Responsive image
博碩士論文 etd-0702102-092527 詳細資訊
Title page for etd-0702102-092527
論文名稱
Title
不同工件表面波長對拋光法於表面粗度之改善極限的探討
On Ultimate Improvement of Surface Roughness by Polishing Process; effects of work's wavelength
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-14
繳交日期
Date of Submission
2002-07-02
關鍵字
Keywords
移除率、表面波長、終極粗度、吸附
ultimate roughness, adhesion, surface wavelength, removal rate
統計
Statistics
本論文已被瀏覽 5666 次,被下載 1932
The thesis/dissertation has been browsed 5666 times, has been downloaded 1932 times.
中文摘要
本論文目的在探討拋光法過程中不同工件表面波長(work’s wavelength)對終極粗度(ultimate roughness)的效應,此處終極粗度定義為應用拋光法於粗度移除時所能達到之最小粗度。研究內容將包括實驗分析及理論研究兩部分,實驗分析的部份為經由實驗的方法觀察分析有關不同操作條件對不同工件表面波長之終極粗度的影響;理論研究部分則透過對不同參數下之單一磨粒移除率的探討,推導出有關不同表面波長效應之終極粗度理論,最後並以實驗結果驗證理論所呈現的定性關係。

實驗結果顯示波長愈大則終極粗度愈大,且刀具轉速及刀具粗度對終極粗度的影響均不明顯,而理論部分則提出當表面粗度移除效率小於某定義值時則終極粗度發生,此處粗度移除效率為針對加工深度與粗度改善量的比例而言。最後並根據粗度移除效率之電腦模擬結果建立一終極粗度數學模式描述表面波長、操作條件以及材料參數對終極粗度的效應,而數學模式指出在大波長部分的終極粗度會較小波長部分之終極粗度為高,且終極粗度不敏感於刀具轉速及負載的變化,此趨勢與實驗結果吻合。



Abstract
The effects of work’s surface wavelength on the ultimate surface roughness are considered in this study. Both the experimental and theoretical studies will be done in this study. In the experimental study, the relationships between ultimate surface roughness and various operating parameters will be examined. In the theoretical study, a mathematical model relating the machining rate and various machining parameters are proposed. In the mathematical model, qualitative and quantitative properties of machining rate under various surface geometric condition are obtained by the aid of computer simulation.

For the experimental study, a series of experiments will be done to investigate the effects of various factors on the ultimate surface roughness of different work’s surface wavelength.The factors may include the the tool speed, the tool’s surface irregularity, and the particle density of slurry.

The comouter simulation indicates that the removal rate is non-linear proportional to tool speed and normal load. Besides, results also showed that the difference of removal rate between peak and valley of surface profile always decreases as the work’s surface wavelength increases. The experimental study confirmed that the relationship between ultimate roughness and wavelength does exist in the specific range of work’s surface wavelength . The model appears to be consistent with currently available experimental data.

目次 Table of Contents
目錄


謝誌……………………………………………………………………………i
英文摘要………………………………………….…………………………ii
中文摘要……………………………………………………………………iii
目錄………………………………………………………………………… iv
圖索引………………………………………………………………………vii
表索引………………………………………………………………………xii

第一章 緒論………………………………………………………………1
1.1 前言………………………………………………………………………1
1.2 研究動機…………………………………………………………………2
1.3 研究方法…………………………………………………………………4
1.4 內容介紹…………………………………………………………………6

第二章 液動壓拋光法加工特性及終極粗度理論之回顧………………7
2.1 液動壓拋光法之簡介……………………………………………………7
2.2 不同潤滑條件之加工率特性探討………………………………………9
2.2.1 非接觸潤滑狀態加工率之特性…………………………………10
2.2.2 半接觸潤滑狀態加工率之特性…………………………………13
2.3 終極粗度之理論基礎……………………………………………………20
2.4 結論………………………………………………………………………21

第三章 液動壓拋光法終極粗度之實驗規劃與結果……………………22
3.1 實驗考量…………………………………………………………………23
3.2 實驗規劃…………………………………………………………………24
3.3 實驗系統儀器之簡介……………………………………………………25
3.4 實驗結果…………………………………………………………………27
3.5 結論………………………………………………………………………29

第四章 單一磨粒移除能力與表面波長效應之探討……………………30
4.1 拋光法表面材料移除機制之探討………………………………………30
4.2 磨粒純滾動運動下之動態分析與移除特性……………………………32
4.3 單一磨粒於表面移除機制之受力分析及動態方程式之建立…………37
4.3.1滾動滑動並存下之力方程式建立………………………………37
4.3.2 磨粒於表面動態及移除行為之探討………………………… 39
4.3.3介面吸附能大於材料表面能之材料移除機制探討……………39
4.3.4 應用動力學觀念求解拋光法單一磨粒移除率之動態……… 40
4.4 工件表面幾何效應之探討………………………………………………43
4.4.1 磨粒與工件表面接觸面積之探討…………………………… 43
4.4.2工件表面幾何對粗度移除效應之探討…………………………44
4.5 結論………………………………………………………………………46

第五章 拋光法移除率及工件表面終極粗度模式之建立與特性分析… 47
5.1 單一磨粒移除率之特性分析……………………………………………47
5.1.1 不同操作條件對磨粒移除動態之效應………………………………49
5.1.2 不同材料參數對磨粒移除動態之效應………………………………51
5.2 拋光法粗度移除效率特性之分析…………………………………52
5.2.1 粗度移除效率之定義………………………………………52
5.2.2 粗度移除效率之分析………………………………………55
5.3 終極粗度特性之探討………………………………………………57
5.3.1 終極粗度數學模式之建立…………………………………57
5.3.2 終極粗度特性之分析…………………………………………………58
5.4 終極粗度理論分析與實驗結果之討論……………………………59
5.5 結論…………………………………………………………………60
第六章 結論……………………………………………………………… 62
參考文獻………………………………………………………………………64
附錄………………………………………………………………………… 162

參考文獻 References
【1】 黃忠良編著, 新研磨技術與設備, 復漢出版社, 2000.
【2】 P. Yim, el al.,”The role of disk surface waveness on baseline instability of MR head,” IEEE Transactions on Magnetics, Vol. 35, No. 2, pp. 758-763, 1999.
【3】 A. B. Y. Chan, et al., ”Polished TFT’s:surface roughness reduction and its correlation to device performance improvement,” IEEE Transactions on Electron Devices, Vol. 44, No. 3, pp. 455-463, 1997.
【4】 R. Bruggemann, “Improved steady-state photocarrier grating in nanocrystalline thin films after surface-roughness reduction by mechanical polishing,” Applied Physics Letters, Vol. 82, No. 4, pp. 309-320, 1998.
【5】 S. F. Soares, et al., “Float-polishing process and analysis of float-polished quartz,” Applied Optics, Vol. 33, No. 1, pp. 85-95, 1994.
【6】 Y. Higashi, et al., “New machining method for marking precise very smooth mirror surfaces made from Cu and Al alloys for synchrotron optics,” Rev. Sci. Instrum, Vol. 60, No, 7, pp. 2120-2123, 1989.
【7】 R. A. Jones, “Optimization of computer controlled polishing,” appl. Opt., Vol. 16, No. 1, pp. 218-224, 1977.
【8】 R. A. Jones, and K. Geril, “Automated cylindrical polishing og grazing incidence X-ray mirrors,” Opt. Eng, Vol. 21, No. 6, pp. 1051-1056, 1982.
【9】 R. A. Jones, “Computer-controlled optical surfacing with orbital tool motion,” Opt. Eng, Vol. 25, No. 6, pp. 782-790, 1982.
【10】 R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng, Vol. 22, No. 2, pp. 1051-1056, 1983.
【11】 R. A. Jones, “Computer simulation of smoothing during Computer -controlled optical,” Opt. Eng, Vol. 34, No. 7, pp. 1162-1169, 1995.
【12】 T. Kasai, F. Matumoto, and A. Kobayashi, “Newly developed fully automatic polishing machines for obtainable super-smooth surfaces of compound semiconductor wafer,” Annals of CIRP, Vol. 37, No. 1, pp. 537-540, 1988.
【13】 M. Ikeda, ”Study on grinding and polishing method with lip type tools for obtaining middle class diameter spherical lenses,” Int. J. Japan Soc. Prec. Eng., Mar, Vol. 27, No. 1, pp.41-46, 1993.
【14】 M. Ikeda, ”Theoretical analysis and spherical polishing with newly proposed non-contact spherical polishing method using lip type tools,” Int. J. Japan Soc. Prec. Eng., June, Vol. 27, No. 2, pp.107-112, 1993.
【15】 Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining,” Int. J. Jpn. Soc. Precis. Eng., Vol. 9, No. 3, pp. 123-128, 1987.
【16】 Y. Mori, K. Yamauchi, and K. Endo,”Mechanism of atomic removal in elastic emission machining,” Int. J. Jpn. Soc. Precis. Eng., 1988, Vol.110, No.1, pp24-28.
【17】 Y. Mori and K. Endo, “Interaction force between solids surfaces (part I): An atomistic estimation of interaction force,” Jpn. J. of Trib., 1992, Vol.37, No. 5, pp.525-537.
【18】 Y. T. Su, S. Y. Wang and J. S. Hsiau, ”On machining rate of hydrodynamic polishing process,” Wear, Vol. 188, pp. 77-87, 1995.
【19】 Y. T. Su, C. C. Hong, S. Y. Wang and J. S. H. Jang, ”Ultra-precision machining by hydrodynamic polishing process,” Int. Mach.Tools Manufact., Vol. 36, No. 2, pp. 275-291, 1996.
【20】 Y. T. Su, C. C. Hong, and H. K. Guo, ”Effect of tool surface irregularities on machining rate of hydrodynamic polishing process,” Wear, Vol. 199, pp. 89-99, 1996.
【21】 S. Y. Wang, and Y. T. Su, ”An investigation on machinability of different materials by hydrodynamic polishing process,” Wear, Vol. 211, pp. 185-191, 1997.
【22】 Y. T. Su, T. C. Hung, and Y. Y. Chang, ”On machining rate of hydrodynamic polishing process under semi-contact lubricating condition,” Wear, Vol. 220, pp. 22-33, 1998.
【23】 Y. T. Su, Y. C. Kao, ”An experimental study on machining rate distribution of hydrodynamic polishing process,” Wear, Vol. 224, pp. 95-105, 1999.
【24】 Y. T. Su, “Investigation of removal rate properties of a floating polishing process,” Journal of the Electrochemical Society, Vol. 147, No. 6, pp. 2290-2296, 2000.
【25】 F. B.Kaufman. et al., “Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects,” Journal of the Electrochemical Society, Vol. 138, pp. 3460-3464, 1991.
【26】 L. M. Cook, “Chemical process in glass polishing,” Journal of Non-Crysalt. Solids, Vol. 120, pp. 152-164, 1990.
【27】 S. Sivaram, et al., “Planarizing interlevel dielectrics by chemical-mechanical polishing,” Solid State Technology, pp. 87-91, 1992.
【28】 S. L. Riedinger, et al., “Chemimechanical polishing of cadmium telluride with bromine-methanol solutions,” Material Sci. and Eng., Vol. 15, pp. 9-12, 1992.
【29】 H. Landis, et al., “Inegration of chemical-mechanical polishing into CMOS integrated circuit manufacturing,” Thin Solids Film, Vol. 220, pp. 1-7, 1992.
【30】 M. Hoshino, et al., “Chemical-mechanical polishing of metalorganic chemical-vapor-deposited gold for LSI interaction,” Jpn. Journal of Applied Physics, Vol. 32(Part 2))3B), pp. 392-394, 1993.
【31】 S. R. Runnels and L. M. Eyman, “Tribology analysis of chemical- mechanical polishing,” Journal of the Electrochemical Society, Vol. 141, No. 6, pp. 1698-1701, 1994.
【32】 S. R. Runnels, “Feature-scale fluid-based erosion modeling for chemical-mechanical polishing” Journal of the Electrochemical Society, Vol. 141, No. 7, pp. 1900-1904, 1994.
【33】 S. R. Runnels and P. Renteln, “Modeling the effect of polish pad deformation deformation on wafer surface stress distributions during chemical-mechanical polishing,” Journal of the Electrochemical Society, Vol. 141, No. 6, pp. 1900-1904, 1994.
【34】 A. A. Yasseen, N. J. Mourlas, and M. Mehregany, “Chemical-mechanical polishing for polysilicon surface micromachining,” Journal of the Electrochemical Society, Vol. 144, No. 1, pp.237-242, 1997.
【35】 J.Zabasajja, T. Merchant, B. Ng, S. Banerjee, D. Green, S. Lawing, and H. Kura, “Modeling and characterization of Tungsten chemical and mechanical polishing process,” Journal of the electrochemical Society, Vol. 148, No. 2, pp. G73-G77, 2001.
【36】 J. F. Archard, “Contact and rubbing of flat surfaces,” Journal of Applied Physics, Vol. 24, pp. 981-988, 1957.
【37】 J. F. Archard, Wear theory and mechanisms, Wear Control Handbook, ASME, New York, pp. 35-80, 1980.
【38】 F. W. Preston,”The theory and design of plate glass polishing machines,”J. Soc. Glass Technol., Vol. 11, pp. 214-256, 1927.
【39】 T. K. Yu, C. C. Yu, and M. Orlowski, “A statistical polishing pad model for chemical-mechanical polishing”, in IEDM Tech., Dig, pp.865-868, 1993.
【40】 B. Zhao and F. G. Shi, “Chemical mechanical polishing:Threshold pressure and mechanism,” Electrochemical and Solid-state Letters, Vol. 3, pp. 145-147, 1999.
【41】 F. Zhang, A. A. Busnaina, and G. Ahmadi, “Particle adhesion and removal in chemical mechanical polishing and post-CMP cleaning,” J. Electrochem. Soc., Vol 146, pp.2665-2669, 1999.
【42】 G. Ahmadi and X. Xia, “A model for mechanical wear and abrasive particle adhesion during the chemical mechanical polishing process”, J. Electrochem. Soc., Vol 148, No. 3, G99-G109, 2001.
【43】 G. Nanz and L. E. Cammilletti, “Modeling of chemical- mechanical polishing:A review,” IEEE Trans. Semicond. Manuf., SM-8, Vol 4, pp. 382-389, 1995.
【44】 A. J. Leistner, E. G. Thwaite, F. Lesha, and J. M. Bennett, “Polishing study using Teflon and pitch laps to produce flat and supersmooth surface,” Applied Optics, Vol. 21, No. 10, pp.1472-1482.
【45】 K. Saito, T. Miyoshi, and Y. Sasaki, “Automation of polishing process for a cavity surface on die and molds by using an expert system,” Annals of the CIRP, Vol. 42, No. 1, pp. 553-556, 1993.
【46】 Z. Zhong, V. C. Venkatesh, “Semi-ductile grinding and polishing of ophthalmic aspherics and spherics,” Annals of the CIRP, Vol. 44, No. 1, pp. 339-342, 1995.
【47】 V. C. Venkatesh, Z. Zhong, and E. Wihardjo, “Studies on polishing of glass moulds after lapping with hard and soft pallets,” Journal of Materials Processing Technology, Vol. 62, pp. 415-420, 1996.
【48】 N. S. Ong, V. C. Venkatesh, “Semi-ductile grinding and polishing of Pyrex glass,” Journal of Materials Processing Technology, Vol. 83, pp. 261-266, 1998.
【49】 劉松河, 應用液動壓拋光法於工件表面粗度移除效率之實驗分析與探討, 國立中山大學碩士論文, 2000.
【50】 陳勇維, 應用液動壓拋光法於工件表面終極粗度之初步探討, 國立中山大學碩士論文, 2001.
【51】 Y. Hasegawa, S. Miyazima, “Polishing rate for (100) and (110) surface,” Physica A, Vol.233, pp. 663-671,1996.
【52】 R. E. Parks, C. J. Evans, “Rapid post-polishing of diamond- turned optics, ” Journal of precision engineering, Vol. 16, No. 3, pp. 223-227, 1994.
【53】 洪篤傑, 液動壓拋光法刀具磨耗研究, 國立中山大學博士論文, 2001.
【54】 K. L. Johnson, K. Kendall and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. Lond. A 324, pp. 301-313, 1971
【55】 K. L. Johnson, “Adhesion and friction between a smooth elastic spherical asperity and a plane surface,” Proc. R. Soc. Lond. A 453, pp. 163-179, 1997.
【56】 K.Kendall, ”Crack propagation in lap shear joints,” J. Phys. D., Vol. 8, pp. 512-522, 1975.
【57】 K.Kendall, ”The effects of shrinkage on interfacial cracking in a bonded laminate,” J. Phys. D., Vol. 8, pp. 1722-1732, 1975.
【58】 K. Kendall, “Rolling Friction and Adhesion Between Smooth Solids,” Wear, Vol. 33, pp. 351-358, 1975.
【59】 K.Kendall, ”Kinetics of contact between smooth solids,” J. Adhesion ., Vol. 7, pp. 55-72, 1974.
【60】 K.Kendall, ”Adhesion:Molecules and Mechanics,” Science, Vol. 263, pp.1720-1725, 1994.
【61】 K.Kendall, N. McN. Alford and J. D. Birchall, ”A new method for measuring the surface energy of solids,” Nature, Vol. 325, pp.294-295, 1987.
【62】 M. Barquins, “Adherence,friction and wear of rubber-like material,” Wear, Vol. 158, pp. 87-117, 1992.
【63】 B. Bhushan, Handbook of Micro/Nano Tribology, 1999.
【64】 B. Bhushan, J. N. Israelachvili and U. Landman, “Nanotribology: friction, wear and lubrication at atomic scale,” Nature, Vol. 374, pp.607-616, 1995.
【65】 B. Bhushan, Principles and Applications of Tribology, John Wiley & Sons, 1999.
【66】 Y. Xie and B. Bhushan, “Effects of particle size, polishing pad and contact pressure in free abrasive polishing,” Wear, Vol. 200, pp. 281-295, 1996.
【67】 I. Edmonds, N. Giannakis, and C. Henderson, “Cyclotron analog applied to the measurement of rolling friction,” Am. J. Phys, Vol.63, No.1, pp.76-80, 1995.
【68】 Y. Li and A. Seireg, “Predicting the Coefficient of friction in sliding – Rolling Contacts,” Transactions of the ASME, Vol. 111, pp.386-390, 1989.
【69】 W. Li, D. W. Shin, M. Tomozawa and S. P. Murarkaand, “The effect of the polishing pad treatments on the chemical- mechanical polishing of films,” Thin Solid Films, Vol. 270, pp.601-606, 1995.
【70】 B. J. Hamrock, Foundamentals of Fluid Film Lubrication, McGraw-hill, Singapore, 1994.
【71】 T. Koizumi and H. Shibazaki, “Study of rolling friction-behavior of the small displacement of staring rolling friction,” Wear, Vol. 88, pp.285-296, 1983.
【72】 E. Sheehan and M. Lieber, “Nanotribology and Nanofabrication of structure by atomic force microscopy,” SCIENC, Vol. 272, pp. 1158-1161, 1996.
【73】 G. M. Sorokin, A. Yu. Albagachiev and I. A. Medelyaev, “Experimental setup for studying the surface energy of metals and alloys,” Soveit Journal of Friction and Wear, Vol. 7, No.6, pp.15-18, 1986.
【74】 L. L. Henry, Energy Methods in applied Mechanics, John Wiley & Sons, New York, 1964.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code