, “Microtribology in high precision machining,” Jpn. J. of Trib., 1992, Vol.37, No.5, pp.1394-1400.
【83】B. J. Hamrock, Foundamentals of Fluid Film Lubrication, McGraw-hill, Singapore, 1994.
【84】J. A. Brydson, Rubbery Materials and their compounds, Elsevier Applied Science, London and New York, 1988.
【85】 K. L. Johnson, K. Kendall and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R.. Soc. Lond. A.324, 1971, pp.303-313.
【86】 K. Kendall, “ Adhesion: Molecules and Mechanics,” Science, 1994, Vol.263, pp.1720-1725.
【87】 K. Kendall, “ Rolling friction and adhesion between smooth solids,” Wear, 1975, Vol.33, pp.351-358.
【88】 M. R. Falvo, R. M. Tayler, A. Helser, “Nanometre-scale rolling and sliding of carbon nanotubes,” Nature, 1999 Vol.397, pp.236-238.
【89】 I. Edmonds, N. Giannakis, and C. Henderson, “Cyclotron analog applied to the measurement of rolling friction,” Am. J. Phys, 1995, Vol.63, No.1, pp.76-80.
【90】Y. Li and A. Seireg, “ Predicting the Coefficient of friction in sliding –Rolling Contacts,” Transactions of the ASME, 1989, Vol.111, pp.386-390.
【91】W. Li, D. W. Shin, M. Tomozawa and S. P. Murarkaand, “The effect of the polishing pad treatments on the chemical-mechanical polishing of SiO2 films,” Thin Solid Films, 1995, Vol.270, pp.601-606.
【92】 B. Bhushan, J. N. Israelachvili and U. Landman, “Nanotribology: friction, wear and lubrication at atomic scale,” Nature, 1995, Vol.374, pp.607-616.
【93】M. Barquins, “Adherence, friction and wear of rubber-like materials,” Wear, 1992, Vol.158, pp.87-117.
【94】 K. kendall, N. McN. Alford and J. D. Birchall, “A new method for measuring the surface energy of solids,” Nature, 1987, Vol.325, pp.294-295.
【95】T. Koizumi and H. Shibazaki, “Study of rolling friction-behavior of the small displacement of staring rolling friction,” Wear, 1983, Vol.88, pp.285-296.
【96】E. Sheehan and M. Lieber, “Nanotribology and Nanofabrication of MoO3 structure by atomic force microscopy,” SCIENC, 1996, Vol.272, 1158-1161.
【97】G. M. Sorokin, A. Yu. Albagachiev and I. A. Medelyaev, “Experimental setup for studying the surface energy of metals and alloys,” Soveit Journal of Friction and Wear, 1986, Vol.7, No.6, pp. 15-18.
【98】J. F. Archard, “Contact and rubbing of flat surfaces,” Journal of Applied Physics, Vol.24, pp. 981-988.
【99】J. F. Archard, Wear theory and mechanisms, Wear Control Handbook, ASME, New York, 1980, pp. 35-80.
【100】E. Rabinowicz, “On the mechanism of polishing,” Wear, 1971, No. 8, pp. 381-390.
【101】C. F. Moore, Principles and applications of tribology, New York, 1975.
【102】A. Papoulis, Probability, Random Various, and Stochastic Process, 3rd., McGraw-Hill, New York, 1991.
【103】R. W. Fox and A. T. McDonald, Introduction To Fluid Mechanics, 3rd, John Wiley & Sons, 1985.
【104】 L. L. Henry, Energy Methods in applied Mechanics, John Wiley & Sons, New York, 1964.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code