Responsive image
博碩士論文 etd-0702112-123925 詳細資訊
Title page for etd-0702112-123925
論文名稱
Title
低溫複晶矽薄膜電晶體及前瞻金屬氧化物薄膜電晶體應用於次世代平面顯示器之電性分析及物理機制研究
Electrical Analysis and Physical Mechanisms of Low-Temperature Polycrystalline-Silicon and Amorphous Metal-Oxide Thin Film Transistors for Next Generation Flat Panel Display Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
186
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-13
繳交日期
Date of Submission
2012-07-02
關鍵字
Keywords
銦鎵鋅氧化物薄膜電晶體、電壓不穩定性、照光不穩定性、觸控面板技術、缺陷輔助閘極引發汲極端漏電、SONOS非揮發性記憶體、低溫複晶矽薄膜電晶體
bias induced instability, light induced instability, touch panel technology, trap-assisted-gate-induced-drain-leakage, SONOS type nonvolatile memory, low temperature poly-silicon thin film transistors, indium-gallium-zinc oxide thin film transistors
統計
Statistics
本論文已被瀏覽 5791 次,被下載 1908
The thesis/dissertation has been browsed 5791 times, has been downloaded 1908 times.
中文摘要
近年來隨著顯示器產業的迅速發展,對於做為畫素開關元件以及電流驅動元件的薄膜電晶體之要求也隨之增加。以傳統的非晶矽薄膜電晶體而言其電子遷移率太低(< 1 cm2/Vs),因此擁有高電子遷移率的低溫複晶矽薄膜電晶體以及非晶態金屬氧化物薄膜電晶體應用在未來的顯示器上是非常有潛力的。
本論文首先將探討低溫複晶矽薄膜電晶體應用於非揮發性記憶體SONOS(Silicon-Oxide-Nitride-Oxide-Silicon)元件在寫入與抹除下之穩定性與可靠度分析。結果顯示元件經過電子寫入操作後會有很明顯之缺陷輔助閘極引發汲極端&#63822;電(trap-assisted-gate-induced-drain-leakage)現象發生,主要由於注入在汲極端上方之電子提升了局部之電場導致漏電流增加,而此漏電流會造成寫入抹除之記憶體讀取窗口變小增加訊號誤判的機會。因此,為了抑制此漏電流現象,此論文提出了熱電洞(band-to-band hot-hole)注入之方式改善汲極端局部之垂直電場進而在不影響臨界電壓(Vt)下改善漏電流,此方法經實驗驗證在多次寫入抹除以及高溫操作下依然保有良好之漏電流抑制效果。另一方面,作為畫素開關元件,大部分時間元件都操作在非導通狀態(Off-state),因此本論文進一步討論元件在非導通狀態操作下之可靠度問題。實驗結果顯示在初始記憶狀態(Fresh-state)下之非導通操作由於大量熱電洞注入會造成元件導通電流劣化,而同樣之非導通操作條件在不同記憶體狀態下會呈現不同之劣化趨勢,經由模擬軟體ISE TCAD的驗證可以得知此劣化趨勢之差異是由注入之熱電洞與缺陷之相對位置所造成。
本論文另一部分著重在非晶態銦鎵鋅金屬氧化物薄膜電晶體之穩定性與可靠度分析。首先探討元件在閘極電壓下之可靠度,在正閘極電壓操作下由於電子被捕獲在主動層與閘極絕緣層介面因此呈現明顯的次臨界電壓向右偏移。而在閘極負偏壓操作卻無明顯之劣化,其差異主要是由於銦鎵鋅金屬氧化物是n型半導體且由於其導帶上之大量缺陷分佈的原故不易產生電洞反轉現象,此外也因為電洞在主動層之載子移動率遠低於電子,因此不會產生電洞捕獲造成之臨界電壓劣化現象。另一方面在照光的環境下實施相同之正負閘極偏壓操作,實驗結果與暗態下呈現相反之劣化趨勢,在照光下產生大量之光激發電洞,而電洞獲得能量得以在閘極負偏壓下於主動層傳遞造成電洞捕獲之現象。由於能帶結構之差異造成在照光操作下電洞的捕獲遠比電子捕獲明顯。此外,為了探討元件在照光環境下穩定性,本論文利用有蓋二氧化矽保護層以及沒有蓋保護層之元件進行照光實驗。實驗結果顯示在無蓋保護層之元件其光不穩定性是由氧氣的吸附與脫附所造成之臨界電壓飄移所主導,而在蓋完保護層之元件則會因為在蓋保護層之過程中缺陷數目增加造成明顯之次臨界光漏電流。
接著,我們更進一步討論非晶態銦鎵鋅金屬氧化物薄膜電晶體在電性操作下的劣化機制。根據閘極偏壓以及汲極偏壓操作條件的不同,分別探討元件在熱載子(Hot-carrier stress)操作以及自我加熱(Self-heating stress)操作下之劣化機制。在熱載子操作下之元件除了因為電子捕獲所造成臨界電壓往右飄移外還有明顯的導通電流劣化現象,此劣化現象主要由在熱載子操作下產生之缺陷所造成,且由非對稱之電性可以了解缺陷的分佈是靠近汲極端。此外,利用非對稱源/汲極結構之元件,可以發現在相同熱載子操作下由於源/汲極電場分布不均的原故會造成很明顯的非對稱臨界電壓劣化現象。配合模擬軟體的驗證可以了解此現象是由通道熱載子注入(Channel Hot Electron Injection)在汲極端所造成。另一方面,當元件操作在自我加熱條件時,由於汲極電流會產生焦耳熱且在閘極正偏壓的條件下會產生介面缺陷。此外自我加熱效應更會加劇原本就有的電子捕獲現象,所以在相同的閘極偏壓下自我加熱操作所產生之臨界電壓飄移量會遠比閘極正電壓操作嚴重許多。
最後,我們探討雙閘極結構之非晶態銦鎵鋅金屬氧化物薄膜電晶體在不同閘極操作下之電性以及光敏感度之差異。實驗結果顯示不管是電性或是光敏感度在不同閘極操作下都呈現明顯的不對稱性。由模擬結果可以了解此非對稱的效應是由於上下閘極所控制之通道區域不同所造成。此外,藉由上下閘極操作下之光敏感度之差異可以應用於內嵌式(In Cell)觸控技術上,且相同觸控技術相較於傳統的非晶矽薄膜電晶體可以省去金屬遮罩層(Black Matrix)進而節省製程上的成本。
Abstract
In order to meet the requests of the application as pixel switch and current driver in next generation active-matrix liquid crystal displays (AMLCD) and active-matrix organic light-emitting diodes (AMOLED). The materials of low temperature poly-silicon (LTPS) and metal-oxide are supposed to be the most potential material for active layer of thin-film transistors (TFTs) due to their high mobility compared to the traditional amorphous silicon TFTs. Therefore, in order to make the LTPS TFTs and metal-oxide TFTs affordable for the practical applications, the understanding of instability and reliability is critically important.
In the first part, we studied the nonvolatile memory characteristics of polycrystalline-silicon thin-film-transistors (poly-Si TFTs) with a silicon-oxide-nitride-oxide-silicon (SONOS) structure. As the device was programmed, significant gate induced drain leakage current was observed due to the extra programmed electrons trapped in the nitride layer which. In order to suppress the leakage current and thereby avoid signal misidentification, we utilized band-to-band hot hole injection method to counteract programmed electrons and this method can exhibit good sustainability because the injected hot holes can remain in the nitride layer after repeated operations. On the other hand, we also investigated the degradation behavior of SONOS-TFT under off-state stress. After the electrical stress, the significant on-state degradation indicates that the interface states accompanied with hot-hole injection. Moreover, the ISE-TCAD simulation tool was utilized to model the degradation mechanism and analyze trap states distribution. Furthermore, we also performed the identical off-state stress for the device with different memory states. The different degradation behavior under different memory states is attributed to the different overlap region of injected holes and trap states.
In the second part, the degradation mechanism of indium-gallium-zinc oxide (IGZO) thin film transistors (TFTs) caused by gate-bias stress performed in the dark and light illumination was investigated. The parallel threshold voltage indicates that charge trapping model dominates the degradation behavior under positive gate-bias stress. However, the degradation of negative gate bias stress is much slighter than the positive gate bias stress since the IGZO material is hard to induced hole inversion layer. In addition, the hole mobility is much lower than electron resulting in ignorable hole trapping effect. On the other hand, the identical positive and negative gate bias stress performed under light illumination exhibit opposite degradation behavior compared with dark stress. This degradation variation under dark and light illumination can be attributed to the effectively energy barrier variation of electron and hole trapping. Furthermore, to further investigate the light induced instability for IGZO TFTs, the device with and without a SiOx passivation were investigated under light illumination. The experiment results indicate that oxygen adsorption and desorption dominate the light induced instability for unpassivated device and the trap states caused during the passivation layer deposition process will induce apparent subthreshold photo-leakage current under light illumination.
In the third part, we investigated the degradation mechanism of IGZO TFTs under hot-carrier and self-heating stress. Under hot-carrier stress, except the electron trapping induced positive Vt shift, an apparent on-current degradation behavior indicates that trap states creation. On the other hand, the identical hot-carrier stress performed in the asymmetric source/drain structure exhibits different degradation behavior compared with symmetric source/drain structure. For asymmetric structure, the strong electrical field in the I-shaped drain electrode will induce channel hot electron injection near the drain side and cause asymmetric threshold voltage degradation. In this part we also investigated the degradation behavior under self-heating stress. The apparent positive threshold voltage (Vt) shift and on-current degradation indicate that the combination of trap states generation and electron trapping effect occur during stress. The trap states generation is caused by the combination of Joule heating and the large vertical field. Moreover, the Joule heating generated by self-heating operation can enhance electron trapping effect and cause larger Vt shift in comparison with the gate-bias stress.
Finally, the electrical properties and photo sensitivity of dual gate IGZO TFTs were investigated. The asymmetric electrical properties and photo sensitivity under top gate and bottom gate operation is attributed to the variation of gate control region. Furthermore, the obvious asymmetric photo sensitivity can be utilized to the In-cell touch panel technology and lower the process cost compared with the traditional a-Si TFTs due to the elimination of black matrix.
目次 Table of Contents
Contents
摘要 i
Abstract iv
Acknowledgements viii
Contents ix
Figure & Table Captions xi
Chapter 1 Introduction 1
1.1: Overview of Thin-Film Transistor (TFT) 1
1.2: Overview of Nonvolatile Memory Device 2
1.3: Amorphous Metal Oxide Semiconductor Thin Film Transistors (AOS TFTs) 3
1.4: Motivation 5
1.5: Organization of the Dissertation 6
References: 9
Chapter 2 Fabrication and Characterization 15
2.1: Fabrication Process Flow of LTPS SONOS TFT and a-IGZO TFT 15
2.1.1: Fabrication Process Flow of LTPS SONOS TFT 15
2.1.2: Fabrication Process Flow of a-IGZO TFTs 15
2.2: Methods of Device Parameter Extraction 16
2.2.1: Determination of the Threshold Voltage 16
2.2.2: Determination of the Field-Effect Mobility 16
2.3: The Electrical Characteristics of SONOS-Type Nonvolatile Memory 17
2.3.1: Operation of SONOS-Type Nonvolatile Memory 17
2.3.2: Programming Operation 18
2.3.3: Erasing Operation 20
2.4: Instability of Amorphous Oxide Semiconductor Thin Film Transistors 21
2.4.1: Instability under Electrical Bias Operation 21
2.4.2: Instability in Different Environments 23
2.4.3: Instability under Light Illumination 25
References: 28
Chapter 3 Electrical degradation of SONOS TFT for memory device and pixel switch operation 45
3.1: Introduction: 45
3.2: Experiment: 46
3.3: Results and Discussions: 47
3.3.1: Improvement of memory state misidentification caused by Gate Induced Drain Leakage current 47
3.3.2: Investigation of the degradation behavior caused by hot-hole injection for SONOS TFT 50
3.4: Conclusion: 54
Reference: 56
Chapter 4 Investigating the reliability and instability under light illumination for a-IGZO TFT 73
4.1: Introduction: 73
4.2: Experiment: 75
4.3: Results and Discussions: 75
4.3.1: Analyzing the degradation behavior of a-IGZO TFT under illuminated gate bias stress 75
4.3.2: Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor 80
4.3.3: Investigating the light induced instability for a-IGZO TFT with different device structure 82
4.4: Conclusion: 85
Reference: 87
Chapter 5 Degradation mechanism for a-IGZO TFT under electrical stress 106
5.1: Introduction: 106
5.2: Experiment: 107
5.3: Results and Discussions: 108
5.3.1: Investigating the hot-carrier degradation mechanism for a-IGZO TFT with symmetric and asymmetric structure 108
5.3.2: Self-Heating enhanced charge trapping effect for a-IGZO TFT 112
5.4: Conclusion: 115
References: 117
Chapter 6 Asymmetric electrical properties of Dual-Gate a-IGZO TFT and the application in touch panel 132
6.1: Introduction: 132
6.2: Experiment: 133
6.3: Results and Discussions: 134
6.3.1: Asymmetric electrical properties of Dual-Gate a-IGZO TFT under bottom gate control and top gate control 134
6.3.2: Asymmetric photo sensitivity of Dual-Gate a-IGZO TFT under bottom gate control and top gate control for the touch panel application 138
6.4: Conclusion: 140
References: 142
Chapter 7 Conclusion and Future Work 156
7.1: Conclusion: 156
7.2: Future Work: 158
Publication list 161

參考文獻 References
[1.1]: Y.C. Wu , T.C. Chang, P. T. Liu, C.S. Chen, C.H. Tu, H. W. Zan, Y. H. Tai, and C. Y. Chang,” Effects of channel width on electrical characteristics of polysilicon TFTs with multiple nanowire channels,” IEEE Trans. Elec. Dev, vol.52, no.10, p.2343, (2005).
[1.2]: Y. Matsueda, R. Kakkad, Y. S. Park, H. H. Yoon, W. P. Lee, J. B. Koo, and H. K. Chung,” 2.5-in AMOLED with integrated 6-bit gamma com- pensated digital data driver,” in SID Tech. Dig. p.1116, (2004).
[1.3]: H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, p. 563, (1991).
[1.4]: J.-H. Lee, W.-J. Nam, B.-K. Kim, H.-S. Choi, Y.-M. Ha, and M.-K. Han, “A new poly-Si TFT current-mirror pixel for active matrix organic light emitting diode,” IEEE Electron Device Lett., vol. 27, no. 10, pp. 830–833, Oct. (2006)
[1.5]: T. Kamiya, K. Nomura and H. Hosono. “Present status of amorphous In-Ga-Zn-O thin-film transistors”, Science and Technology of Advanced. Material, Vol. 11, pp. 044305, (2010).
[1.6]: D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., vol.46, p.1288, (1967).
[1.7]: K. Yoneda, R. Yokoyama, and T. Yamada,”Development trends of LTPS TFT
LCDs for mobile applications,” Proc. Symp. VLSI Circuits, p.85, (2001).
[1.8]: H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata,” Low
power consumption TFT-LCD with dynamic memory embedded in pixels,” in
SID Tech. Dig., p.280, (2001).
[1.9]: K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. (2004).
[1.10]: E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature,” Adv. Mater., vol. 17, no. 5, pp. 590–594, Mar. (2005).
[1.11]: T. Kamiya and H. Hosono. “Material characteristics and applications of transparent amorphous oxide semiconductors”, NPG Asia Material, Vol. 2, pp. 15-22, (2010).
[1.12]: T. Kamiya, K. Nomura, H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping” J. Display Technol. 5, 273 (2009).
[2.1]: W. D. Brown and J. E. Brewer, Eds., “Nonvolatile Semiconductor Memory Technology, A Comprehensive Guide To Understanding and Using NVSM Devices” New York: IEEE Press, (1998).
[2.2]: C. Hu, “Lucky Electron Model of Hot Elevtron Emission,” IEEE IEDM Tech. Dig. p.22, (1979).
[2.3]: E. Lusky, Y. Shacham-Diamand, G. Mitenberg, A. Shappir, I. Bloom and B. Eitan, “Investigation of Channel Hot Electron Injection by Localized Charge-Trapping Nonvolatile Memory Devices” IEEE Trans. Elec. Dev, vol. 51, no. 3, p.444, (2004).
[2.4]: S. Tam, P.K. Ko and C. Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s”, IEEE Trans. Electron Devices, 31(9), pp. 1116-1125, (1984).
[2.5]: H. J. In, O. K. Kwon, “External Compensation of Nonuniform Electrical Characteristics of Thin-Film Transistors and Degradation of OLED Devices in AMOLED Displays” IEEE Electron Device Lett., vol. 30, no. 4, (2009).
[2.6]: M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls. “Bias dependence of instability mechanisms in amorphous silicon thin-film transistors”, Applied Physics Letters, vol. 51, pp. 1242-1244, (1987).
[2.7]: M. J. Powell, C. van Berkel, and J. R. Hughes. “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors”, Applied Physics Letters, vol. 54, pp. 1323-1325, (1989).
[2.8]: F. R. Libsch and J. Kanicki. “Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors”, Applied Physics Letters, Vol. 62, pp. 1286-1288, (1993).
[2.9]: K. S. Karim, A. Nathan, M. Hack, and W. I. Milne. “Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs”, IEEE Electron Device Letters, Vol. 25, pp. 188-190, (2004).
[2.10]: I. W. Wu et al., “Mechanism of device degradation in n- and p-channel polysilicon TFT’s by electrical stressing” IEEE Electron Device Lett., vol. 11, p. 167, Jan. (1990).
[2.11]: F. V. Farmakis, J. Brini, G. Kamarinos, and C. A. Dimitriadis, “Anomalous Turn-On Voltage Degradation During Hot-Carrier Stress in Polycrystalline Silicon Thin-Film Transistors” IEEE Electron Device Lett., vol. 22, no. 2, (2001).
[2.12]: C. Y. Chen, J. W. Lee, S. D. Wang, M. S. Shieh, P. H. Lee, W. C. Chen, H. Y. Lin, K. L. Yeh, and T. F. Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors” IEEE Trans. Electron Devices, vol. 53, no. 12, (2006).
[2.13]: K. Takechi, M. Nakata, H. Kanoh, S. Otsuki, and S. Kaneko, “Dependence of Self-Heating Effects on Operation Conditions and Device Structures for Polycrystalline Silicon TFTs” IEEE Trans. Electron Devices, vol. 53, no. 2, (2006).
[2.14]: R. B. M. Crossa and M. M. De Souza, “Investigating the stability of zinc oxide thin film transistors” Applied Physics Letters, vol. 89, 263513, (2006).
[2.15]: J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors” Applied Physics Letters, vol. 93, 093504, (2008).
[2.16]: A. Suresh and J. F. Muth, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors” Applied Physics Letters, vol. 92, 033502, (2008).
[2.17]: I. T. Cho, J. M. Lee, J. H. Lee and H. I. Kwon, “Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses” Semicond. Sci. Technol., 24, 015013, (2009)
[2.18]: Y. K. Moon, S. Lee, W. S. Kim, B. W. Kang, C. O. Jeong, D. H. Lee, and J. W. Park, “Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator” Applied Physics Letters, vol.95, 013507, (2009)
[2.19]: C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor” Applied Physics Letters, vol. 96, 242105, (2010)
[2.20]: A. V. Gelatos and J. Kanicki. “Bias stress-induced instabilities in amorphous silicon nitride / hydrogenated amorphous silicon structures: Is the “carrier-induced defect creation” mode correct ?” Applied Physics Letters, vol. 57, pp. 1197-1199, (1990).
[2.21]: K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, and H. Hosono. “Subgapstates in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy” Applied Physics Letters, vol. 92, pp. 202117, (2008).
[2.22]: K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono. “Room-temperature fabrication of transparent &#64258;exible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp. 488-492, (2004).
[2.23]: S. T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan, “Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor” Sensors and Actuators, pp. 379–386, (2005)
[2.24]: D. Kang, H. Lim, C. Kim, I. Song, J.Park, and Y. Parka, “Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules” Applied Physics Letters, vol. 90, 192101 (2007).
[2.25]: J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water” Applied Physics Letters, vol. 92, 072104 (2008).
[2.26]: J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors” Applied Physics Letters, vol. 93, 123508 (2008).
[2.27]: J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon, and Y. Park. “High-performance amorphous gallium indium zinc oxide thin-&#64257;lm transistors through N2O plasma passivation” Applied Physics Letters, vol. 93, 053505, (2008).
[2.28]: A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono. “Amorphous In–Ga–Zn–O coplanar homojunction thin-&#64257;lm transistor” Applied Physics Letters, vol. 94, 133502, (2009).
[2.29]: J. K. Jeong, S. Yang, D. H. Cho, S. H. K. Park, C. S. Hwang, and K. I. Cho. “Impact of device con&#64257;guration on the temperature instability of Al–Zn–Sn–O thin film transistors” Applied Physics Letters, vol. 95, 123505, (2009).
[2.30]: H. S. Seo, J. U. Bae, D. H. Kim, Y. J. Park,C. D. Kim, I. B. Kang, I. J. Chung, J. H. Choi, and J. M. Myoung. “Reliable bottom gate amorphous indium–gallium–zinc oxide thin-film transistors with TiOxpassivation layer” Electrochemical and Solid-State Letters, vol. 12, pp. H348-H351, (2009).
[2.31]: K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Comparison of Ultraviolet Photo-Field Effects between Hydrogenated Amorphous Silicon and Amorphous InGaZnO4 Thin-Film Transistors” Japanese Journal of Applied Physics, vol. 48, 010203, (2009).
[2.32]: Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, M. Furuta, T. Hirao, “Analysis of subthreshold photo-leakage current in ZnO thin-film transistors using indium-ion implantation” Solid-State Electronics, vol.54, pp. 1392–1397 (2010)
[2.33]: Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, H. Nitta, M. Furuta, and T. Hirao, “Photo-Leakage Current of Zinc Oxide Thin-Film Transistors” Japanese Journal of Applied Physics, vol. 49, 03CB03, (2010).
[2.34]: J. K. Jeong, “The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays” Semicond. Sci. Technol. vol.26, 034008 (2011).
[2.35]: J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, “Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors” ETRI Journal, vol. 31, no. 1, (2009).
[2.36]: P. T. Liu, Y. T. Chou, and L. F. Teng, “Charge pumping method for photosensor application by using amorphous ndium-zinc oxide thin film transistors” Applied Physics Letters, vol.94, 242101 (2009).
[2.37]: K. Hee Lee, J. S. Jung, K. Seok Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J. Y. Kwon, B. Koo, and S. Lee, “The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors” Applied Physics Letters, vol. 95, 232106 (2009).
[3.1]: T. Aoyama, K. Ogawa, Y. Mochizuki, and N. Konishi, “Inverse staggered poly-Si and amorphous Si double structure TFTs for LCD panels with peripheral driver circuits integration,” IEEE Trans. Electron Devices, vol. 43, no. 5, pp. 701–705, May 1996.
[3.2]: A. J.Walker, S. Nallamothu, E.-H. Chen, M. Mahajani, S. B. Herner,M. Clark, J. M. Cleeves, S. V. Dunton, V. L. Eckert, J. Gu, S. Hu, J. Knall, M. Konevecki, C. Petti, S. Radigan, U. Raghuram, J. Vienna, and M. A. Vyvoda, “3D TFT-SONOS memory cell for ultra-high density file storage applications,” in Symp. VLSI Tech. Dig., pp. 29–30, (2003).
[3.3]: K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in Proc. Symp. VLSI Circuits, pp. 85–90, (2001).
[3.4]: H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low power consumption TFT-LCD with dynamic memory embedded in pixels,” in Proc. SID, pp. 280–283, (2001).
[3.5]: P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview,” Proc. IEEE, vol. 85, pp. 1248–1271, (1997).
[3.6]: J. W. Han, S. W. Ryu, S. J. Choi, and Y. K. Choi, ” Gate-Induced Drain-Leakage (GIDL) Programming Method for Soft-Programming-Free Operation in Unified RAM (URAM)” IEEE ELECTRON DEVICE LETTERS, vol. 30, no. 2, (2009).
[3.7]: E. Yoshida and T. Tanaka, “A capacitorless 1T-DRAM technology usinggate-induced drain-leakage (GIDL) current for low-power and high embedded memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, (2006).
[3.8]: C. Chen and T.P. Ma “A New Source-Side Erase Algorithm to Reduce Wordline Disturb Problem in Flash EPROM” Symp VLSI Technology, p. 321-325, (1995).
[3.9]: S.R. Kim, K.J. Han, 'J Lee, 'T Zhou, K.S. Lee, P Liu, P.Y. Lee, H. C. Tseng,” Investigation of GIDL current Injection Disturb Mechanism in two-transistor-eNVM memory devices” Integrated Reliability Workshop Final Report, 2008.
[3.10]: C, C, Yeh, T, Wang, W, J, Tsai, T, C, Lu, Y, Y, Liao, H, Y, Chen, “A novel erase scheme to suppress overerasure in a scaled 2-bit nitride storage flash memory cell” IEEE Electron Device Lett., vol. 25, no. 9, (2004).
[3.11]: J.A. Butts and G.S. Sohi, “A Static Power Model for Architects,” Proc. Int’l Symp. Microarchitecture, (2000).
[3.12]: A. Padilla, S. Lee, D. Carlton, T. J. K. Liu, “Enhanced Endurance of Dual-bit SONOS NVM Cells using the GIDL Read Method” in Symp. VLSI Tech. Dig., pp. 142–143, (2008).
[3.13]: F. Y. Jian, T. C. Chang, A. K. Chu, “A 2 Bit Nonvolatile Memory Device with a Transistor Switch Function Accomplished with Edge-FN Tunneling Operation” Electrochemical and Solid-State Letters, vol.13, no.5, (2010).
[3.14]: T. Wang, T. E. Chang, L. P. Chiang, et al., “Investigation of oxide charge trapping and detrapping in a MOSFET by using a GIDL current technique,” IEEE Trans. Electron Devices, vol. 45, no. 7, (1998).
[3.15]: Y. H. Tai, S. C. Huang, P. T. Chen, “Degradation Mechanism of Poly-Si TFTs
Dynamically Operated in OFF Region” IEEE Electron Device Lett., vol. 30, no. 3, (2009).
[3.16]: R. Daniel, Y. Shaham-Diamand, Y. Roizin, “Interface states in cycled hot electron injection program/hot hole erase silicon–oxide-nitride–oxide–silicon memories” Applied Physics Letters, vol. 85, no. 25, (2004).
[3.17]: J. H. Chen, S. C. Wong, and Y. H. Wang, “An Analytic Three-Terminal Band-to-Band Tunneling Model on GIDL in MOSFET” IEEE Trans. Electron Devices, vol. 84, no. 7, (2001).
[3.18]: I. Bloom, P. Pavan, B. Eitan, ” NROMTM – a new technology for non-volatile memory products,” Solid-State Electronics, vol. 46, pp. 1757–1763, (2002).
[3.19]: H. T. Lue, Y. T. Hsiao, Y. H. Shih, E. K. Lai, K. Y. Hsieh, R. Liu, and C.Y. Lu,” STUDY OF CHARGE LOSS MECHANISM OF SONOS-TYPE DEVICES USING HOTHOLE ERASE AND METHODS TO IMPROVE THE CHARGE RETENTION,” IEEE 06CH37728 44th Annual International Reliability Physics Symposium, San Jose, (2006).
[3.20]: C. W. Chen, T. C. Chang, P. T. Liu et al, “Electrical Degradation of N-Channel Poly-Si TFT under AC Stress” Electrochemical and Solid-State Letters, vol.8, no.9, H69-H71 (2005).
[3.21]: C.F. Weng, T.C. Chang, Y.H. Tai et al, “Thermal analysis on the degradation of poly-silicon TFTs under AC stress” Materials Chemistry and Physics, pp.344–347, (2009).
[3.22]: K. C. Moon, J.H. Lee, M.K. Han et al,” “The study of hot-carrier stress on poly-Si TFT employing C–V measurement,” IEEE Trans. Electron Devices, vol. 52, no. 4, pp. 512–517, (2005).
[3.23]: R. Daniel, A. Ruzin, and Y. Roizin, “Trap generation in cycled hot-electron-injection-programed/hot-hole-erased silicon oxide nitride oxide silicon memories” J. Appl. Phys., vol. 99, 044502, (2006).
[4.1]: K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors” Nature (London,) vol.432, pp. 488 (2004)
[4.2]: E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, “Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature” Adv. Mater (Weinheim Ger,) vol. 17, pp. 590, (2005)
[4.3]: H. N Lee, J. Kyung, S.K. Kang, D. Y. Kim, M. C Sung, S. J. Kim, C. N. Kim, H. G. Kim, S. T. Kim, “3.5 Inch QCIF+ AM-OLED Panel Based on Oxide TFT Backplane” Tech. Dig. SID, California, USA, pp.1826-1829 (2007).
[4.4]: R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Circuits using uniform TFTs based on amorphous In-Ga-Zn-O” J. Soc. Inf. Display, vil.15(11), pp.915, (2007).
[4.5]: M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, “Gate-bias stress in amorphous oxide semiconductors thin-film transistors” Appl. Phys. Lett. Vol. 95, 063502, (2009)
[4.6]: I. T. Cho, J. M. Lee, J. H. Lee, and H. I. Kwon, “Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses” Semicond. Sci. Technol. vol. 24, 015013, (2009).
[4.7]: J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, H. Y. Chu, “Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors” ETRI Journal, vol. 31, no. 1 , pp. 62-64. (2009).
[4.8]: P. T. Liu, Y. T. Chou, and L. F. Teng, “Charge pumping method for photosensor application by using amorphous ndium-zinc oxide thin film transistors” Applied Physics Letters, vol.94, 242101 (2009).
[4.9]: K. Hee Lee, J. S. Jung, K. Seok Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J. Y. Kwon, B. Koo, and S. Lee, “The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors” Applied Physics Letters, vol. 95, 232106 (2009).
[4.10]: J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors” Appl. Phys. Lett. vol. 93, 123508, (2008).
[4.11]: J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors” Appl. Phys. Lett. vol. 93, 093504, (2008)
[4.12]: F. R. Libsch and J. Kanicki, “Bias&#8208;stress&#8208;induced stretched&#8208;exponential time dependence of charge injection and trapping in amorphous thin&#8208;film transistors” Appl. Phys. Lett. vol. 62, 1286, (1993).
[4.13]: C. S. Chuang, T. C. Fung, B. G. Mullins, K. Nomura, T. Kamiya, H. P. D. Shieh, H. Hosono, and J. Kanicki, “Photosensitivity of Amorphous IGZO TFTs for Active-Matrix Flat-Panel Displays” Tech. Dig. SID, pp. 1215-1218, (2008).
[4.14]: S. J. Lim, J. M. Kim, D. Kim, C. Lee,a J. S. Park, and H. Kimb, “The Effects of UV Exposure on Plasma-Enhanced Atomic Layer Deposition ZnO Thin Film Transistor” Electrochemical and Solid-State Letters, vol. 13(5), pp. H151-H154, (2010).
[4.15]: A. Suresh and J. F. Muth, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors” Appl. Phys. Lett. vol. 92, 033502, (2008)
[4.16]: B. Ryu, H. K. Noh, E. A. Choi, and K. J. Changa, “O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors” Appl. Phys. Lett. vol. 97, 022108, (2010)
[4.17]: T. C. Fung, C. S. Chuang, C. Chen, K. Abe, R. Cottle, M. Townsend, H. Kumomi, and J. Kanicki, “Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors” J. Appl. Phys. vol. 106, 084511, (2009).
[4.18]: M. Kimura, Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, M. Furuta, and T. Hirao, “Mechanism analysis of photoleakage current in ZnO thin-film transistors using device simulation” Appl. Phys. Lett., vol. 97, 163503, (2010).
[4.19]: H. Ohara, T. Sasaki, K. Noda, S. Ito, M. Sasaki, Y. Endo, S. Yoshitomi, J. Sakata, T. Serikawa, and S. Yamazaki, “4.0-inch Active-Matrix Organic Light-Emitting Diode Display Integrated with Driver Circuits Using Amorphous In–Ga–Zn-Oxide Thin-Film Transistors with Suppressed Variation” Jpn. J. Appl. Phys, vol. 49, (2010).
[4.20]: P. G&ouml;rrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, “The influence of visible light on transparent zinc tin oxide thin film transistors” Appl. Phys. Lett., vol. 91, 193504, (2007).
[4.21]: D. Kang, H. Lim, C. Kim, I. Song, J. Park, and Y. Park, “Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules” Appl. Phys. Lett. vol. 90, 192101, (2007).
[4.22]: J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water” Applied Physics Letters, vol. 92, 072104 (2008).
[4.23]: Y. Kamada , S. Fujita , T. Hiramatsu , T. Matsuda , M. Furuta , T. Hirao, “Analysis of subthreshold photo-leakage current in ZnO thin-film transistors using indium-ion implantation” Solid-State Electronics, vol. 54, pp. 1392–1397, (2010).
[5.1]: K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. (2004).
[5.2]: P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato, “Toward High-Performance Amorphous GIZO TFTs” J. Electrochem. Soc., vol. 156, H161, (2009).
[5.3]: J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W.Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, “Bottom-Gate Gallium Indium Zinc Oxide Thin-Film Transistor Array for High-Resolution AMOLED Display” IEEE Electron Device Lett., vol. 29, no. 1309, (2008).
[5.4]: M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, “Gate-bias stress in amorphous oxide semiconductors thin-film transistors” Appl. Phys. Lett. vol. 95, 063502, (2009)
[5.5]: I. T. Cho, J. M. Lee, J. H. Lee and H. I. Kwon, “Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses” Semicond. Sci. Technol., 24, 015013, (2009).
[5.6]: T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, “Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress” Appl. Phys. Lett. vol. 97, 112104, (2010).
[5.7]: Y. H. Tai, S. C. Huang, C. W. Lin, and H. L. Chiu, “Degradation of the Capacitance-Voltage Behaviors of the Low-Temperature Polysilicon TFTs under DC Stress” Journal of The Electrochemical Society, vol.154 (7), H611-H618, (2007)
[5.8]: T. Fuyuki, K. Kitajima, H. Yano, T. Hatayama, Y. Uraoka, S. Hashimoto, Y. Morita, “Thermal degradation of low temperature poly-Si TFT” Thin Solid Films, vol. 487, pp. 216 – 220, (2005).
[5.9]: S. INOUE, H. OHSHIMA and T. SHIMODA, “Analysis of degradation phenomenon caused by self-heating in low-temperature-processed polycrystalline silicon thin film transistors” Jpn. J. Appl. Phys., vol. 41, pp. 6313–6319, (2002).
[5.10]: D. K. Seo, S. Shin, H. H. Cho, B. H. Kong, D. M. Whang, H. K. Cho, “Drastic improvement of oxide thermoelectric performance using thermal and plasma treatments of the InGaZnO thin films grown by sputtering” Acta Materialia, vol.59, 6743, (2011).
[5.11]: M. Fujii, Y. Uraoka, T. Fuyuki, J. S. Jung1, and J. Y. Kwon1, “Experimental and Theoretical Analysis of Degradation in Ga2O3–In2O3–ZnO Thin-Film Transistors” Jpn. J. Appl. Phys. vol. 48, 04C091, (2009).
[5.12]: K. C. Moon, J. H. Lee, and M. K. Han, “The Study of Hot-Carrier Stress on Poly-Si TFT Employing C–V Measurement” IEEE Transaction on Electron Device, vol. 52, no. 4, (2005).
[5.13]: A. Hatzopoulos, N. Archontas, N. A. Hastas, C. A. Dimitriadis, G. Kamarinos, N. Georgoulas, and A. Thanailakis, “Change in Transfer and Low-Frequency Noise Characteristics of n-Channel Polysilicon TFTs Due to Hot-Carrier Degradation” IEEE Electron Device Lett., vol. 25, no. 6, (2004).
[5.14]: S. Tam, P.K. Ko and C. Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s”, IEEE Trans. Electron Devices, 31(9), pp. 1116-1125, (1984).
[5.15]: K. Takechi, M. Nakata, H. Kanoh, S. Otsuki, and S. Kaneko, “Dependence of Self-Heating Effects on Operation Conditions and Device Structures for Polycrystalline Silicon TFTs” IEEE Trans. Electron Devices, vol. 53, no. 2, (2006).
[5.16]: S. Inoue, H. Ohshima, and T. Shimoda, “Analysis of Threshold Voltage Shift Caused by Bias Stress in Low Temperature Poly-Si TFTs” IEDM Tech. Dig., pp. 527–530, (1997).
[6.1]: H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, no. 7, pp. 1516–1522, (2008).
[6.2]: S. H. K. Park, C. S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J. I. Lee, K. Lee, M. S. Oh, and S. Im, “Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel,” Adv. Mater., vol. 21, no. 6, pp. 672–682, (2009).
[6.3]: J. Lee, D. Kim, D. Yang, S. Hong, K. Yoon, P. Hong, C. Jeong, H. Park, S. Y. Kim, S. K. Kim, S. S. Kim, K. Son, T. Kim, J. Kwon, and S. Lee, “World’s largest (15-inch) XGA AMLCD panel using IGZO oxide TFT,” in Proc. Soc. Inf. Display Int. Symp. Dig. Tech. Papers, pp. 625–628, (2009).
[6.4]: J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B.W. Yoo, J.W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, “Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1309–1311, (2008).
[6.5]: G. Chaji, “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Display,” Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, (2008).
[6.6]: S. S. H. Kabir, “Amorphous Silicon Dual Gate Thin Film Transistor & Phase Response Touch Screen Readout Scheme for Handheld Electronics Interactive AMOLED Displays” A thesis, University of Waterloo, Waterloo, ON, Canada, (2008).
[6.7]: H. Lim, H. Yin, J. S. Park, I. Song, C. Kim, J. C. Park, S. Kim, S. W. Kim, C. B. Lee, Y. C. Kim, Y. S. Park, and D. Kang, “Double gate GaInZnO thin film transistors” Appl. Phys. Lett. vol. 93, 063505, (2008).
[6.8]: C. H. Park and S. Im, “Threshold voltage control in dual gate ZnO-based thin-film transistors operating at 5V” J. Phys. D: Appl. Phys., vol. 41, (2008)
[6.9]: Y. Kamada, S. Fujita, M. Kimura, T. Hiramatsu, T. Matsuda, M. Furuta, and T. Hirao, “Reduction of Photo-Leakage Current in ZnO Thin-Film Transistors With Dual-Gate Structure” IEEE Electron Device Lett., vol. 32, no.4, (2011).
[6.10]: K. S. Son, J. S. Jung, K. H. Lee, T. S. Kim, J. S. Park, K. C. Park, J. Y. Kwon, B. Koo, and S. Y. Lee, “Highly Stable Double-Gate Ga–In–Zn–O Thin-Film Transistor” IEEE Electron Device Lett., vol. 31, no.8 , (2010).
[6.11]: J. S. Park, K. S. Son, T. S.Kim, J. S. Jung, K. H. Lee, W. J. Maeng, H. S. Kim, E. S. Kim, K. B. Park, J. B. Seon, J. Y. Kwon, M. K. Ryu, and S. Lee “High Performance and Stability of Double-Gate Hf–In–Zn–O Thin-Film Transistors Under Illumination” IEEE Electron Device Lett., vol. 31, no.9, (2010).
[6.12]: W. D. Boer, A. Abileah, P. Green, T. Larsson, S. Robinson, and T. Nguyen, “Active Matrix LCD with Integrated Optical Touch Screen” SID Int. Symp. Digest Tech. Papers, vol. 34, (2003).
[6.13]: H. Ohara, T. Sasaki, K. Noda, S. Ito, M. Sasaki, Y. Endo, S. Yoshitomi, J. Sakata, T. Serikawa, and S. Yamazaki, “4.0-inch Active-Matrix Organic Light-Emitting Diode Display Integrated with Driver Circuits Using Amorphous In–Ga–Zn-Oxide Thin-Film Transistors with Suppressed Variation” Jpn. J. Appl. Phys 49 (2010).
[6.14]: S. W. Tsao, T. C. Chang*, P. C. Yang, S. C. Chen, J. Lu, M. C. Wang, C. M. Huang, W. C. Wu, W. C. Kuo, and Y. Shi, “Temperature influence on Photo-leakage-current Characteristics of a-Si:H thin-film transistor,” Solid-State Electronics, 54, 642-645 (2010).
[6.15]: M. C. Wang, T. C. Chang*, P. T. Liu, S. W. Tsao, and J. R. Chen, "Photo-leakage-current characteristic of F incorporated hydrogenated amorphous silicon thin film transistor," Appl. Phys. Lett. 90 (19), 192114 (2007).
[6.16]: M. C. Wang, T. C. Chang*, P. T. Liu, Y. Y. Li, F. S. Huang, Y. J. Mei, and J. R. Chen, "Source-drain barrier height engineering for suppressing the a-Si : H TFTs photo leakage current," Thin Solid Films 516 (2-4), 470-474 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code