Responsive image
博碩士論文 etd-0702112-191358 詳細資訊
Title page for etd-0702112-191358
論文名稱
Title
封裝結構之尺寸與材料參數對熱傳效益之影響
The Influences of Structure Size and Material Property of Package on Heat Transfer Efficiency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-22
繳交日期
Date of Submission
2012-07-02
關鍵字
Keywords
QFN、IC封裝、BGA、田口法、ANOVA、ICEPAK、熱傳效益
ICEPAK, Heat Transfer Efficiency, ANOVA, Taguchi method, IC package, QFN, BGA
統計
Statistics
本論文已被瀏覽 5693 次,被下載 5042
The thesis/dissertation has been browsed 5693 times, has been downloaded 5042 times.
中文摘要
電子產品發展,趨向「輕薄、多功能、高元件密度、耐久性」等要求演進。當微電子晶片功能傾向高功率、高密度與高速度時,其單位面積發熱量急速增加,而封裝體的體積逐漸縮小,其散熱不良是產品產生失效的原因。本文之研究在於針對四方形扁平無引腳封裝(QFN)及球柵陣列封裝(BGA),改變其封裝體的幾何結構尺寸與材料之參數,以達到最佳的散熱性能,使封裝體因散熱不良所導致失效的機率大為降低。
在業界上,不管改變何種尺寸或是材料來進行實驗都是需要相當大的風險與成本。所以本文針對四方形扁平無引腳封裝(QFN)及球柵陣列封裝(BGA)封裝體進行數值解析,利用分析軟體ANSYS之ICEPAK來建立模型,進而模擬在自然對流條件下的散熱性能,配合統計實驗設計田口法L18 (21×37)直交表設定參數之組合,求得各個控制因子的影響效果程度,接著利用ANOVA(ANalysis Of VAriance)變異數分析來獲得各個控制因子的貢獻度,最終進行變異數誤差統合,俾便找出各個參數的顯著程度。
結果顯示,QFN封裝體的黏著劑(Die attach)熱傳導係數影響其散熱性能高達81.46%,且相較於其它控制因子而言,具有高顯著性與高影響效果,而Die attach熱傳導係數在0.5 W/m•k至1.5 W/m•k之間的晶片表面溫度(Tj)下降幅度遠大於1.5 W/m•k至8 W/m•k之間。而BGA封裝體的晶片/封裝體(Die/PKG)面積比影響其散熱性能則為64.24%,其顯著性與影響效果同樣大於其它控制因子,而增大Die/PKG SIZE可大幅降低晶片表面溫度(Tj);至於基材( Substrate)層數的貢獻度為18.83%,在99%的信心水準下也擁有較高顯著性。
Abstract
Currently the trend of electronic product development is to ward “light and thin, multi-functional, high density and durability”. When the microelectronic chips tend to be high power, high density and high speed, the rapid increase of heat in a reduced unit area of package size, will lead to failure of electronic products. The contents of thesis is to find out the dominant factors in heat transfer by changing the geometries and material properties of QFN and BGA packages. It also aims to achieve the beat the thermal performance by reducing the probability of failure.
In industries it needs a lot of cost and time in experiment work due to the changes of size and materials. Herein, the softwares of ANSYS and ICEPAK are adopted to model the QFN and BGA packages with the statistical experimental design of Taguchi method L18 (21×37) orthogonal array setting parameters and obtain the degree of effect for each factor. Eventually, we use the analysis of variance ANOVA to obtain the contribution of each factor and to identify the significant degree for various parameters by variance error integration.
From the results the die attach thermal conductivity affects the contribution of thermal performance up to 81.46% for QFN package in comparison with other controlling factors of high significance and high impact effects. Die attach thermal conductivity between 0.5 W/m•k and 1.5 W/m•k the Tj declines much larger than that between 1.5 W/m•k and 8 W/m•k. Die /PKG area ratio affects the contribution of the thermal performance to 64.24% and increasing Die /PKG area ratio can reduce the Tj for BGA package. The significant effect is also higher than other factors. However, the contribution of substrate layers is 18.83% at 99% confidence level.
目次 Table of Contents
目 錄
摘 要 i
ABSTRACT ii
目 錄 iii
圖 次 v
表 次 viii
第一章 緒論 1
1.1 前言 1
1.2 熱傳簡介 2
1.3 研究目的與動機 6
1.4 文獻回顧 7
1.5 組織與章節 8
第二章 理論基礎 13
2.1 熱阻基本定義 13
2.1.1熱阻θJA 13
2.1.2熱阻θJB 14
2.1.2熱阻θJC 14
2.2田口實驗設計方法 15
2.2.1田口方法介紹 15
2.2.2變異數分析 17
第三章 數值模擬與分析流程 24
3.1 Fluent Icepak簡介 25
3.2 統御方程式 25
3.3 數值模型之建立 26
3.3.1 QFN 26
3.3.2 BGA 27
3.4 分析流程與參數規劃 27
3.4.1 目標函數選定 27
3.4.2 控制因子與水準數 28
3.4.3 訂定田口直交表 30
3.5 實驗熱阻量測 30
3.5.1 測試晶片 30
3.5.2 測試環境 31
3.6 模擬分析 31
3.6.1 網格建立 32
3.7 模擬驗證 32
第四章 模擬結果 47
4.1 QFN之田口分析最佳參數組合 47
4.2 BGA之田口分析最佳參數組合 49
第五章 分析討論 54
5.1 QFN之變異數分析統合 54
5.2 BGA之變異數分析統合 55
5.3 最佳控制因子對散熱之影響 57
5.3.1 不同的Die attach熱傳導係數對QFN之影響 57
5.3.2 不同的Die尺寸對BGA之影響 58
第六章 結論 77
參 考 文 獻 79

參考文獻 References
參 考 文 獻
1. L. L. Liou, B. Bayraktaroglu and C. I. Huang, “Theoretical Thermal Runaway of Heterojunction Bipolar Transistors: Junction Temperature Rise Threshold”, Solid-State Electronics, Vol. 39, No. 1, pp. 165-172, 1996.
2. L. L. Liou, T. Jenkins and C. I. Huang, “Dc Power Limitation of The Heterojunction Bipolar Transistor with Dot Geometry: Effect of Base Potential Distribution on Thermal Runaway”, Solid-State Electronics, Vol. 41, No. 6, pp. 871-877, 1997.
3. Jorgen Olsson, “Self-heating effect in SOI bipolar transistors”, Microelectronic Engineering, Vol. 56, pp. 339-352, 2001.
4. C. A. Vriezinga, S. Sanchez-Pedreno and J. Grasman, “Thermal Runaway in Microwave Heating: a Mathematical Analysis”, Applied Mathematical Modelling, Vol. 26, pp.1029-1038, 2002.
5. James Geer and John Fillo, “Control of Thermal Runaway-Some Mathematical insights”, Int. J. Heat and Mass Transfer, Vol. 41, pp. 2979-2990, 1998.
6. J. P. Holman, Heat Transfer, 9th ,McGraw-Hill, Inc, 2002.
7. L. Li and B. H. Yeung, “Wafer Level and Flip Chip Design Through Solder Prediction Models and Validation,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, NO. 4, pp.650-654, 2001.
8. G. Kelly, C. Lyden, C. O’Mathuna and J. S. Campbell, “Investigation of Thermo-Mechanically Induced Stresses in a PQFP 160 Using Finite Element Technology”, 42nd Electronic Component Technology Conference, pp.467-472, 1992.
9. L. T. Yeh, “Review of Heat Transfer Technologies in Electronic Equipment,” J. of Electronic Packaging, Vol. 117, pp. 333-339, 1995.
10. C. Chapman, “The Basics of Package/Device Cooling,” Electronic Packaging & Production, pp. 57-60, May 1998.
11. C.P. Wong, and M.M. Wong, “Recent advances in plastic packaging of flip-chip and multichip modules (MCM) of microelectronics,” IEEE Trans. Components Pack. Technol. Vol 22, pp.21–25, 1999.
12. Bar-Cohen, A., Kraus, A. D., and Davidson, S. F., Thermal frontiers in the design and packaging of microelectronic equipment, Journal of Mechanical Engineering, 105, 53-59, 1983.
13. A. Mertol, “Thermal Performance Comparison of High Pin Count Cavity-Up Enhanced Plastic Ball Grid (EPBGA) Packages,” IEEE Trans. on Components, Packaging, and Manufacturing Tech., part B, Vol. 19, no. 2, pp. 427-443, 1996.
14. Z. Johnson, K. Ramakrishna, B. Joiner, and M. Eyman, “Thermal Sub-Modeling of the Wire-Bonded Plastic Ball Grid Array Package,” In. Proc. of the 13th IEEE SEMI-THERM Symposium, pp. 1-9, Jan. 1997.
15. Z. Johnson and M. Eyman, “Designed Based Thermal Simulation Methodology for Ball Grid Array Packages,” Proceedings of the 6th Intersociety Conference on Thermal Phenomena in Electronic Systems (ITHERM), pp. 82-87, 1998.
16. C. Argento and G. Kromann, “The Development of Three-Dimensional Computational-Fluid-Dynamics Models of PBGA Interconnect Technology for Moderate Air-Cooled Systems,” Proc. International Flip Chip, Ball Grid Array, TAB, and Advanced Packaging Symposium, pp. 218-224, 1995.
17. T. T. Lee, “An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool,” Proceedings of the ASME, HTD-vol. 364-1, pp. 21-28, 1999.
18. Haiyu, Q., Ganesan, S., Osterman, M., Pecht, M., “Accelerated testing and finite element analysis of PBGA under multiple environmental loadings,” 2004 International Conference on the Business of Electronic Product Reliability and Liability, pp.99-106, Apr 27-30, 2004.
19. Darvin R. Edwards, Ming Hwang, Bill Stearns, “Thermal Enhancement of Plastic IC Packages”, IEEE Transactions on Components, Packaging, and Manufacturing Technology — Part A, Vol.18, No.1, pp.57~67, 1995.
20. Chin C. Lee and David H. Chien,”A Thermally Enhanced Plastic Package with Indented Leadframe”, IEEE Electronic Packaging Technology Conference, pp.338~342, 1997.
21. Filip Christiaens and Eric Beyne,”Transient Thermal Modeling and Characterization of a Hybrid Component”, IEEE Electronic Packaging Technology Conference, pp.154~164, 1996.
22. Celik, Z. Z., Copeland, D., and Mertol, A., "Thermal Enhancement and Reliability of 40 mm EPBGA Packages with Interface Ma terials," Proc. of 21st IEEE/CPMT Intl. Electronics Manufacturing Technology Symp., Austin, TX, IEEE, Piscataway, NJ, pp. 376–385, 1997.
23. C. B. Hwang, “Thermal design for flip chip on board in natural convection,” in Proc. 15th Semiconductor Thermal Meas. Manag. Symp. (Semi-Therm), pp. 125-132, 1999.
24. T. Zhou, Vater Motta and M. Hundt, ”Thermal evaluation of standard and Power TQFP”, IEEE SEMI-THERM Symposium, pp.19-29, 1996.
25. Sanjeev B. Sathe, Bahgat G. Sammakia, ”A Numerical Study of the Thermal Performance of a Tape Ball Gird Array (TBGA) Package”,Journal of Electronic Packaging, Vol. 122, pp.107-114, 2000.
26. 譚富光,,86 年 6 月,「球型陣列塑膠構裝之 Cavity Up 與 Down 封裝形式的熱傳特性探討」,電腦與通訊,第 60 期,第 25-41 頁。
27. A.C.W. Lu, D.J. Xie, Z.F. Shi, W. Ryu, “Electrical and Thermal Modeling of QFN Packages”,Electronic Packaging Technology Conference, pp.352-356, 2000.
28. Lee, S.W.R., Lau, D., “Computational model validation with experimental data from temperature cycling tests of PBGA assemblies for the analysis of board level solder joint reliability,” the 5th International Conference on Thermal and Mechanical Simulation and Experiment in Microelectronics and Microsystems, pp.115-120, 2004.
29. Taegyeong Chung, Minha Kim, Joonghyun Baek and Seyong Oh, “Junction-to-Top and Junction-to-Board Thermal Resistance Measurement for 119 BGA Packages”, Fifteenth IEEE SEMI-THERM Symposium, pp. 142-150, 1999.
30. John H. Lau, “Thermal Stress Analysis of Plastic Leaded Chip Carreers”, IEEE Intersociety Conference on Thermal Phenomena, pp.57~66, 1990.
31. B. Han and Y. Guo, ”Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré Interferometry”,Journal of Electronic Packaging , Vol. 117, pp.185~191, 1995.
32. D. Bhogeswara Rao and M. Prakash, ”Effect of Substrate Warpage on the Second Level Assembly of Advanced Plastic Ball Grid Array(PBGA) Packages”, IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp.439~446, 1997.
33. 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,2004。
34. 田口玄一,田口統計解析法,五南圖書出版公司,台北市,2003。
35. 羅錦興,品質設計工程指引,中國生產力中心,台北縣,2001。
36. Patankar S. V., Numerical Heat Transfer and Fluid Flow Hemisphere Publishing Corporation, Taylor & Francis Group, New York, 1980.
37. X. Fan, “Combined Thermal And Thermomechanical Modeling for A Multi-Chip QFN Package with Metal-Core Printrd Circuit Board,” Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp.377-382, Las Vegas, NV, United States, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code