Responsive image
博碩士論文 etd-0702107-140828 詳細資訊
Title page for etd-0702107-140828
論文名稱
Title
海草生態模式之發展與應用
Modeling biomass and nutrient dynamics in seagrass meadows (Thalassia hemprichii)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-22
繳交日期
Date of Submission
2007-07-02
關鍵字
Keywords
東北季風、颱風、附生藻、海草、生態模式、潮間帶
intertidal zone, typhoon, northeast monsoon, seagrass, epiphyte, ecological model
統計
Statistics
本論文已被瀏覽 5725 次,被下載 40
The thesis/dissertation has been browsed 5725 times, has been downloaded 40 times.
中文摘要
本研究參考國外所發展的海草、水質模式,以Matlab編譯器建立海草生態模式,並以台灣南部墾丁南灣地區的海草床作為研究案例,模擬海草床內海草生物量、附生藻生物量以及營養鹽濃度之間的變動機制,嘗試針對東北季風及颱風的影響,探討該地生物量變動的影響因素。
本研究模擬地點位於台灣南部恆春半島的南灣,此區主要的海草種類為泰來草 (Thalassia hemprichii) 。台灣南部地區位於熱帶區域,氣溫變化不大,再加上黑潮支流的影響,該區的水溫變動並不明顯,約介於24 (℃) 至30 (℃) 之間。東北季風是該區另一項氣候特徵,從10月到隔年4月間較盛,此期間內強勁的風速,使得暴露於空氣中的海草乾枯。此外,台灣南部地區乾、濕季的影響非常明顯,乾季界於11月至隔年4月,5月至10月為雨季,主要來源為西南季風所帶來的降雨,尤其每年夏天常受颱風影響,其遽增的風速造成水體擾動,不僅使生物死亡率增加,也造成沉積物的擾動。南灣海草床生長區域屬於半封閉式潮池,該區海草族群在低潮時會暴露於空氣中,相較於鄰近區域的海草床,南灣海草暴露於空氣中之時間較長。位於潮間帶高位的海草季節性變化明顯,其生物量夏季較冬季高,而低位及潮池中的海草並未呈現明顯的季節變化。本研究即針對上述的季節變化條件,再加上特殊的氣候因素,進行案例模擬及分析。
經由模擬結果與實測資料的比對,季節上的變動趨勢大致吻合,不論高位區海草 (受暴露乾燥影響) 或是低位區海草 (不受暴露乾燥影響) ,海草生物量 (包括地上生物量、地下生物量、植株數目等項) 於夏季會出現最大值,冬季出現最小值,而颱風的影響會造成夏季生物量驟減。R/S値 (地下生物量除以地上生物量) 則是冬季大於夏季,且夏季內部氮的傳輸會大於冬季,此種現象是因為夏季生長速率較大,所以由根部提供的營養鹽也較多,相較之下,冬季的地下生物量不需為地上生物量的生長提供那麼多的營養鹽,因此R/S値最大值出現在冬天。附生藻生物量的變化,則是於夏季達到最大值,於冬季出現最小值,此現象主要是受到水體營養鹽濃度影響所造成。
高位海草的地上生物量較低位海草小,但高位海草的地下生物量卻遠大於低位海草,植株數目則是以高位海草較多;附生藻的生物量剛好與海草的植株數目呈反比,是以低位區的附生藻生物量較大,推測因為高位海草會暴露於空氣中,受到環境因素的限制較大,因此導致海草地上生物量減少,並且將生長所需的養分儲存於地下生物量的部份。而影響植株數目的主要因子則推測是日照及地下生物量,在水深較淺的高位海草,能接收到較多日照能量,加上高位海草的地下生物量充足、發芽速率高,因而植株數量較多;附生藻同樣也受水深及風乾的限制,高位的附生藻生物量較低位小。在氮循環方面,低位海草固定的氮在地上部份與地下部份約為1:1,高位約為1:1.5~1:2,氮的吸收方面,地下部份是以高位吸收量大於低位,地上部份是以低位吸收量大於高位,主要應該是受到高位地下部份生物量的影響,而高位海草的氮傳輸較高,應該是受到高位海草地上所能吸收到的營養鹽限制,因而需要由地下提供較多的營養鹽維持海草生長。
Abstract
This study refers to developed ecological model abroad, and established the seagrass model with MATLAB compiler. I also took the seagrass meadows in south Taiwan-Nanwan for my studying case, and simulated the dynamic effect of seagrass and epiphyte biomass, as well as nutrient, and attempted to go on probing into the cause with northeast monsoon and typhoon.
The simulating site of this study was Nanwan, which is located at Hengchun Peninsula, the southern tip of Taiwan. The dominant species in this area is Thalassia hemprichii. South Taiwan is situated at a tropical climate, and the variation of air temperature is small. Additionally, Kurshio embranchment cause the variation of water temperature smaller, about 24 (℃) to 30 (℃).The northeastern monsoonal winds, formed downhill winds, are extremely forceful from October to April, so the wind speed is greater during this period than the rest of the year. In South Taiwan, dry-wet season is clearly. The dry season is from November to April, and the wet season is from May to October. The main rainfall comes from southwest monsoon, especially summer typhoon (June to September). The wind speed is raised abruptly by typhoon and makes water agitate, which not only cause the mortality raising but also the sediment turbulence. By Lin’s research (2005), the growing area of seagrass meadow in Nanwan is a half-closed tidal pool where human makes huge effect and there is a lot of drainage of house and inn sewage. Furthermore, these seagrasses in Nanwan would be exposed to air during the period of poor tide and the emerged period is the longest of these three areas -Nanwan, Dakwan and Wanliton. The seasonal dynamic of seagrass, which is located in the high site of intertidal zone, is obvious, and the biomass is larger in summer than in winter; but that is not obvious in the low site and tidal pool. By the seasonal condition and some specially climate condition mentioned above, the analysis of simulate cases would be go on.
Comparing of the modeling result and real measurement, the seasonal changing situation mostly match up. No matter high site (emerged and dried) or low site, there is the maximum of seagrass biomass (including above ground, below ground, or shoot density) in summer, and the minimum in winter. Typhoon causes the biomass losing abruptly in summer. R/S ratio (below-ground biomass division above-ground biomass) is bigger in winter than in summer. On one hand the inside nitrogen redistribution is larger in summer, because the larger growth rate occurs in summer, and the more nutrient is supplied from roots, on the other the redistribution is smaller in winter cause the less nutrient is supplied from roots. Epiphyte biomass has the maximum in summer, when the nutrient concentration of water is larger.
In the section of the difference between low and high site seagrass, it is apparent that the high site seagrass would be exposed to air and dried by northeast monsoon. Although typhoon comes up, its influence is not so strong as northeast monsoon at high site. The maximum biomass still occurs in summer, and it is presumed that the living environment of high site seagrass is with more pressure by nature. The above-ground biomass of high site seagrass is smaller than low site, but the below-ground biomass is much lager at high site. Besides, shoot density is larger at high site. The biomass of epiphyte is larger at low site just opposite to shoot density. It is supposed that high site seagrass is emerged to air and limited by environment factors so above-ground biomass would be reduced and store up the sustenance to below-ground biomass. It is conjectured that the main factor with shoot density is affected by light density and below-ground biomass. In shallow water, the seagrass at high site could accept more light energy, moreover the below-ground biomass is sufficient and the recruitment rate is large, thus there are more shoots at high site. Epiphytes are also limited by water depth and wind, and the biomass of epiphyte at high site is smaller than at low site.
目次 Table of Contents
誌謝 I
摘要 II
ABSTRACT IV
目錄 VII
表目錄 IX
圖目錄 X


第一章 序論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 3
1.4 研究架構 4
第二章 文獻回顧 5
2.1 近岸動力學與海草床間交互作用 5
2.1.1 海草床對水動力的影響 5
2.1.2 水動力對海草床生態的影響 6
2.2 海草與底質沈積物環境 8
2.2.1 沈降與懸浮 8
2.2.2 底層的生化反應 10
2.3 環境對海草生理作用的影響 11
2.3.1 光 11
2.3.2 風 12
2.3.3 溫度 13
2.3.4 鹽度 13
2.4 附生藻與海草生態系統的影響 15
2.4.1 營養鹽 15
2.4.2 可利用光 16
2.5 生態模式與海草模式發展 17
第三章 海草生態模式 20
3.1 模式簡介 20
3.2 水質模組 24
3.2.1 水層環境 25
3.2.2 底層環境 29
3.3 生態模組 34
3.3.1 海草 36
3.3.2 附生藻 39
3.4 海草模組測試 39
3.4.1 光照度測試 39
3.4.2 參數敏感度分析 39
第四章 生態模式之應用 39
4.1 南灣環境背景介紹 39
4.2 模式輸入數據 39
4.3 使用參數 39
4.4 案例模擬 39
4.4.1 案例A 39
4.4.2 案例B 39
4.4.3 案例C 39
4.4.4 案例D 39
4.5 案例模擬結果分析 39
第五章 結論與建議 39
5.1 結論 39
5.2 未來研究及建議 39
參考文獻 39
附錄 A 公式表 39
附錄 B 參數表 39
附錄 C 敏感度分析 39
參考文獻 References
中文部份
1. 王文村,2003。以 Diving-PAM fluorometer 野外實測葉綠素螢光來探討海草及海藻光合作用效率,國立彰化師範大學生物學系碩士論文。
2. 李良山,2007。應用系統動力學軟體探討牡蠣在潟湖中對生態環境的影響,國立中山大學海洋環境及工程研究所碩士論文。
3. 林幸助,2005。「墾丁國家公園海域長期生態研究計劃-人為活動對海域生態所造成之衝擊研究(五)環境教育之應用(二)基本生態資料之建立(二)與環境生態資料庫資訊系統之建立(一)」期末報告─墾丁國家公園海域海草床優養化監測,184~199頁。
4. 林幸助,2006。「墾丁國家公園海域長期生態研究計劃-人為活動對海域生態所造成之衝擊研究(六)環境教育之應用(三)基本生態資料之建立(三)與環境生態資料庫資訊系統之建立(二)」期末報告─墾丁國家公園海域海草床優養化監測,181~199頁。
5. 楊景泰,1994。南灣之Thalassia hemprichii 和 Halodule uninervis 兩種海草根圈脫氮之研究,國立台灣大學海洋研究所碩士論文。
6. 藍秋月,2002。墾丁潮間帶海草豐度與生產力之時空變化及空間生態區位差異,國立中興大學生命科學系碩士論文。


英文部分
1. Anthony W.D. Larkum, Robert J. Orth, Carlos M. Duarte (2006). Seagrasses:Biology, Ecology and Conservation. Netherlands, Springer.
2. Bach, H. K., (1993). A dynamic model describing the seasonal variations in growth and the distribution of eelgrass (Zostera marina L.) I. Model theory. Ecological modeling Vol. 65, no.1-2, pp. 31-50.
3. Baird, M. E., (1999). Towards a verified mechanistic model of plankton population dynamics. Ph.D. thesis, University of Warwick. (http://www.oikos.warwick.ac.uk/ecosystems/ThesisArchive/baird thesis.html.)
4. Baird, M. E., S. J. Walker, B. B. Wallace, I. T. Webster , J. S. Parlsow, (2001). Towards a mechanistic model of estuarine eutrophication. Estuarine, Coastal and Shelf Science.
5. Bartleson R. D., (1988). The relative influence of current reduction by seagrasses on sediment nutrients and seagrass growth in high and low nutrient waters: a simulation model and field observations. MS Thesis, University of Florida,Gainesville, p77.
6. Bartleson R. D., (2004). Interactions of seagrass beds and the water column:effects of bed size and hydrodynamics. Ph.D. thesis, University of Maryland.
7. Björk Mats, Uku Jacqueline, Weil Andreas, Beer Sven, (1999). Photosynthetic tolerances to desiccation of tropical intertidal seagrasses. Mar. Ecol. Prog. Ser., Vol .191: 121-126.
8. Bocci, M., Coffaro, G. and Bendoricchio, G., (1997). Modelling biomass and nutrient dynamics in eelgrass (Zostera marina L.): Applications to the Lagoon of Venice (Italy) and Øresund (Denmark). Ecol. Modelling, 102: 67-80.
9. Chapelle, A., (1995). A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon. Ecol. Modelling, 80: 131-147.
10. Chapelle, A., Ménesguen, A., Deslous-Paoli, J. M., Souchu, P., Mazouni, N., Vaquer, A. And Millet, B., (2000). Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oysters farming and inputs from the watershed. Ecol. Modelling, 127: 161-181.
11. Charles H. Peterson1, Richard A. Luettich Jr1, Fiorenza Micheli1, Gregory A. Skilleter1, (2004), Attenuation of water flow inside seagrass canopies of differing structure, Marine Ecology Progress Series Vol. 268: 81–92.
12. Clavier, J., Boucher, G. and Garrigue, C., (1994). Benthic respiratory and photosyntheticquotients in a tropical lagoon. C. R. Acad. Sci. Paris, Sciences de la Vie/Life Sciences, 317: 937-942.
13. Coastal Resources Management Council Narragansett Bay Estuary Program. Restoring Coastal Habitats for Rhode Island's Future. Retrieved December 1, 2006, from http://www.edc.uri.edu/restoration/html/intro/origin.htm.
14. Cornelisen C. D., Thomas F. I. M., (2004). Ammonium and nitrate uptake by leaves of the seagrass Thalassia testudinum : impact of hydrodynamic regime and epiphyte cover on uptake rates. Journal of Marine Systems,Vol. 49: 177–194.
15. Cornelisen C. D., Thomas F. I. M., (2006). Water flow enhances ammonium and nitrate uptake in a seagrass community. Mar. Ecol. Prog. Ser.,Vol. 312: 1–13.
16. Elkalay K., Frangoulis C., Skliris N., Goffart A. , Gobert S., Lepoint G., Hecqa J.-H., (2003). A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean). Ecological Modelling. Vol. 167: 1–18.
17. Eppley R. W., (1972). Temperature and phytoplankton growth in the sea. Fish. Bull. Vol .70: 1063-1085.
18. Fong Ching Wai, Lee Shing Yip, Wu Rudolf S.S., (2000). The effects of epiphytic algae and their grazers on the intertidal seagrass Zostera japonica. Aquatic Botany Vol.67 : 251–261.
19. Fong P., Harwell M., (1994). Modelling seagrass communities in tropical and subtropicalbays and estuaries: a mathematical model synthesis of current hypotheses. Bull. mar. sci., Vol. 54: 757-781.
20. Fonseca M. S., Zieman J. C., Thayer G. W., Fisher J. S., (1983). The role of current velocity in structuring eelgrass (Zostera marina L.) meadows. Estuar Coast Shelf Sci. Vol. 17: 367-380.
21. Florida Museum of Natural History Ichthyology Department. southflorida seagrass. Retrieved December 1, 2006, from
http://www.flmnh.ufl.edu/fish/southflorida/seagrass/Introduction.html.
22. Gambi M. C., Nowell A. R. M., Jumars P. A., (1990). Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar. Ecol. Prog. Ser. Vol. 61: 159-169.
23. Hata K., Nakata K., (1998). Evaluation of eelgrass bed nitrogen cycle using an ecosystem model. Environmental Modelling and Software. Vol.13: 491–502.
24. Hata K., Nakata K., Suzuki T., (2004). The nitrogen cycle in tidal flats and eelgrass beds of Ise Bay. Journal of Marine Systems Vol. 45: 237– 253.
25. Henriksen, K., Kemp, W.M., (1988). Nitrification in estuarine and coastal marine sediments. In: Blakburn, T.H., Sørensen (Eds.), Nitrogen Cycling in Coastal Marine Environment. Wiley and sons, New York, pp. 207–249.
26. Holmer Marianne, Bondgaard Elsebet Juhl, (2001). Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquatic Botany Vol.70 : 29–38.
27. Howard, R.K., and Edgar G.J. (1994). Seagrass meadows. In ‘Marine Biology’. (Eds. L.S. Hammond and R.N. Synnott) pp. 257–273.
28. Jassby, A. D. and Platt, T., (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., Vol .21: 540-547.
29. Koch E.W., (1996). Hydrodynamics of a shallow Thalassia testudinum bed in Florida, USA. In: Kuo J, Phillips RC, Walker DI, Kirkman H (eds) Seagrass Biology: Proceedings of an International Workshop, Rottenest Island, Western Australia, p 105-110.
30. Koch Evamaria W., (1999). Sediment resuspension in a shallow Thalassia testudinum banks ex König bed. Aquatic Botany Vol .65: 269–280.
31. Kyoko Hataa, Kisaburo Nakatab, Teruaki Suzukic, (2004). The nitrogen cycle in tidal flats and eelgrass beds of Ise Bay. Journal of Marine Systems Vol .45: 237– 253.
32. Kyoko Hata, Kisaburo Nakata, (1998). Evaluation of eelgrass bed nitrogen cycle using an ecosystem model. Environmental Modelling and Software Vol .13: 491–502.
33. Laugier, T., (1998). Ecologie de deux phanérogames marines sympatriques - Zostera marina L.et Z. Noltii Hornem. - dans l'étang de Thau (Hérault, France). Thèse de l'université de Montpellier II, France, pp. 162.
34. Lin, H.-J., Nixon, S. W., Taylor, D. I., Granger, S. L. and Buckley, B. A., (1996). Response of epiphytes on eelgrass, Zostera marina L., to separate and combined nitrogen and phosphorus enrichment. Aquat. Bot., Vol .52: 243-258.
35. Lin Hsing-Juh and Shao Kwang-Tsao, (1998). Temporal changes in the aboundance and growth of intertidal Thalassia hemprichii seagrass beds in southern Taiwan. Bot. Bull Acad. Sin. Vol. 39: 191-198.
36. Lin Hsing-Juh, Hsien Li-Yung, Liu Pi-Jen, (2005). Seagrasses of Tongsha Island, with descriptions of four new records to Taiwan. Bot. Bull Acad. Sin. Vol. 46: 163-168.
37. Lin Hsing-Juh, Wu Chen-Yi, Kao Shuh-Ji, Kao Wen-Yuan, Meng Pei-Jie, (2007). Mapping anthropogenic nitrogen through point sources in coral reefs using δ15N in macroalgae. Mar. Ecol. Prog. Ser., Vol .335: 95-109.
38. Nakanashi, H., Ukita, M., Kawai, Y., (1986). Study on the modelling of the behavior of phosphorus released from sediments. Ecol. Model. Vol .31: 105–123.
39. OzEstuaries. Conceptual models of Australian estuaries and coastal waterways. Retrieved November 1, 2006, from http://www.ozestuaries.org/conceptual_mods/conceptual.jsp.
40. OzEstuaries. Changes in Seagrass Areas. Retrieved November 1, 2006, from http://www.ozestuaries.org/indicators/In_Seagrass_area_f.html.
41. Pedersen, M. F. and Borum, J., (1993). An annual nitrogen budget for a seagrass Zostera marina population. Mar. Ecol. Prog. Ser., Vol .101: 169-177.
42. Pérez, M. and Romero, J., (1992). Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquat. Bot., Vol.43: 51-62.
43. Pérez-Lloréns, J.L. and Niell, F.X., (1993). Seasonal dynamics of biomass and nutrient content in the intertidal seagrass Zostera noltii Hornem. From Palmones river estuary, Spain. Aquat. Bot., 46: 49-66.
44. Peterson C. H., Luettich R. A., Micheli1 F., Skilleter G. A., (2004). Attenuation of water flow inside seagrass canopies of differing structure. Mar. Ecol. Prog. Ser., Vol.268: 81–92.
45. Plus, M., Deslous-Paoli, J-M., Auby, I. , Dagault, F., (2001). Factors influencing primary production of seagrass beds (Zostera noltii Hornem.) in the Thau lagoon (French Mediterranean coast). Mar. Biol. Ecol., Vol .259: 63-84.
46. Plus, M., Chapelle, A., Ménesguen, A., Deslous-Paolic, J., Auby, I., (2003). Modelling seasonal dynamics of biomasses and nitrogen contents in a seagrass meadow (Zostera noltii Hornem.): application to the Thau lagoon (French Mediterranean coast). Ecological Modelling, Vol .161(3): 211-236.
47. Pryor Sara C. , Sørensen Lise Lotte, (2002). Dry deposition of reactive nitrogen to marine environments recent advances and remaining uncertainties. Marine Pollution Bulletin , Vol .44: 1336-1340.
48. Simple Estuarine Response Model. Technical Description of the Ecological Model-CSIRO Simple Estuarine Response Model 1. Retrieved November 1, 2006, from http://www.per.marine.csiro.au/serm/model_description.htm.
49. Sohma, A., Sato T., Nakata K., (2000). New numerical model study on a tidal flat system—seasonal, daily and tidal variations. Spill Science and Technology Bulletin, Vol.6(2): 173– 185.
50. Sohma, A., Sekiguchi Y., Nakata K., (2004). Modeling and evaluating the ecosystem of sea-grass beds, shallow waters without sea-grass, and an oxygen-depleted offshore area. Journal of Marine Systems Vol. 45: 105– 142.
51. South Florida water management district (sfwmd). Seagrass Model. Retrieved December 1, 2006, from http://www.duke.edu/~dfg/model.html.
52. Touchette Brant W.,Burkholder JoAnn M., (2000). Overview of the physiological ecology of carbon metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology, Vol. 250: 169– 205.
53. Van Lent, F., (1995). A simulation model for growth and seasonal changes in density, biomass and C:N ratio of populations of Zostera marina L. (eelgrass) with different life-history strategies. In Intraspecific variability of Zostera marina L. in the southern Netherlands. PhD dissertation University of Nijmegen, pp. 218.
54. Verhagen, J. H. G., Nienhuis, P. H., (1983). A simulation model of production, seasonal changes in biomass and distribution of eelgrass (Zostera marina ) in Lake Grevelingen. Marine ecology progress series Oldendorf ,Vol.10, no. 2, pp. 187-195.
55. Vermaat J. E., Santamaria L., Roos P. J., (2000). Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch Hydrobiol Vol. 148(4): 549-562.
56. Zimmerman, R. C., Smith, R. D. and Alberte, R. S., (1987). Is growth of eelgrass nitrogen limited ? A numerical simulation of the effect of light and nitrogen on the growth dynamics of Zostera marina. Mar. Ecol. Prog. Ser., Vol .41: 167-176.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.219.3.72
論文開放下載的時間是 校外不公開

Your IP address is 18.219.3.72
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code