Responsive image
博碩士論文 etd-0702102-090807 詳細資訊
Title page for etd-0702102-090807
論文名稱
Title
有機金屬化學氣相沈積出口效應之數值模擬
Numerical Simulation of the outlet effect for the MOCVD process.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-28
繳交日期
Date of Submission
2002-07-02
關鍵字
Keywords
計算流體力學、晶座、砷化鎵、有機金屬化學氣相沈積
susceptor, MOCVD, GaAs, CFD
統計
Statistics
本論文已被瀏覽 5698 次,被下載 7111
The thesis/dissertation has been browsed 5698 times, has been downloaded 7111 times.
中文摘要
摘要

MOCVD製程是半導體製程中重要的一環,而且可應用在太陽能電池上,其製程之好壞關係到整個太陽能電池之效率,因此本研究分析改善其沈積品質。
本研究利用計算流體力學(CFD)中的SIMPLE法來計算MOCVD之流場過程,分析其速度場、溫度場以及濃度場之狀態,配合前人實驗來對照並且分析模擬出更佳之設計。
本文主要探討出口之效應對於GaAs沈積效果之影響,分析在不同的出口大小和位置對於其沈積速率與均勻度之影響。此外,本文還討論入口與晶座之距離、入口速度以及晶座寬度對於沈積速率與薄膜均勻度之差異。
結果得知,出口方向會影響GaAs之沈積率與薄膜均勻度,當出口為橫向側抽時,其薄膜均勻度最佳。就出口大小而言,當出口縮小時會造成晶座兩端速度增快,降低了整體薄膜沈積之均勻度,由此可知,對於沈積薄膜,控制速度邊界層是非常重要的。同時本研究發現入口速度、晶座寬度與入口至晶座之距離皆會影響沈積速率和薄膜均勻度,而其中影響最大之因素為入口至晶座之距離,因為從葛瑞秀夫數(Grashof number)可知,h為三次方之變數。
本研究利用數值模擬配合前人實驗的結果來分析影響MOCVD沈積之變數,發現出口位置與大小對於GaAs之沈積有一定的影響,而本文模擬出最佳結果為全入口,流速Re值小於100,晶座與入口距離為180mm,出口方向為橫向側抽。


Abstract
Abstract

A method using CFD-based computer simulations as a virtual reactor was proposed for cost-effective CVD reactor design. The virtual reactor was developed by combining the chemical reactor mechanism and rate constants obtained from kinetic studies using a small-scale, with the momentum, mass and heat transport processes simulated using a CFD code. The effect of the flow structure on the film thickness uniformity is demonstrated for the growth of GaAs from a Ga(CH3)3 -AsH3- H2 mixture.
We present a modeling study of the growth of gallium arsenide layers deposited onto a high-temperature susceptor in a cylindrical metalorganic chemical vapor deposition reactor. We analyzed the deposition process with a two-dimensional model that is axisymmetric about the vertical axis.
We attempted to control the extent of the consecutive reaction by modifying the flow pattern. For the output of side walls, because the gas velocity increase near the wafer edge, the residence time was lower in the central part of the wafer than near the edge. Therefore, it can be controlled by locating the outlet such that residence time above the entire wafer is uniform.
And the study finds that decreasing the hole size lowered the film uniformity. This occurred because relative to the velocity at the center of the wafer, the velocity near the wafer edge increased with decreasing hole size. This result confirms that the control of the boundary layer thickness is very important for the film thickness uniformity. We also find that decreasing the shower-to-wafer distance increased velocity near the wafer and therefore increased the growth rate.
The present study indicates that we can design a MOCVD reactor and optimize the operating conditions efficiently using a computer simulation with other’s experiments.


目次 Table of Contents
目錄
目錄………………………………………………………………………I
圖目錄 Ⅲ
表目錄 Ⅴ
論文摘要(中文) Ⅵ
論文摘要(英文) Ⅶ
符號說明 Ⅷ

第一章 緒論 1
1.1 研究背景與動機 1
1.2文獻回顧 3
1.3 研究內容 7
第二章 理論模式 11
2.1薄膜沈積原理 11
2.2化學氣相沈積(CVD)反應步驟 14
2.3化學氣相沈積(CVD)之種類 15
2.4影響薄膜成長之因素……………………………………………15
2-4-1 動量傳輸 16
2-4-2 熱能傳遞 16
2-4-3 質量傳送 16
2-4-4 化學氣相沈積(CVD)動力學 16
2.5 GaAs製程之數值模擬………………………………………..16
2.6統御方程式………………………………………………………19
2.7 無因次化……………………………………………………….20
2.8 流體輸送性質………………………………………………….22
2-8-1 黏度(Viscosity)…………………………………………..22
2-8-2 熱傳導系數 (Thermal conductivity)……………………23
2-8-3 質傳系數(Mass diffusivity)…………………………….23
2-8-4 氣體密度(gas density)……………………………………23
第三章 數值模擬方法 27
3.1交錯網格與控制體積 27
3.2 SIMPLE演算法之理論模式 28
3.2.1有限體積數值模擬方法簡介…………………………………28
3.2.2格點的配置……………………….………………………….29
3.3 SIMPLE之數值計算方式 29
3.3.1動量離散方程式…………………………….……………….29
3.3.2 SIMPLE法的解題步驟……………………………………...31
3.4收斂條件 31
3.5誤差標準設定 32
3.6 邊界條件 33
3.6.1 原始邊界條件………………………………………………33
3.6.2 無因次化邊界條件…………………………………………34
3.7求解流程……………………………………………………….36
第四章 數值模擬結果與分析 38
4.1 研究內容 38
4.2 縱向出口大小 39
4.3 縱向出口位置 40
4.4 橫向側抽之探討 41
4.5 縱向與橫向出口比較 42
4.6 入口與晶座間距離 43
4.7 晶座面積之影響 43
4.8 入口速度變化影響 44
第五章 結論與建議 75
5.1 本文結論 75
5.2未來展望 76
參考文獻 77

參考文獻 References
參考文獻
【1】W.K.Cho,D.H..Choi*,M-U Kim” Optimization of the inlet velocity profile for uniform epitaxial growth in a vertical metalorganic chemical vapor deposition reactor.” International Journal of Heat and Mass Transfer 42, pp 4143-4152, 1999.
【2】Y.K.Chae, Y.Egashira, Y.Shimogaki, K.Sugawara ,and H.Komiyama” Chemical Vapor Deposition Reactor Design Using Small-scale Diagnostic Experiment Combined with Computational Fluid Dynamics Simulations. “ Journal of The Electrochemical Society ,146(5)1780-1788,1999.
【3】Y.Gao,*Daniel A.Gulino,* and Ryan Higgins **”Effects of susceptor geometry
on gas growth on Si(1 1 1) with a new MOCVD reactor” MRS Internet J. Nitride Semicon, Res.4sl, G3.53,1999.
【4】K. W.Park, H. Y.pak,”Characteristics of Three-Dimensional Flow Heat and Mass Transfer in a Chemical Vapor Deposition Reactor,”Numerical Heat Transfer PartA, 37:pp.407-423,2000.
【5】W.K Cho, D. H. Choi*, M-U.Kim”Technical Note Optimization of inlet concentration profile for uniform deposition in a cylindrical chemical vapor deposition chamber,”International Journal of Heat and Mass Transfer42,pp 1141-1146,1999.
【6】Z. Nami , Student Member ,IEEE , A. Erbil, G. S. May, Member, IEEE, “Reactor Design Considerations for MOCVD Growth of Thin Films,”IEEE Transacation on Semiconductor.
【7】W. Y. Chung , D. H. Kim, “Y. S. Cho,”Modeling of Cu thin film growth by MOCVD process in a vertical reactor” , J. Crystal Growth ,Vol. 180, pp. 691- 697, 1997.
【8】M.Meyyappan(1994),Computation Modeling in Semiconductor Processing , Longman Scientific & Technical.
【9】Yu.N.Makarov and A.I.Zhmakin, “On the Flow Regimes in VPE Reactors”, J. Crystal Growth ,Vol.94(1989),pp.537-550.
【10】“Optimization of a stagnation point flow reactor design for metalorganic chemical vapor deposition by flow visualizations. ”Prasad N.Gadgil, J. Crystal Growth , Vol.134(1993),pp302-312.
【11】H.K.VERSTEEG and W.MALALASEKERA, ”An introduction to computation fluid dynamics The volume method”,1995.
【12】Peskin, A. P. and Hardin ,G. R. (1998) , ”Application of the shear cell technique to diffusivity measurements in melts of semiconducting compounds:Ga-Sb.” J. Crystal Growth186, pp.494-510.
【13】D. I. Fotiadis, S. Kieda , K. F. Jensen, “Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy ” , J. Crystal Growth, Vol12, pp441-470,1991.
【14】莊達人,”VLSI製造技術”,高立圖書有限公司,台北,pp146-228,1998。
【15】DS. Jang, R. Jetli, S. Acharya, “Comparison of the PISO, SIMPLER, and SIMPLEC Algorithms for the treatment of the pressure-velocity coupling in steady flow problem” , Numerical Heat Transfer, Vol.10, pp209-228, 1986.
【16】林勳棟,”垂直式CVD反應器之流場模擬分析”,義守大學材料科學與工程學系碩士論文,1999。
【17】柳逸斌,”銅薄膜MOCVD製成之數值模擬研究”, 義守大學材料科學與工程學系碩士論文,2000。
【18】CWeber, C.C.Van, D. Keijser, “Modeling of Gas-Flow Patterns in a Symmetric Verical Vapor-Phase-Epitaxy Reactor Allowing Asymmertic Solutions” , J.appl. PhysVol .64, No4, pp2109-2118, 1990.
【19】P.Desjardins, R. Izquierdo , M.Meunier“ Diode laser induced chemical vapor deposition of WSix on TiN form WF6 and SiH4”, J. Appl.Phys.Vol.73, No.15 May, pp.5216-5221, 1993.
【20】C. H. Chen, C. A. Larsen ,G.B.Stringfellow ,D.W.Brown and A. J.Robertson, “
MOVPE Growth of InP Using Isobutylphosphine and Butylphosphine.” Journal of Crystal Growth,1994.
【21】Suhas V. Patanker , “Numerical Heat Transfer and Fluid Flow”, Hemisphere
Publishing Corporation , New York,1983.
【22】Il-Kyoung Kim, W. S. Kim*“Theoretical analysis of wafer temperature dynamics in a low pressure chemical vapor deposition reactor” International Journal of Heat and Mass Transfer, 42, pp.4131-4142, 1999.
【23】I.FOTIADIS,Anthony MKREMER,Donald R.McKENNA and Klavs F.JENS- EN, “Complex flow phenomena in vertical MOCVD reactors :effect on de- position uniformity and interface abruptness. ”,J.Crystal.Growth,Vo85,pp.154 -164.
【24】“Numerical study of transport phenomena in MOCVD reactors using a finite volume multigrid solver.”,F. Durst, L.Kadinskii, J. Crystal. Growth125,pp. 612-626.
【25】A.H.Dilawari and J.SZEKELY, “Computed results for the deposition rates and transport phenomena for an MOCVD system with a conical rotating substrate.”, Crystal.Growth,Vo97, pp.777-791.
【26】R. Byron Bird , Warren E. Stewart and Edwin N. Lightfoot , “Transfer Phenomena” ,John Wiley &Sons Inc. New York ,1960.
【27】K.L. Knutson, R.W. Carr, W.H. Lin, and S.A. Campbell, “A Kinetics and Transport Model of Dichiorosilane Chemical Vapor Deposition,” J. Crystal. Growth,Vol.140, pp. 191-204, 1994.
【28】A.P. Peskin, G.R. Hardin, “Gallium arsenide growth in a pancake MOCVD reactor”, Journalof Crystal Growth Vol.186,pp 494-510, 1998.
【29】“A mathematical representation of a modified stagnation flow reactor for MOCVD applications”,A.H.Dilawari andJ.Szekely,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, J. Crystal. Growth108,pp.491-498.
【30】“Detailed models of the MOVPE process”,Klavs F.Jensen* and Dimitrios I. Fotiadis and Triantafillos J.Mountziaris**, J. Crystal. Growth107(1991), pp. 1-11.
【31】“Experimental measurements and theoretical predictions for the MOCVD of gallium arsenide using a battery-type reactor”,A.H.DILAWARI*,J.SZEKELY and J.DALY, J. Crystal. Growth102(1990),pp.635-642.
【32】“Hydrodynamic dispersion in rotating-disk OMVPE reactors: Numerical simulation and experimental measurements” ,S.Patnaik and R.A.Brown, J. Crystal. Growth 96(1989),pp.153-174.
【33】“A mathematical representation of a modified stagnation flow reactor for MOCVD applications. ”,A.H.Dilawari* and J.Szekely, J. Crystal.Growth108, pp.491-498, 1991.
【34】“Elementary processes and rate-limiting factors in MOVPE of GaAs.”, Max TIRTOWIDJOJO and Richard POLLARD, J. Crystal. Growth93 (1988) pp. 108-114.
【35】“Numerical study of the influence of reactor design on MOCVD with a comparison to experimental data. ”,Andrew N.Jansen*,Mark E.Orazem*, J. Crystal. Growth112(1991),pp316-335.
【36】謝曉星,”計算流體力學及熱傳學”,高立圖書有限公司,高雄,pp1-359,1993。
【37】莊嘉琛,”太陽能工程-太陽電池篇”,全華科技圖書股份有限公司,1997。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code