Responsive image
博碩士論文 etd-0702109-122237 詳細資訊
Title page for etd-0702109-122237
論文名稱
Title
平均應變對多晶IF鋼的疲勞性質與差排結構影響之研究
The mean strain effects on fatigue behaviors and dislocation structures for polycrystalline IF steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
263
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-17
繳交日期
Date of Submission
2009-07-02
關鍵字
Keywords
差排胞、IF鋼、差排團
loop patches, interstitial-free steels, dislocation cells
統計
Statistics
本論文已被瀏覽 5698 次,被下載 0
The thesis/dissertation has been browsed 5698 times, has been downloaded 0 times.
中文摘要
本研究利用多晶IF鋼在R = 0的條件下進行實驗,俾以了解變動應變下差排之正演化和逆演化的機構。SEM的BEI/ECCI之模式以及TEM是主要的工具用來觀察微結構組織。
當IF鋼在稍高於疲勞限下作循環變形時,直徑小於2μm的差排胞傾向於在晶界處與晶粒間的triple junction處形成。當最大應變控制在0.2%時並無顯著的循環硬化發生且難以發現小差排胞,然而當最大應變控制在0.25%-0.6%時將有二次硬化的發生,同時直徑小於2μm的差排胞也將開始發展,而二次硬化率正比於應變振幅。
當應變範圍由1.2%降低至0.2%或0.15%時,差排胞會轉變成差排團結構,且差排的滑移行為也將從多重滑移變成單一滑移。本研究發現差排胞的崩散永遠會在差排團形成之前發生,因此差排結構逆演化的順序為差排胞、差排胞之崩散以及新的差排團之形成。然而一旦應變範圍降低至0.1%時,差排胞將保持原狀。因此產生差排逆演化之應變門檻約在0.1%與0.15%之間。此外差排逆演化與應變比無關,而其僅受應力範圍之影響。錯位程度較高的差排胞產生逆演化時,新發展的差排團常受限制在凝聚的高錯位程度差排胞壁之間所形成的差排區塊中。
Abstract
This work is aimed to understand the mechanisms for evolution and reversed evolution of dislocation structure under variable strain amplitudes, using automotive-grade interstitial-free steels (IF steel) under strain ratio (R) = 0 condition. The microstructures were mainly examined by the SEM under BEI/ECCI mode and TEM were used for this study.
Near the endurance limit, the dislocation cells smaller than 2μm develop preferably along grain boundaries and triple junctions among the grains. Within grain interiors, it is hardly observed these small dislocation cells and cyclic hardening even at εmax =0.2%. When strain amplitudes were controlled at a range from εmax = 0.25% to 0.6%, a secondary cyclic hardening occurs prior to fatigue failure and less than 2um dislocation cells rapidly developed thoroughly. The secondary hardening rates were found to be directly proportional to the strain amplitudes.
For high-low strain fatigue tests, while the maximum strain was decreased from 1.2% to 0.2% or 0.15%, dislocation cells were collapsed first and re-grouped into loop-patch structures due to the gliding behavior of dislocations changing from multiple-slips to single-slip. However, once the strain range is further reduced to 0.1%, dislocation cells would persist, showing no signs of collapse. Moreover, the reversal development of dislocation structures is independent of strain ratio. Furthermore newly developed loop patches are usually confined within dislocation domains with very condensed dislocation cell walls with high boundary misorientation.
目次 Table of Contents
總目錄
論文摘要 I
Abstract III
總目錄 IV
表目錄 VII
圖目錄 VIII

第一章 前言 1
1.1 背景 1
1.2 研究動機 4
第二章 文獻回顧 7
2.1 B.C.C.材料的差排行為 7
2.2 差排偶極結構之排列方位與形態 9
2.3 BCC材料與FCC材料的循環應力-應變曲線(cyclic stress-strain curve, CSSC)之比較 12
2.4 差排逆演化 14
第三章 實驗方法 17
3.1 材料準備 17
3.2 低週疲勞實驗 18
3.2.1 試棒校正 18
3.2.2 固定最大應變之試驗 18
3.2.3 降低最大應變與提升最小應變之試驗 19
3.3 掃描式電子顯微鏡觀察 19
3.4 穿透式電子顯微鏡觀察 20
第四章 實驗結果 21
4.1 循環應力對循環週期數關係之曲線圖與遲滯曲線圖 21
4.2 循環應力-應變曲線圖(CSSC) 23
4.3 固定最大應變之循環變形下所得之差排結構 24
4.3.1 εmax = 0.1%(A區上限) 24
4.3.2 εmax = 0.15%(B區) 24
4.3.3 εmax = 0.2%(B區上限) 25
4.3.4 εmax = 0.25% 與 0.3%(C區) 28
4.3.5 εmax = 0.4% (C區) 30
4.3.6 εmax = 0.6%(C區) 31
4.3.7 εmax = 1.2% (C區) 33
4.4 固定最大應變在εmax = 1.2%並進行至30 cycles時立即降低最大應變後之差排結構 33
4.4.1 降低最大應變至0.2% 34
4.4.2 降低最大應變至0.15% 37
4.4.3 降低最大應變至0.1% 38
4.5 固定最大應變在εmax = 1.2%並進行至30 cycles時立即提升最小應變後之差排結構 39
4.5.1提升最小應變至1.0% 39
4.5.2 提升最小應變至1.05% 42
4.5.3 提升最小應變至1.1% 43
4.6 固定最大應變在εmax = 0.6%並進行至5000 cycles時立即降低最大應變至0.2%後之差排結構 44
第五章 討論 47
5.1 差排團之形態與鑑定 47
5.2 決定材料疲勞破壞與否之差排結構 56
5.3 二次硬化與差排結構之關係 61
5.4 差排結構之逆演化 67
5.5 應變比對差排結構逆演化之影響 78
5.6 差排結構逆演化之應變門檻 81
5.7 差排胞的形貌對差排逆演化之影響 84
第六章 結論 89
參考文獻 92


表目錄
表2.1 差排團或差排偶極之結構的排列方位與dislocation sweeping angle 之關係[44] 105
表3.1 IF鋼之化學成份(ppm) 106
表3.2 固定最大應變之試驗 107
表3.3 固定最大應變1.2%後降低最大應變之試驗 108
表3.4 固定最大應變1.2%後提升最小應變之試驗 109
表3.5 固定最大應變0.6%後降低最大應變至0.2%之試驗 110
表4.1 不同循環應變對二次硬化之影響 111
表4.2 不同的最大應變條件與其對應之塑性應變振幅對照表 112
表4.3 固定最大應變1.2%後降低最大應變至不同條件所得之差排結構之統計(%) 113
表4.4 固定最大應變1.2%後提升最小應變至不同條件所得之差排結構之統計(%) 114
表5.1 伯格向量[-111]與[1-11]所形成之差排團與dislocation sweeping angle 之關係 115
表5.2 以主滑移系統[1-11](121)為例所計算出之θ值(主差排的刃差排之方向與二次滑移面相差之角度) 116

圖目錄
圖2.1 溫度及應力關係圖[43] 。 118
圖2.2 dipole loops的有效堆疊方向之示意圖[19]。 119
圖2.3 多晶銅於循環變形後的三種不同差排堆型態。(a)柱狀型差排堆;(b)不規則型差排堆;(c)胞狀型差排堆[83]。 120
圖2.4 單晶銅之CSSC[50]。 121
圖2.5 多晶銅之CSSC[42]。其中▼為駱統之30μ m,■為駱統之120μ m,▲為駱統之260μ m,○為Figueroa 等人之350μ m,+為Lukas等人之1200μ m,◊為Polak等人之50μ m,∆為Lukas等人之70μ m,□為Liu 等人之40μ m。............................ 122
圖2.6 不同BCC 材料之CSSC。..................................................... 123
圖2.7 多晶銅在裂痕成長實驗之裂痕尖端的差排結構之示意圖
[94]。....................................................................................... 123
圖2.8 多晶銅在裂痕成長實驗從230 kgf 降至110 kgf 且在進行6.0 x
105 cycles 後裂痕尖端的差排結構[64]。............................. 124
圖2.9 多晶銅在低週疲勞實驗從0.3%降至0.1%且再進行1.0 x 104
cycles 後於TEM 下所觀察到的差排結構[67]。g = [1-11], B ≈
(011)。..................................................................................... 124
圖2.10 多晶銅在低週疲勞實驗從0.4%降至0.2%且再進行10000
cycles 後於SEM 之BEI/ECCI 模式下所觀察到的差排結構
[69]。....................................................................................... 125
圖2.11 多晶IF 鋼在低週疲勞實驗從0.4%降至0.2%且再進行10000
cycles 後於SEM 之BEI/ECCI 模式下所觀察到的差排結構
[71]。....................................................................................... 125
圖3.1 疲勞試棒規格示意圖。........................................................... 126
圖3.2 本實驗流程圖。....................................................................... 127
圖3.3 INSTRON-8801 疲勞試驗機。.............................................. 128
圖4.1 (a)不同最大應變條件與其對應之應力與循環次數關係圖;
(b)-(i)不同最大應變條件下所對應之遲滯迴路圖。(b) 0.1%; (c)
0.15%; (d) 0.2%; (e) 0.25%; (f) 0.3%; (g) 0.4%; (h) 0.6%; (i)
1.2%。..................................................................................... 129
圖4.2 固定最大應變於εmax = 1.2%並進行30cycles 後降低最大應變
至εmax = 0.2%時之(a)應力與循環次數關係圖;(b)遲滯迴路
圖。.......................................................................................... 134
圖4.3 固定最大應變於εmax = 1.2%並進行30cycles 後降低最大應變
至εmax = 0.15%時之(a)應力與循環次數關係圖;(b)遲滯迴路
圖;(c)降低最大應變後0% - 0.15%所對應的遲滯迴路圖。..135
圖4.4 固定最大應變於εmax = 1.2%並進行30cycles 後降低最大應變
至εmax = 0.1%時之(a)應力與循環次數關係圖;(b)遲滯迴路
圖;(c)降低最大應變後0% - 0.1%所對應的遲滯迴路圖。.. 137
圖4.5 固定最大應變於εmax = 1.2%並進行30cycles 後提升最小應變
至εmin = 1.0%時之(a)應力與循環次數關係圖;(b)遲滯迴路
圖。.......................................................................................... 139
圖4.6 固定最大應變於 εmax = 1.2%並進行30cycles 後提升最小應變
至εmin = 1.05%時之(a)應力與循環次數關係圖;(b)遲滯迴路
圖;(c)提升最小應變後1.05% - 1.2%所對應的遲滯迴路圖。..
............................................................................................ 140
圖4.7 固定最大應變於εmax = 1.2%並進行30cycles 後提升最小應變
至εmin = 1.1%時之(a)應力與循環次數關係圖;(b)遲滯迴路
圖;(c)提升最小應變後1.1% - 1.2%所對應的遲滯迴路圖。.....
............................................................................................ 142
圖4.8 固定最大應變於εmax = 0.6%並進行5000cycles 時立即降低最
大應變至εmax = 0.2%之(a)應力與循環次數關係圖;(b)遲滯迴
路圖。...................................................................................... 144
圖4.9 多晶IF 鋼之循環應力-應變曲線圖(cyclic stress-strain curve)。
............................................................................................ 145
圖4.10 最大應變控制在εmax = 0.1% (A 區上限)之低週疲勞並循環至
200 萬cycles 時之差排結構。(a)在SEM 的BEI/ECCI 模式下
所觀察到之差排結構形態(inverse image);(b)於圖(a)中標示L
之局部放大圖;(c)於TEM 下所觀察到之差排結構,B ≈ [111],
g = [1-10],其中bp 為主伯格向量。................................... 146
圖4.11 最大應變控制在εmax = 0.15% (B 區)之低週疲勞並循環至100
萬cycles 時之差排結構。(a)在SEM 的BEI/ECCI 模式下所觀
察到之差排結構形態(inverse image);(b)在圖(a)中標示J 之局
部放大圖;(c)在圖(a)中標示K 之局部放大圖。.................. 147
圖4.12 最大應變控制在εmax = 0.15% (B 區)之低週疲勞並循環至100
萬cycles 時在SEM的BEI/ECCI 模式下觀察到在inclusion 附
近的差排團結構並無改變(inverse image)。........................ 148
圖4.13 最大應變控制在εmax = 0.15% (B 區)之低週疲勞並循環至100
萬cycles 時於TEM 下所觀察到之差排團結構。(a) B ≈ [111],
g = [0-11];(b) B ≈ [111],g = [1-10];(c) B ≈ [111],g = [10-1]。
............................................................................................ 149
圖4.14 最大應變控制在εmax = 0.2% (B 區上限)之低週疲勞並循環至
1000 cycles 時在SEM 的BEI/ECCI 模式下觀察到的差排團結
構(inverse image)。................................................................ 150
圖4.15 最大應變控制在εmax = 0.2% (B 區上限)之低週疲勞並循環至
1000 cycles 時在TEM 下觀察到的差排團結構。(a)低倍圖;(b)
於圖(a)中標示U 之局部放大圖,B ≈ [111],g = [0-11],其中
bp 為主伯格向量;(c)與圖(b)同,B ≈ [111],g = [1-10];(d)與圖
(b)同,B ≈ [111],g = [10-1];(e)於圖(a)中標示V 之局部放大
圖,B ≈ [111],g = [0-11];(f)與圖(e)同,B ≈ [111],g = [1-10];(g)
與圖(e)同,B ≈ [111],g = [10-1];(h)與圖(e)同,B ≈ [101],g =
[10-1]。.................................................................................... 151
圖4.16 最大應變控制在εmax = 0.2% (B 區上限)之低週疲勞並循環至
1000 cycles 時在TEM 下觀察到的差排團結構。(a) B ≈ [111],
g = [0-11];(b) B ≈ [111],g = [1-10];(c) B ≈ [111],g = [-101];(d)
B ≈ [011],g = [0-11]。.......................................................... 154
圖4.17 最大應變控制在εmax = 0.2% (B 區上限)之低週疲勞並循環至
1000 cycles 時在TEM 下觀察到的差排團結構。(a) B ≈ [111],
g = [01-1];(b) B ≈ [111],g = [1-10];(c) B ≈ [111],g = [10-1];(d)
B ≈ [101],g = [10-1]。.......................................................... 155
圖4.18 最大應變控制在εmax = 0.2% (B 區上限)之低週疲勞並循環至
40 萬 cycles 時之差排結構。(a)在SEM 的BEI/ECCI 模式下
所觀察到之差排結構形態(inverse image);(b)在圖(a)中標示M
之局部放大圖;(c)在圖(a)中標示N 之局部放大圖;(d)於TEM
下觀察到差排團正在轉變成差排牆,B ≈ [111],g = [01-1],
其中bp 為主伯格向量;(e)與(d)同,但相差約7°;(f) B ≈ [111],
g = [1-10];(g) B ≈ [101],g = [10-1]。.................................. 156
圖4.19 最大應變控制在εmax = 0.25% (C 區)之低週疲勞並循環至
10000 cycles 時之差排結構。(a)在SEM 的BEI/ECCI 模式下
所觀察到之差排結構形態(inverse image);(b)在圖(a)中標示H
XIII
之局部放大圖;(c)在圖(a)中標示G 之局部放大圖。.......... 158
圖4.20 最大應變控制在εmax = 0.25% (C 區)之低週疲勞並循環至23
萬 cycles 時材料斷裂後之差排胞結構。(a) 在SEM 的
BEI/ECCI 模式下所觀察到之差排胞結構 (inverse image);(b)
在圖(a)中標示H 之局部放大圖。........................................ 159
圖4.21 最大應變控制在εmax = 0.25% (C 區)之低週疲勞並循環至23
萬 cycles 時材料斷裂後之差排胞結構。(a)在TEM 下所觀察
到之差排結構形態,顯示出靠近晶界處之差排胞尺寸較小;(b)
在圖(a)中標示O 之局部放大圖;(c)在圖(a)中標示P 之局部放
大圖。...................................................................................... 160
圖4.22 最大應變控制在εmax = 0.25% (C 區)之低週疲勞並循環至23
萬 cycles 時材料斷裂後觀察到小於2μm 的差排胞傾向於在
晶粒間的triple junction 處形成。(a)在SEM 的BEI/ECCI 模式
下所觀察到之差排胞結構(inverse image);(b) 在TEM 下所觀
察到之差排胞結構。............................................................. 161
圖4.23 最大應變控制在εmax = 0.3% (C 區)之低週疲勞並循環至5000
cycles 時之差排結構。(a)在SEM 的BEI/ECCI 模式下所觀察
到之差排結構形態(inverse image) ;(b)在圖(a)中標示J 之局部
放大圖;(c)在圖(a)中標示K 之局部放大圖。...................... 162
圖4.24 最大應變控制在εmax = 0.3%(C 區)之低週疲勞並循環至13 萬
cycles 時材料斷裂後之差排結構(inverse image)。............. 163
圖4.25 最大應變控制在εmax = 0.4% (C 區)之低週疲勞並循環至500
cycles 時之差排牆結構。(a)在低倍率之SEM 的BEI/ECCI 模
式下並無觀察到具體差排結構(inverse image);(b)在圖(a)中標
示K 之局部放大圖,顯示出幾乎整個晶粒都由差排牆組成。
............................................................................................ 164
圖4.26 最大應變控制在εmax = 0.4% (C 區)之低週疲勞並循環至500
cycles 時於TEM 下所觀察到之差排牆結構。(a)低倍圖;(b)於
圖(a)中標示S 之局部放大圖,B ≈ [111],g = [01-1];(c)與圖(b)
同,B ≈ [111],g = [1-10];(d)與圖(b)同,B ≈ [111],g = [10-1]。
............................................................................................ 165
圖4.27 最大應變控制在εmax = 0.4% (C 區)之低週疲勞並循環至5000
cycles 時之差排結構。(a)在低倍率之SEM 的BEI/ECCI 模式
下所觀察到之差排結構(inverse image);(b)在圖(a)中標示E 之
局部放大圖顯示出差排胞傾向從晶界處往晶粒內部由差排牆
轉化過來;(c)在TEM 下之所觀察到差排胞正從左邊晶界處往
晶粒內部由差排牆轉化過來。............................................. 166
圖4.28 最大應變控制在εmax = 0.4% (C 區)之低週疲勞並循環至32000
cycles 時材料斷裂後之差排胞結構。(a)在SEM 的BEI/ECCI
模式下所觀察到之差排胞結構(inverse image);(b)在圖(a)中標
示U 之局部放大圖顯示出差排胞佈滿整個晶粒;(c)在TEM 下
所觀察到之差排結構。......................................................... 168
圖4.29 最大應變控制在εmax = 0.6% (C 區)之低週疲勞並循環至50
cycles 時之差排結構。(a)在低倍率SEM 的BEI/ECCI 模式下
並無觀察到具體差排結構(inverse image);(b)在圖(a)中標示Q
之局部放大圖顯示出幾乎整個晶粒都由胞狀結構所組成。...
............................................................................................ 169
圖4.30 最大應變控制在εmax = 0.6% (C 區)之低週疲勞並循環至50
cycles 時在TEM 下觀察到的胞狀結構。(a)低倍圖;(b)於圖(a)
中標示X 之局部放大圖,B ≈ [111],g = [01-1];(c)與圖(b)同,
B ≈ [111],g = [-110];(d)與圖(b)同,B ≈ [111],g = [10-1]。..
............................................................................................ 170
圖4.31 最大應變控制在εmax = 0.6% (C 區)之低週疲勞並循環至5000
cycles 時之差排胞結構。(a)在SEM 的BEI/ECCI 模式下所觀
察到之差排胞結構(inverse image) ;(b)在圖(a)中標示M 之局
部放大圖顯示出差排胞佈滿整個晶粒;(c)在TEM 下所觀察到
之差排胞結構。..................................................................... 171
圖4.32 最大應變控制在εmax = 0.6% (C 區)之低週疲勞並循環至10000
cycles 時材料斷裂後之差排胞結構。(a)在SEM 的BEI/ECCI
模式下所觀察到之差排胞結構(inverse image);(b)在圖(a)中標
示R 之局部放大圖顯示出差排胞佈滿整個晶粒;(c)在TEM 下
所觀察到之差排胞結構。..................................................... 172
圖4.33 最大應變控制在εmax = 1.2% (C 區)之低週疲勞並循環至30
cycles 時之差排結構。(a)在低倍率之SEM 的BEI/ECCI 模式
下並無觀察到具體差排結構(inverse image);(b)在圖(a)中標示
A 之局部放大圖顯示出幾乎整個晶粒都由錯位程度較低之差
排胞所組成;(c)在圖(a)中標示B 之局部放大圖;(d)在圖(a)中標
示C 之局部放大圖;(e)在圖(a)中標示D 之局部放大圖。.. 173
圖4.34 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
在TEM 下觀察到的差排結構。(a)低倍圖;(b)於圖(a)中標示Z
之局部放大圖,B ≈ [111],g = [01-1];(c)與圖(b)同,B ≈ [111],
g = [1-10];(d)與圖(b)同,B ≈ [111],g = [10-1];(e)於圖(a)中標
示F 之局部放大圖,B ≈ [111],g = [01-1];(f)與圖(e)同,B ≈
[111],g = [1-10];(g)與圖(e)同,B ≈ [111],g = [10-1]。... 175
圖4.35 最大應變控制在εmax = 1.2% (C 區)之低週疲勞並循環至1600
cycles 時材料斷裂後之差排胞結構。(a)在SEM 的BEI/ECCI
模式下所觀察到之差排結構(inverse image);(b)在圖(a)中標示
E 之局部放大圖顯示出差排胞佈滿整個晶粒;(c)在TEM 下所
觀察到之差排胞結構。......................................................... 178
圖4.36 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.2% 且再循環至3000 cycles 時於SEM
的BEI/ECCI 模式下所觀察到之差排胞結構。(a)在低倍率下
於SEM 的BEI/ECCI 模式下並無明顯結構可被看見(inverse
image);(b)在圖(a)中標示A 之局部放大圖;(c)在圖(a)中標示B
之局部放大圖;(d)在圖(a)中標示C 之局部放大圖;(e)在圖(a)中
標示D 之局部放大圖。........................................................ 179
圖4.37 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.2% 且再循環至3000 cycles 時於TEM
下之觀察結果。(a)低倍圖;(b)於圖(a)中標示A 之局部放大圖,
B ≈ [111],g = [01-1],其中bp 為主伯格向量;(c)與圖(b)同,B
≈ [111],g = [-110];(d)與圖(b)同,B ≈ [111],g = [10-1];(e)於
圖(a)中標示B 之局部放大圖,B ≈ [111],g = [01-1];(f)與圖(e)
同,B ≈ [111],g = [-110];(g)與圖(e)同,B ≈ [111],g = [10-1];(h)
於圖(a)中標示C 之局部放大圖,B ≈ [111],g = [01-1];(i)與圖
(h)同,B ≈ [111],g = [-110];(j)與圖(h)同,B ≈ [111],g =
[10-1]。.................................................................................... 181
圖4.38 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.2% 且再循環至3000 cycles 時於TEM
下之觀察結果。(a)低倍圖;(b)於圖(a)中標示A 之局部放大圖,
B ≈ [111],g = [0-11];(c)與圖(b)同,B ≈ [111],g = [1-10];(d)
與圖(b)同,B ≈ [111],g = [10-1];(e)於圖(a)中標示B 之局部
放大圖,B ≈ [111],g = [0-11];(f)與圖(e)同,B ≈ [111],g =
[1-10],其中bp 為主伯格向量;(g)與圖(e)同,B ≈ [111],g =
[10-1];(h)於圖(a)中標示C 之局部放大圖,B ≈ [111],g =
[0-11];(i)與圖(h)同,B ≈ [111],g = [1-10];(j)與圖(h)同,B ≈
[111],g = [10-1]。................................................................. 185
圖4.39 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.2% 且再循環至20000 cycles 時所觀
察到之差排結構。(a)在低倍率下於SEM 的BEI/ECCI 模式下
所觀察到之差排結構(inverse image);(b)在圖(a)中標示A 之局
部放大圖;(c)在圖(a)中標示B 之局部放大圖;(d)在圖(a)中標示
C 之局部放大圖。.................................................................. 189
圖4.40 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.2% 且再循環至20000 cycles 時所觀
察到之差排團結構。(a)TEM 之低倍圖;(b)於圖(a)中標示Y 之
局部放大圖,B ≈ [111],g = [0-11],其中bp 為主伯格向量;(c)
與圖(b)同,B ≈ [111],g = [1-10];(d)與圖(b)同,B ≈ [111],g =
[10-1];(e)於圖(a)中標示Z 之局部放大圖,B ≈ [111],g =
[0-11];(f)與圖(e)同,B ≈ [111],g = [1-10];(g)與圖(e)同,B ≈
[111],g = [10-1]。................................................................. 192
圖4.41 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.2% 且再循環至20000 cycles 時所觀
察到之差排團結構。(a)低倍圖;(b)於圖(a)中標示V 之局部放
大圖,B ≈ [111],g = [01-1];(c)與圖(b)同,B ≈ [111],g =
[1-10];(d)與圖(b)同,B ≈ [111],g = [10-1]。..................... 195
圖4.42 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.15% 且再循環至10 萬 cycles 時所觀
察到之差排結構。(a)在低倍率下於SEM 的BEI/ECCI 模式下
所觀察到之差排結構並無明顯結構可被看見(inverse
image);(b)在圖(a)中標示A 之局部放大圖;(c)在圖(a)中標示B
之局部放大圖;(d)在圖(a)中標示C 之局部放大圖。.......... 196
圖4.43 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.15% 且再循環至10 萬 cycles 時所觀
察到之差排結構。(a)於TEM 中所觀察到之差排團結構;(b)於
圖(a)中標示W 之放大圖,B ≈ [111],g = [01-1],其中bp 為
主伯格向量;(c)與圖(b)同,B ≈ [111],g = [-110];(d)與圖(b)同,
B ≈ [111],g = [10-1] 。........................................................ 198
圖4.44 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.1% 且再循環至10 萬 cycles 時之差排
結構。(a)在低倍率下於SEM 的BEI/ECCI 模式下並無明顯結
構可被看見(inverse image);(b)在圖(a)中標示A 之局部放大
圖;(c)在圖(a)中標示B 之局部放大圖;(d)在圖(a)中標示C 之局部放大
圖。............................................................................. 199
圖4.45 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即降低最大應變至0.1% 且再循環至10 萬 cycles 時之差排
結構。(a)TEM 之低倍圖;(b)於圖(a)中標示T 之局部放大圖,
B ≈ [111],g = [0-11];(c)與圖(b)同,B ≈ [111],g = [1-10];(d)
與圖(b)同,B ≈ [111],g = [10-1];(e)於圖(a)中標示U 之局部
放大圖,B ≈ [111],g = [0-11];(f)與圖(e)同,B ≈ [111],g =
[1-10];(g)與圖(e)同,B ≈ [111],g = [10-1]。..................... 201
圖4.46 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.0% 且再循環至3000 cycles 時於之差
排結構。(a)在低倍率下於SEM 的BEI/ECCI 模式下所觀察到
之差排結構並無明顯結構可被看見(inverse image);(b)在圖(a)
中標示A 之局部放大圖;(c)在圖(a)中標示B 之局部放大圖;(d)
在圖(a)中標示C 之局部放大圖。........................................ 204
圖4.47 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.0% 且再循環至3000 cycles 時之TEM
觀察。(a)低倍率;(b)於圖(a)中標示M 之局部放大圖,B ≈
[111],g = [0-11],其中bp 為主伯格向量;(c)與圖(b)同,B ≈
[111],g = [1-10];(d)與圖(b)同,B ≈ [111],g = [10-1];(e)於圖
(a)中標示N 之局部放大圖,B ≈ [111],g = [0-11];(f)與圖(e)
同,B ≈ [111],g = [1-10];(g)與圖(e)同,B ≈ [111],g = [10-1]。
............................................................................................ 206
圖4.48 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.0% 且再循環至3000 cycles 時之TEM
觀察。(a)低倍率;(b)於圖(a)中標示F 之局部放大圖,B ≈
[111],g = [01-1],其中bp 為主伯格向量;(c)與圖(e)同,B ≈
[111],g = [-110];(d)與圖(e)同,B ≈ [111],g = [10-1];(e)於圖
(a)中標示H 之局部放大圖,B ≈ [111],g = [01-1];(f)與圖(h)
同,B ≈ [111],g = [-110];(g)與圖(h)同,B ≈ [111],g = [10-1]。
............................................................................................ 209
圖4.49 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.0% 且再循環至20000 cycles 時之差
排團結構。(a)在低倍率下於SEM 的BEI/ECCI 模式下所觀察
到之差排結構已有很多差排團可被看見(inverse image);(b)在
圖(a)中標示A 之局部放大圖;(c)在圖(a)中標示B 之局部放大
圖;(d)在圖(a)中標示C 之局部放大圖;(e)在圖(a)中標示D 之局
部放大圖。............................................................................. 212
圖4.50 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.0% 且再循環至20000 cycles 時利用
TEM 之觀察。...................................................................... 2214
圖4.51 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.05% 且再循環至10 萬 cycles 時之差
排結構(inverse image)。(a)在低倍率下於SEM 的BEI/ECCI
模式下並無明顯的差排結構可被看見;(b)在圖(a)中標示A 之
局部放大圖顯示差排結構並無改變;(c)在圖(a)中標示B 之局
部放大圖顯示該晶粒已由差排胞賺變成差排團;(d)在圖(a)中
標示C 之局部放大圖顯示此晶粒大部分區域仍未變化僅晶粒
內部有些許差排團形成。..................................................... 215
圖4.52 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.05% 且再循環至10 萬 cycles 時於之
差排結構。(a)TEM 之低倍圖;(b)於圖(a)中標示E 之局部放大
圖,B ≈ [111],g = [0-11],其中bp 為主伯格向量;(c)與圖(b)
同,B ≈ [111],g = [1-10];(d)與圖(b)同,B ≈ [111],g = [10-1];(e)
於圖(a)中標示F 之局部放大圖,B ≈ [111],g = [0-11];(f)與圖
(e)同,B ≈ [111],g = [1-10];(g)與圖(e)同,B ≈ [111],g =
[10-1]。.................................................................................... 217
圖4.53 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.1% 且再循環至10 萬 cycles 時之差排
結構。(a)低倍率下於SEM 的BEI/ECCI 模式下之觀察(inverse
image);(b)在圖(a)中標示A 之局部放大圖;(c)在圖(a)中標示B
之局部放大圖;(d)在圖(a)中標示C 之局部放大圖。.......... 220
圖4.54 最大應變控制在εmax = 1.2%之低週疲勞並循環至30 cycles 時
立即提升最小應變至1.1% 且再循環至10 萬 cycles 時之差排
結構。(a)TEM 之低倍圖;(b)於圖(a)中標示S 之局部放大圖,
B ≈ [111],g = [01-1];(c)與圖(b)同,B ≈ [111],g = [-110];(d)
與圖(b)同,B ≈ [111],g = [10-1];(e)於圖(a)中標示T 之局部放
大圖,B ≈ [111],g = [01-1];(f)與圖(e)同,B ≈ [111],g =
[-110];(g)與圖(e)同,B ≈ [111],g = [10-1]。...................... 222
圖4.55 最大應變控制在εmax = 0.6%之低週疲勞並循環至5000 cycles
時立即降低最大應變至0.2% 且再循環至3000 cycles 時之差
排結構。(a)於SEM 的BEI/ECCI 模式下所觀察到之差排結構
胞(inverse image);(b)於TEM 下之觀察。............................ 225
圖4.56 最大應變控制在εmax = 0.6%之低週疲勞並循環至5000 cycles
時立即降低最大應變至0.2% 且再循環至20000 cycles 時於
SEM 的BEI/ECCI 模式下所觀察到之差排結構(inverse
image)。.................................................................................. 226
圖4.57 最大應變控制在εmax = 0.6%之低週疲勞並循環至5000 cycles
時立即降低最大應變至0.2% 且再循環至20000 cycles 時之
差排結構。(a)在低倍率下之TEM 所觀察到之差排結構;(b)圖
(a)中標示R 之局部放大圖,B ≈ [111],g = [0-11];(c)與圖(b)
同,B ≈ [111],g = [1-10],其中bp 為主伯格向量;(d)與圖(b)
同,B≈ [111],g = [10-1];(e)圖(a)中標示O 之局部放大圖。..
............................................................................................ 227
圖4.58 最大應變控制在εmax = 0.6%之低週疲勞並循環至5000 cycles
時立即降低最大應變至0.2% 且再循環至80000 cycles 而發
生疲勞破壞時於SEM 的BEI/ECCI 模式下所觀察到之差排結
構(inverse image)。................................................................ 228
圖4.59 最大應變控制在εmax = 0.6%之低週疲勞並循環至5000 cycles
時立即降低最大應變至0.2% 且再循環至80000 cycles 而發
生疲勞破壞時在TEM 下觀察到的差排結構。(a)在低倍率下
所觀察到之差排結構顯示出差排團在最大的差排胞內成形;(b)
於圖(a)中標示Y 之局部放大圖,B ≈ [111],g = [1-10];(c)與圖
(b)同,B ≈ [111],g = [01-1],其中bp 為主伯格向量;(d)與圖
(b)同,B ≈ [111],g = [10-1]。............................................. 229
圖5.1 於IF 鋼中由主滑移系統[1-11](121)所形成之差排團中經二次
滑移系統[1-11](132)之影響所導致差排的相互消除機制示意
圖。(a)二次滑移未起動前,(b)與(c)二次滑移系統[1-11](132)
啟動後上層的正差排將漸漸地被移動到下層之滑移面。. 230
圖5.2 IF 鋼經循環變形後在略高於疲勞限時裂痕成長機制示意圖。
............................................................................................ 231
圖5.3 差排結構與IF 鋼的CSSC 之關係示意圖。........................ 232
圖5.4 IF 鋼在降低應變後於差排胞壁內差排相互消除示意圖。(a)未
降低應變前差排胞壁內存在至少含三種伯格向量之差排,(b)
降低應變後由於只有主差排滑移,因此b1 的滑移(primary slip)
會造成b2 與b3 之1 號差排作垂直於該滑移面之移動,進而
使之與2 號差排位於同一滑移面而有機會相互消除。..... 233
圖5.5 IF 鋼在降低應變後相同伯格向量但不同滑移面之差排的相互
消除機制示意圖。(a)未降低應變,(b)與(c)降低應變後經由
[-111](211)之滑移系統(即primary slip)作用,上層的正差排將
漸漸地被移動到下層之滑移面。......................................... 234
參考文獻 References
參考文獻

[1] K. V. Rasmussen, O. B. Pedersen, Fatigue of Copper Polycrystals at Low Plastic Strain Amplitudes, Acta Metall. 28(1980)1467-1478.
[2] Z. S. Basinski, A. S. Korbel, S. J. Basinski, The Temperature Dependence of the Saturation Stress and Dislocation Substructure in Fatigued Copper Single Crystals, Acta Metall. 28(1980)191-207.
[3] J. C. Figueroa, S. P. Bhat, R. de la Veaux, S. Murzenski, C. Laird, The Cyclic Stress-Strain Response of Copper at Low Strains-1. Constant Amplitude Testing, Acta Metall. 29(1981)1667-1678.
[4] J. C. Figueroa, C. Laird, The Cyclic Stress-Strain Response of Copper at Low Strains-2. Various Amplitude Testing, Acta Metall. 29(1981)1679-1684.
[5] A. T. Winter, O. B. Pedersen, K. V. Rasmussen, Dislocation Microstructures in Fatigued Copper Polycrystals, Acta Metall. 29(1981)735-748.
[6] N. Y. Jin, A. T. Winter, Cyclic Deformation of Copper Single Crystals Orientated for Double Slip, Acta Metall. 32(1984)989-995.
[7] N. Y. Jin, A. T. Winter, Dislocation Structures in Cyclically Deformed [001] Copper Crystals, Acta Metall. 32(1984)1173-1176.
[8] F. Ackermann, L. P. Kubin, J. Lepinoux, H. Mughrabi, The Dependence of Dislocation Microstructure on Plastic Strain Amplitude in Cyclically Strained Copper Single Crystals, Acta Metall. 32(1984)715-725.
[9] V. T. Kuokkala, P. Kettunen, Cyclic Stress-Strain Response of Polycrystalline Copper in Constant and Variable Amplitude Fatigue, Acta Metall. 33(1985)2041-2047.
[10] J. I. Dickson, J. Boutin, G. L’espérance, An Explanation of Labyrinth Wall in Fatigued F.C.C. Metals, Acta Metall. 34(1986)1505-1514.
[11] N. Y. Jin, Formation of Dislocation Structures during Cyclic Deformation of F.C.C. Crystals- I. Formation of PSBs in Crystals Oriented for Single-Slip, Acta Metall. 37(1989)2055-2066.
[12] L. Llanes, A. D. Rollett, C. Laird, J. L. Bassani, Effect of Grain Size and Annealing Texture on the Cyclic Response and the Substructure Evolution of Polycrystalline Copper, Acta Metall. Mater. 41(1993)2667-2679.
[13] T. Luoh, C. P. Chang, Dislocation-Free Zones in Fatigued Copper Polycrystals, Acta Mater. 44(1996)2683-2695.
[14] J. Polák, M. Klesnil, Cyclic Stress-Strain Response and Dislocation Structures in Polycrystalline Copper, Mater. Sci. Eng. 63(1984)189-196.
[15] R. Wang, H. Mughrabi, S. McGovern, M. Rapp, Fatigue of Copper Single Crystals in Vacuum and in Air - I: Persistent Slip Bands and Dislocation Microstructures, Mater. Sci. Eng. 65(1984)219-233.
[16] R. Wang, H. Mughrabi, Secondary Cyclic Hardening in Fatigued Copper Monocrystals and Polycrystals, Mater. Sci. Eng. 63(1984)147-163.
[17] T. K. Lepistö, V. T. Kuokkala, P. O. Kettunen, Dislocation Arrangement in Cyclically Deformed Copper Single Crystals, Mater. Sci. Eng. 81(1986)457-463.
[18] C. Laird, P. Charsley, H. Mughrabi, Low Energy Dislocation Structures Produced by Cyclic Deformation, Mater. Sci. Eng. 81(1986)433-450.
[19] J. I. Dickson, L. Handfield, G. L’espérance, Geometrical Factors Influencing the Orientations of Dipolar Dislocation Structures Produced by Cyclic Deformation of F.C.C. Metals, Mater. Sci. Eng. 81(1986)477-492.
[20] J. Polák, K. Obrtlík, J. Helešic, Cyclic Strain Localization in Polycrystalline Copper at Room Temperature and Low Temperatures, Mater. Sci. Eng. A132(1991)67-72.
[21] J. Polák, K. Obrtlík, M. Hájek, A. Vašek, Cyclic Stress-Strain Response of Polycrystalline Copper in a Wide Range of Plastic Strain Amplitudes, Mater. Sci. Eng. A151(1992)19-27.
[22] L. Llanes, C. Laird, Substructure Evolution of Copper Polycrystals under Different Testing Conditions: Conventional Strain Control and Ramp Loading, Mater. Sci. Eng. A161(1993)1-12.
[23] U. Holzwarth, U. Essmann, Transformation of Dislocation Patterns in Fatigued Copper Single Crystals, Mater. Sci. Eng. A164(1993)206-210.
[24] T. Luoh, C. P. Chang, Effect of Grain Size/Texture on the Cyclic Stress-Strain Behavior of Polycrystalline Copper, Mater. Sci. Eng. A256(1998)18-24.
[25] H. J. Christ, H. Mughrabi, Cyclic Stress-Strain Response and Microstructure under Variable Amplitude Loading, Fatigue Fract. Eng. Mater. Struct. 19(1996)335-348.
[26] C. Laird, L. Buchinger, Hardening Behavior in Fatigue, Metall. Trans. 16A(1985)2201-2214.
[27] Z. Wang, J. R. William, C. Laird, Latent Hardening in Cyclic Deformation of Copper Single Crystals, Metall. Trans. 20A(1989)759-767.
[28] H. Mughrabi, R. Wang, in Hansen, A. Horsewell, T. Leffers and H. Lilholt (eds.), Deformation of Polycrystals: Mechanisms and Microstructures, Proc. 2nd Risø Int. Symp. on Metallurgy and Materials Science, September 1981, Risø National Laboratory, Risø, (1981) 87-98.
[29] C. Laird, Effect of Dislocation Substructures on Fatigue Fracture, Metall. Trans. 8A(1977)851-860.
[30] S. J. Basinski, Z. S. Basinski, A. Howie, Early Stages of Fatigue in Copper Single Crystals, Philos. Mag. 19(1969)899-924.
[31] A. T. Winter, Etching Studies of Dislocation Microstructures in Crystals of Copper Fatigued at Low Constant Plastic Strain Amplitude, Philos. Mag. 28(1973)57-64.
[32] J. M. Finney, C. Laird, Strain Localization in Cyclic Deformation of Copper Single Crystals, Philos. Mag. 31(1975)339-366.
[33] L. Buchinger, S. Stanzl, Dislocation Structures in Copper Single Crystal Fatigued at Low Strain Amplitudes, Philos. Mag. 50A(1984)275-298.
[34] E. E. Laufer, W. N. Roberts, Dislocations and Persistent Slip Bands in Fatigued Copper, Philos. Mag. 14(1966)65-78.
[35] P. J. Wood, Low-Amplitude Fatigue of Copper and Copper-5at.% Aluminum Single Crystals, Philos. Mag. 28(1973)155-191.
[36] D. Kuhlmann-Wilsdorf, C. Laird, Dislocation Behavior in Fatigue, Mater. Sci. Eng. 27(1977)137-156.
[37] D. Kuhlmann-Wilsdorf, Dislocation Behavior in Fatigue Ш Properties of Loop Patches – Do They Participate in Fatigue Cycling?, Mater. Sci. Eng. 39(1979)127-139.
[38] D. Kuhlmann-Wilsdorf, C. Laird, Dislocation Behavior in Fatigue V: Breakdown of Loop Patches and Formation of Persistent Slip Bands and of Dislocation Cells, Mater. Sci. Eng. 46(1980)209-219.
[39] C. Laird, J. M. Finney, D. Kuhlmann-Wilsdorf, Dislocation Behavior in Fatigue VI: Variation in the Localization of Strain in Persistent Slip Bands, Mater. Sci. Eng. 50(1981) 127-136.
[40] C. D. Liu, D. X. You, M. N. Bassim, Cyclic Strain Hardening in Polycrystalline Copper, Acta Metall. 28(1994)1631-1638.
[41] O. K. Chopra, C. V. B. Gowda, Substructural Development during Strain Cycling of Alpha-Iron, 30(1974)583-591.
[42] 駱統, 多晶銅之疲勞性質與組織研究, 國立中山大學材料科學研究所博士論文, 1996。
[43] H. Mughrabi, K. Herz, X. Stark, The Effect of Strain-Rate on the Cyclic Deformation Properties of α-iron Single Crystals, Acta Metall. 24(1976)659-668.
[44] S. Turenne, G. L’espérance, J. I. Dickson, The Orientations of Dipolar Dislocation Structures Produced by the Cyclic Deformation of B.C.C Metals, Acta Metall. 36(1988)459-468.
[45] C. Sommer, H. Mughrabi, D. Lochner, Influence of Temperature and Carbon Content on the Cyclic Deformation and Fatigue Behaviour of α-Iron. Part I. Cyclic Deformation and Stress-Behaviour, Acta Mater. 46(1998)1527-1536.
[46] H, Mughrabi, K. Herz, X. Stark, Cyclic Deformation and Fatigue Behaviour of α-Iron Mono- and Polycrystals, Int. J. Fract, 17(1981)193-220.
[47] B. Šesták, V. Novák, S. Libovický, Cyclic Deformation of Single Crystals of Iron-Silicon Alloys Oriented for Single Slip, Philos. Mag. 57A(1988)353-381.
[48] H. Mori, M. Tokuwame, T. Miyazaki, Cyclic Deformation of Silicon-Iron Single Crystals Oriented for Single Glide, Philos. Mag. 40A(1979)409-433.
[49] 羅文駿, IF鋼之低週疲勞顯微組織研究, 國立中山大學材料科學研究所碩士論文, 2003。
[50] H. Mughrabi, The Cyclic Hardening and Saturation Behaviour of Copper Single Crystals, Mater. Sci. Eng. 33(1978)207-223.
[51] H. Mughrabi, Plateaus in the Cyclic Stress-Strain Curves of Single- and Polycrystalline Metals, Scripta Metall. 13(1979)479-484.
[52] S. P. Bhat, C. Larid, The Cyclic Stress-Strain Curves in Monocrystalline and Polycrystalline Metals, Scripta Metall. 12(1978)687-692.
[53] Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Elsevier Science, UK, 2002.
[54] M. Endo, Y. Murakami, Effects of an Artificial Small Defect on Torsional Fatigue Strength of Steels, Eng. Mater. Technol. Trans. ASME 109(1987)124-129.
[55] N. Narasaiah, P. C. Chakraborti, R. Maiti, K. K. Ray, Fatigue Crack Initiation in an Interstitial Free Steel, ISIJ Int. 45(2005)127-132.
[56] S. Majumdar, D. Bhattachajee, K. K. Ray, On the Micromechanism of Fatigue Damage in an Interstitial-Free Steel Sheet, Metall. Mater. Trans. 39A(2008)1676-1690
[57] H. Abdel-Raouf, A. Plumtree, Influence of Deformation Rate on the Cyclic Behavior of Pure Iron, Metall. Trans. 2(1971)1863-1867.
[58] S. Ikeda, Substructural Development during Low Cycle Fatigue of Iron Single Crystals at 423 K, Trans. Jpn. Inst. Met. 22(1981)267-273.
[59] P. K. Liaw, W. A. Loqsdon, Crack Closure: An Explanation for Small Fatigue Crack Growth Behavior, Eng. Fract. Mech. 22(1985)115-121.
[60] C. M. Pang, J. H. Song, Crack Growth and Closure Behavior of Short Fatigue Cracks, Eng. Fract. Mech. 47(1994)327-343.
[61] F. O. Riemelmoser, R. Pippan, Crack closure: A Concept of Fatigue Crack Growth under Examination, Fatigue Fract. Eng. Mater. Struct. 20(1997)1529-1540.
[62] S. Suresh, G. F. Zamiski, R. O. Ritchie, Oxide-Induced Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior, Metall. Trans. 12A(1981)1435-1442.
[63] H. L. Huang, N. J. Ho, The Observation of Dislocation Reversal in Front of Crack Tips of Polycrystalline Copper after Reducing Maximum Load, Mater. Sci. Eng. A345(2003)215-222.
[64] 曾煥廷, 觀察純銅在疲勞裂痕生長中其差排組織的演化與裂痕閉合相互關係之研究, 國立中山大學材料科學研究所碩士論文, 2000。
[65] B. T. Ma, C. Laird, Dislocation Structures of Copper Single Crystals for Fatigue Tests under Variable Amplitudes, Mater. Sci. Eng. A102(1988)247-258.
[66] C. Laird, Z. Wang, B. T. Ma, H. F. Chai, Low Energy Dislocation Structures Produced by Cyclic Softening, Sci. Eng. A113(1989)245-257.
[67] H. L. Huang, A Study of Dislocation Evolution in Polycrystalline Copper during Low Cycle Fatigue at Low Strain Amplitudes, Sci. Eng. A342(2003)38-43.
[68] 張綺惠, 純銅內差排組織在疲勞行為下的逆演化, 國立中山大學材料科學研究所碩士論文, 2003。
[69] 莊岳峰, 純銅在減負荷下低週疲勞的微觀組織演化之研究, 國立中山大學材料科學研究所碩士論文, 2006。
[70] 黃世裕, 高低負載變化對IF鋼裂縫尖端差排組織變化的觀察, 國立中山大學材料科學研究所碩士論文, 2005。
[71] 王天德, 不對稱高低週期應變對IF鋼差排組織形貌影響之研究, 國立中山大學材料科學研究所碩士論文, 2007。
[72] H. L. Huang, N. J. Ho, The Observation of Dislocation Reversal in Front of Crack Tips of Polycrystalline Copper after Reducing Maximum Load, Mater. Sci. Eng. A345(2003)215-222.
[73] H. L. Huang, N. J. Ho, The Observation and Analysis of Dislocation Morphology of Fatigue Crack Tips at Steady State Propagation Rates Subject to a Single Peak Load, Mater. Sci. Eng. A298(2001)251-261.
[74] J. Ahmed, A. J. Wilkinson, S. G. Roberts, Electron Channelling Contrast Imaging Characterization of Dislocation Structures Associated with Extrusion and Intrusion Systems and Fatigue Cracks in Copper Single Crystals, Philos. Mag. 81A(2001)1473-1488.
[75] J. Ahmed, A. J. Wilkinson, S. G. Roberts, Characterizing Dislocation Structures in Bulk Fatigued Copper Single Crystals Using Electron Channelling Contrast Imaging (ECCI), Philos. Mag. Letter 76(1997)237-245.
[76] S. X. Li, M. Y. Li, R. Zhu, Y. S. Chao, Annihilation of Persistent Slip Bands and Its Effect on the Fatigue Life of Copper Single Crystals, Philos. Mag. 84(2004)3323-3334.
[77] D. L. Chen, D. Melisova, B. Weiss, R. Stickler, Electron Channelling Contrast Technique Applied to the Characterization of Dislocation Structures in the Vicinity of a Fatigue Crack, Fatigue Fract. Eng. Mater. Struct. 20(1997)1551-1561.
[78] J. Ahmed, S. G. Roberts, A. J. Wilkinson, Characterizing Dislocation Structure Evolution during Cyclic Deformation Using Electron Channelling Contrast Imaging, Philos. Mag. 86(2006)29-31.
[79] A. Schwab, J. Bretschneider, C. Buque, C. Blochwitz, C. Holste, Application of Electron Channelling Contrast to the Investigation of Strain Localization Effects in Cyclically Deformed FCC Crystals, Philos. Mag. Letter 74(1996)449-454.
[80] S. X. Li, Y. Li, G. Y. Li, J. H. Yang, Z. G. Wang, K. Lu, The Early Stages of Fatigue and Evolution of Persistent Slip Bands in a Copper Single Crystal, Philos. Mag. A 82(2002)867-883.
[81] R. Zauter, F. Petry, M. Bayerlein, C. Sommer, H. J. Christ, H. Mughrabi, Electron Channelling Contrast as a Supplementary Method for Microstructural Investigations in Deformed Metals, Philos. Mag. A 66(1992)425-436.
[82] W. A. Spitzig, L. E. Thomas, HVEM Analysis of Three-Dimensional Dislocation Structure in Fe Crystals Deformed at 173K, Philos. Mag. 25(1972)1041-1052.
[83] C. D. Liu, M. N. Bassim, Configuration of Loop Patch at Low Strain Amplitude in Polycrystalline Copper, Philos. Mag. A 70(1994)591-605.
[84] J. R. Hancock, J. C. Grosskreutz, Mechanisms of Fatigue Hardening in Copper Single Crystals, Acta Metall. 17(1969)77-97.
[85] P. Lukáš, L. Kunz, Is There a Plateau in the Cyclic Stress-Strain Curves of Polycrystalline Copper? Mater. Sci. Eng. 74(1985)L1-L5.
[86] P. Lukáš, L. Kunz, Effect of Grain Size on the High Cycle Fatigue Behaviour of Polycrystalline Copper, Mater. Sci. Eng. 85(1987)67-75.
[87] T. L. Lin, J. S. Wu, X. F. Chen, Dislocation Behaviour during Cylic Deformation of Niobium Single Crystals, Mater. Sci. Eng. 86(1987)19-27.
[88] M. Anglada, F. Guiu, Cyclic Deformation of Nb Single Crystals - 1. Influence of Temperature and Strain Rate on Cyclic Hardening Shape Changes and Stress Asymmetry, Philos. Mag. 44(1981)499-522.
[89] J. A. Planell, F. Guiu, Cyclic Deformation of Molybdenum Single Crystals – I. Mechanical Behaviour, Philos. Mag. 54A(1986)325-342.
[90] H. Mughrabi, F. Ackermann, K. Herz, Persistent Slipbands in Fatigued Face-Centered and Body-Centered Cubic Metals, in Fatigue Mechanisms, ed. J. T. Fong. ASTM-STP 675. ASTM, Philadelphia, (1979) 69-97.
[91] 黃興祿, 多晶銅之疲勞裂痕起始與不同裂痕成長速率下之裂痕尖端微結構研究, 國立中山大學材料科學研究所博士論文, 1998。
[92] H. L. Huang, N. J. Ho, The Study of Fatigue in Polycrystalline Copper under Various Strain Amplitude at Stage I: Crack Initiation and Propagation, Mater. Sci. Eng. A293(2000)7-14.
[93] H. L. Huang, N. J. Ho, W. B. Lin, The Study of Dislocation Structures at Fatigue Crack Tips in Polycrystalline Copper under Various Crack Propagation Rates at Stage I: Crack Propagation, Mater. Sci. Eng. A279(2000)261-265.
[94] H. L. Huang, N. J. Ho, The Model of Crack Propagation in Polycrystalline Copper at Various Propagation Rates, Mater. Sci. Eng. A279(2000)254-260.
[95] J. I. Dickson, L. Handfield, S. Turenne, G. L’espérance, The Three-Dimension Shape of Loop Patches Produced by Cyclic Deformation, Mater. Sci. Eng. 89(1987)L1-L5.
[96] C. Sommer, H. Mughrabi, D. Lochner, Influence of Temperature and Carbon Content on the Cyclic Deformation and Fatigue Behaviour of α-Iron. Part II. Cyclic Crack Initiation and Fatigue Life, Acta Mater. 46(1998)1537-15436.
[97] Y. Kaneko, M. Ishikawa, S. Hashimoto, Dislocation Structures around Crack Tips of Fatigued Polycrystalline Copper, Mater. Sci. Eng. A400-401(2005)418-421.
[98] Awatani J, Katagiri K, Nakai H, Dislocation Structures around Propagating Fatigue Cracks in Iron, Metall. Trans. 9A(1978)111-116.
[99] Awatani J, Katagiri K, Shiraishi T, Microstructures around the Tips of Fatigue Cracks Growing at a Low Rate in Iron, Metall. Trans. 7A(1976)807-810.
[100] K. Katagiri, J. Awatani, A. Oumra, K. Koyanagi, T. Shiraishi, in fatigue mechanisms, proceedings of an ASTM – NBS – NSF Symposium, edited by J. T. Fong, American Society for Testing and Materials, Philadelphia, ASTM – STP 675 (1979) 106-128.
[101] Ogura T, Masumoto T, Imai Y, Transmission Electron Microscope Study on the Structure around Fatigue Cracks of Alpha-Iron, Trans. Jpn. Inst. Met. 17(1976)733-742.
[102] 黃維政, IF鋼疲勞裂縫尖端的差排組織觀察, 國立中山大學材料科學研究所碩士論文, 2004。
[103] H. O. Fuchs, R. I. Stephens, Metal Fatigue in Engineering, John Wiley & Sons, New York, 1980.
[104] S. Suresh, Fatigue of Materials, Cambridge, 1998.
[105] J. R. Hancock, J. C. Grosskreutz, Mechanism of Fatigue Hardening in Copper Single Crystals, Acta Metall. 17(1969)77-97
[106] J. G. Antonopoulos, L. M. Brown, A. T. Winter, Vacancy Dipole in Fatigued Copper, Philos. Mag. A34(1976)549-563.
[107] C. E. Feltner, A Debris Mechanism of Cyclic Strain Hardening for F.C.C. Metals, Philos. Mag. 12(1965)1229-1248.
[108] C. E. Feltner, The Mechanism of Prismatic Dislocation Loop Formation in Cyclically Strained Aluminum, Philos. Mag. 14(1966)1219-1231.
[109] H. F. Chai, L. Laird, Mechanisms of Cyclic Softening and Cyclic Creep in Low Carbon Steel, Mater. Sci. Eng. 93(2000)159-174.
[110] D. Hull, D. J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 2001.
[111] H. D. Nine, Asymmetry of Slip in Fatigue of Iron Single Crystals, Scripta Metall. 4(1970)887-892.
[112] H. D. Nine, Slip Planes and Asymmetric Slip in Fatigue of Iron Single Crystals, Philos. Mag. 26(1972)1409-1418.
[113] H. Mughrabi, Ch. Wüthrich, Asymmetry of Slip and Shape Changes during Cyclic Deformation of α-iron Single Crystals, Philos. Mag. 33(1976)963-984.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.5.239
論文開放下載的時間是 校外不公開

Your IP address is 18.191.5.239
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code