Responsive image
博碩士論文 etd-0702110-113409 詳細資訊
Title page for etd-0702110-113409
論文名稱
Title
液晶在光子晶體光纖內配向之研究
The study of liquid crystal alignment in photonic crystal fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-22
繳交日期
Date of Submission
2010-07-02
關鍵字
Keywords
光配向、光子晶體
photonic crystal, photo-alignment
統計
Statistics
本論文已被瀏覽 5625 次,被下載 0
The thesis/dissertation has been browsed 5625 times, has been downloaded 0 times.
中文摘要
本論文使用一種非接觸式的配向方式,藉由此方法來減少液晶光子晶體光纖的傳輸損耗,由於光引致偶氮染料吸附於光子晶體光纖的空氣孔度內部的表面上,光子晶體光纖內的空氣孔洞邊界力量因為光配向的效果而變強使得液晶在孔洞內具有較一致性的排列。
光子晶體光纖中的液晶因為光配向而獲得固定性邊界使得液晶
的散射降低,透過十分鐘中以內的光配向將從液晶散射而來的傳輸損耗由-2.8dB/cm 降為-1.3dB/cm 且可以改善電場的調變,除此之外光配向也在電控效應上與液晶的快速動態反應時間上也具有功效,此降低損耗的液晶光子晶體光纖可以有效的應用於其他的液晶光子晶體光纖元件。
Abstract
This work presents a novel loss-reduced photonic liquid-crystal
fiber (PLCF) using the non-contact photo-alignment method. The photo-excited and adsorbed azo dye on the capillary surface of a PLCF induces uniform and highly ordered orientation of the LC. The anchoring force of the photo-alignment effect is combined with that generated by surface boundary conditions of the photonic crystal fiber (PCF).
Transmission loss resulting from LC scattering can be reduced from -2.8db/cm to -1.3db/cm within 10min. This photo-induced alignment yields a permanent boundary for the LC in the PCF that reduces scattering loss, and can be further modulated by electrical fields. The electrical tunable effect and fast dynamic response of the photo-aligned PLCF are also presented. This low-loss PLCF can be applied conveniently in various PLCF devices.
目次 Table of Contents
摘要----------------------------------------------------------------------------I
Abstract-----------------------------------------------------------------------II
目錄---------------------------------------------------------------------------III
圖目錄------------------------------------------------------------------------VI
1.緒論-------------------------------------------------------------------------1
2.介紹 ------------------------------------------------------------------------3
2.1 液晶-----------------------------------------------------------------------3
2.2 光子晶體 ----------------------------------------------------------------5
2.3 光子晶體光纖-----------------------------------------------------------7
2.4 液晶光子晶體光纖---------------------------------------------------14
3.理論介紹-----------------------------------------------------------------16
3.1 液晶光子晶體光纖損耗相關理論---------------------------------16
3.2 液晶在光子晶體光纖內的排列------------------------------------18
3.2.1 正型液晶光子晶體光纖的排列與光譜變化-------------------21
3.2.2 負型液晶光子晶體光纖的排列與光譜變化-------------------22
3.3 光引致染料分子轉向效應------------------------------------------23
3.3.1 正力矩效應與負力矩效應----------------------------------------25
3.3.2 偶氮染料同素異構化反應----------------------------------------26
3.3.3 吸附效應-------------------------------------------------------------27
4.實驗方法與過程--------------------------------------------------------29
4.1 材料介紹---------------------------------------------------------------29
4.1.1 向列型液晶K15----------------------------------------------------29
4.1.2 偶氮染料Methyl Red ---------------------------------------------30
4.1.3 光子晶體光纖MA-8------------------------------------------------31
4.2 設備介紹---------------------------------------------------------------31
4.3 實驗方法---------------------------------------------------------------34
4.3.1 液晶光子晶體光纖的製作---------------------------------------34
4.3.2 光子晶體光纖的傳輸頻譜量測---------------------------------38
4.3.3 光配向實驗---------------------------------------------------------39
4.3.4 光子晶體光纖反應時間量測------------------------------------40
5. 結果與討論--------------------------------------------------------------42
5.1 配向實驗前後光學顯微鏡圖像比較------------------------------42
5.2 配向實驗前後傳輸頻譜變化情形---------------------------------45
5.3 激發光強度與傳輸頻譜變化情況---------------------------------47
5.4 配向實驗前後電控實驗傳輸光譜實驗結果---------------------49
5.5 配向實驗前後反應時間實驗成果---------------------------------51
6. 總結與未來展望--------------------------------------------------------53
6.1 總結---------------------------------------------------------------------53
6.2 未來展望---------------------------------------------------------------54
7. 參考文獻-----------------------------------------------------------------55
參考文獻 References
1.顧鴻壽, 編著,”光電液晶平面顯示器 第二版”, 新文京開發出版社 (2004)
2.陳文政, “摻雜奈米粒子與偶氮染料的液晶薄膜之光配向研究及應用”, 中山大學 光電所(2009)
3.王珍珍, “混合聚亞醯安配向膜調控液晶預傾角之研究及應用”, 成功大學 光電與科學工程研究所 (2008)
4.施仁親, ”使用LHPG 法提拉二氧化矽光子晶體光纖”, 中山大學, 光電所 (2006)
5. E. Yablonvitch, ”Inhibited spontaneous emission in the solid-state physics and electronics,” Phys. Rev Lett.,58, pp.2059-2062, (1987)
6. S. John, ”Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev Lett.,58, pp.2486-2489, (1987)
7. J. C. knight, J. Broeng, T. A. Brik, and P. Russell,” Photonic band gap guidance in optic fibers,” science,282, 1476-1478 (1998)
8. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
9. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47, 5321–5324 (2008).
10. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton,and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference,Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002) 466–468.
11. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
12.M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically Tunable Photonic Bandgap Guidance in a Liquid-Crystal-Filled Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
13. T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski- Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
14. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Dománski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
15.L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in- fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
16. H.-S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” PHYSICAL REVIEW E,54(1996)
17.Alexander Lorenz,1 Rolf Schuhmann,2 and Heinz-Siegfried
Kitzerow1, “Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model,” , OPTICS EXPRESS,18(2010)
18. D. Langevin, M.A. Bouchiat, “Anisotropy of the turbidity of an
oriented nematic liquid crystal,” J. Physique Colloques, C197 (1975).
19.W. M. Gibbons, P.J.Shannon,S. T.Sun, and B. J.Swetlin,
"Surface-mediated alignment of nematic liquid crystals with polarized laser light", Nature,351,49(2001)
20.T.V. Galstyan, B. Saad, and M. M.Denarize-Roberge and J.Chen., Phys,107,9319(1997)
21.F.simoni, O.Francescangeli , Y. Reznikov, S. Slussarenko.
Opt.Lett,22,549(1997)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.23.119
論文開放下載的時間是 校外不公開

Your IP address is 18.222.23.119
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code