Responsive image
博碩士論文 etd-0702113-120415 詳細資訊
Title page for etd-0702113-120415
論文名稱
Title
多重結晶性嵌段共聚物之薄膜結晶行為研究
Crystallization of Multiple-Crystalline Block Copolymers in Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-08-06
關鍵字
Keywords
單晶、嵌段共聚物、溶劑誘導結晶、溫度誘導結晶、磊晶、方向性
epitaxy, single crystal, melt crystallization, block copolymer, solvent-induced crystallization, orientation
統計
Statistics
本論文已被瀏覽 5770 次,被下載 68
The thesis/dissertation has been browsed 5770 times, has been downloaded 68 times.
中文摘要
本篇論文是利用多重結晶性嵌段共聚物PEO-PCL-PLLA,經由控制結晶溫度和溶劑誘導時間來研究在薄膜狀態下的結晶行為,由DSC和in-situ WAXD結果確定PEO、PCL、PLLA鏈段都會結晶,再藉由TEM及SAED來探討薄膜狀態下的形態和繞射分析。在溫度誘導的過程中,都只能得到單一結晶層板,無法獲得雙層或三層的結晶層板,亦即在高溫結晶可以得到PLLA的單晶,室溫可以得到PCL的單晶,而在低溫結晶則可以得到PEO的單晶,然而,只要其中一個鏈段先結晶,之後不管怎麼調控溫度都無法再讓另外兩個鏈段結晶,這是因為先結晶的鏈段會形成一個堅固的結晶層板,而這個結晶層板會對其他鏈段造成局限效應,使另外兩個鏈段在溫度的控制下也無法結晶,所以在溫度誘導的製程最終只能得到單一鏈段結晶所形成的單晶。從SAED中可以分析結晶方向性,PLLA和PCL兩個結晶方向性的方向都是垂直基材表面的;在較低溫成長的PEO則是出現平行基材表面的現象。
此外,我們利用溶劑誘導的方法,選用不同的溶劑和誘導的時間來製備單晶,然而在溫度調控下無法得到的雙層和三層的結晶層板,在溶劑誘導的製程中可以利用時間的調控來得到。我們選用三種溶劑,分別是chlorobenzene,toluene和n-hexanol,其中chloobenzene對PEO和PCL都是相容性很好的溶劑;toluene則是較偏PCL選擇性溶劑,但是chlorobenzene和toluene對PLLA都是溶解度很差的溶劑;n-hexanol則是PLLA選擇性溶劑且對PCL是溶解度很差的溶劑。在chlorobenzene和toluene溶劑誘導結晶的過程中,結晶的順序是由PLLA先聚集結晶誘導PCL結晶,PCL再誘導PEO結晶,即PLLA→PCL→PEO,而在n-hexanol誘導結晶的過程中則是PCL先結晶在誘導PLLA結晶,即PCL→PLLA,這邊PEO不會結晶是因為PEO和n-hexanol都具有極性,n-hexanol對PEO溶解性很好使得PEO無法結晶,此結晶順序在另一個PLLA分子鏈較短不會結晶的樣品PEO-PCL-PLLA也可以得到,由此可知,在溶劑誘導結晶的過程中,結晶的順序性和溶劑的相容性有很大的關係。和前段溫度控制不同,利用溶劑誘導出來的單晶,單層、雙層、三層結晶層板中的PLLA,PCL和PEO的結晶方向性都是垂直於基材表面。
最後,我們發現PLLA和PCL有磊晶的現象,兩個結晶的a軸互相夾0o和90o的磊晶,還有夾角是30o的”soft epitaxy”,這是利用PLLA的(110)結晶面和PCL的b軸相互平行而磊晶;PCL和PEO也有磊晶的現象,互相夾20o,利用PEO的(120)結晶面平行PCL的(110)結晶面磊晶,稱作”soft epitaxy”。
Abstract
In this study, crystal growths of multiple-crystalline poly(ethylene oxide)-block-poly(ε-caprolactone)-block-poly(L-lactide) (PEO-PCL-PLLA) triblock copolymers in thin films are investigated by melt and solvent-induced crystallizations. Differential scanning calorimetry (DSC) and in-situ wide angle X-ray diffraction (WAXD) results indicate that the PEO, PCL, and PLLA blocks are able to sequentially crystallize in bulk state. The crystalline morphologies of the PEO-PCL-PLLA in thin films were explored using transmission electron microscopy (TEM) associated with selected-area electron diffraction (SAED). Only single crystallization of PLLA, PCL or PEO, i.e., one of the blocks is crystallizable and the others are non-crystalline, can be found in the melt-crystallized PEO-PCL-PLLA thin films. This might be due to a crystalline template driven by the first-crystallized block, giving a robust confined environment for the subsequent crystallization. Notably, the PLLA and PCL single crystals with flat-on orientation (i.e., c-axis is perpendicular to substrate surface) can be observed, whereas the PEO single crystal possess edge-on (i.e., c-axis is parallel to substrate surface) orientation due to low crystallization temperature. Most interestingly, single- double- or/and triple-crystalline morphologies can be observed in the PEO-PCL-PLLA thin films by solvent-induced crystallization. After solvent annealing by neutral chlorobenzene and PCL-selective toluene, the development of crystalline morphologies from single to double and to triple crystallization in sequence, that is PLLA → PCL → PEO, is carried out due to solvent selectivity. By contrast, after solvent annealing by n-hexanol, the evolution of crystalline morphologies from single to double crystallization in sequence, that is PCL → PLLA, is accomplished. The non-crystalline PEO block is attributed to strong polar interaction between PEO and n-hexanol, giving rise to dissolution of the PEO. Similar crystalline tendency can be observed in the PEO-PCL-PLLA BCP thin film having non-crystalline PLLA block due to short chain length. In contrast to melt crystallization, the solvent-induced formation of single crystals all exhibit flat-on chain orientation consistent to that obtained from solution crystallization. Most interestingly, these solvent-induced crystalline morphologies exhibit epitaxial crystallization associated with the crystallization sequence. In the double-crystalline morphologies, i.e., PLLA → PCL or PCL → PLLA, two cases with the angle θ = 0o or 90o between aPLLA and aPCL are found, indicating the lattice matching between the PLLA and PCL crystals. In addition, the angle θ = 30o between the aPLLA and aPCL, in which the dimension of (110)PLLA is almost identical to bPCL, is obtained, namely, “soft epitaxy”. In the triple-crystalline morphologies, the third-crystallized PEO exhibits soft epitaxy with the preformed second-crystallized PCL crystal, in which the growth plane of (120)PEO is parallel to that of (110)PCL. As a result, the control of crystalline morphologies associated with different crystallization sequences and chain orientations can be achieved in the multiple-crystalline PEO-PCL-PLLA thin films by melt and solvent-induced crystallizations.
目次 Table of Contents
摘要...................................................................................................................................I
Abstract...........................................................................................................................III
Table of Contents...........................................................................................................VI
List of Tables..................................................................................................................IX
List of Figures..................................................................................................................X
Chapter 1. Introduction....................................................................................................1
1.1 Self-assembly............................................................................................................1
1.2 Self-assembly of Block Copolymers..........................................................................2
1.3 Crystalline Diblock Coplymers...................................................................................4
1.3.1 Microphase-Separated Morphology of Semicrystalline BCPs................................4
1.3.2 Double Crystalline BCPs.........................................................................................7
1.4 Polymeric Single Crystal............................................................................................8
1.4.1 Single Crystals from Self-assembly of Homopolymers...........................................8
1.4.2 Single Crystals from Self-assembly of Block Coplymers......................................14
Chapter 2. Objectives....................................................................................................21
Chapter 3. Materials and Experimental Methods...........................................................23
3.1 Materials..................................................................................................................23
3.1.1 Synthesis of Poly(ethylene oxide)-b-poly(ε-caprolactone)-b-poly(L-lactide) (PEO-PCL-PLLA).....................................................................................................................23
3.1.2 Sample Preparation..............................................................................................24
3.1.2.1 Bulk Samples Prepared by Solution Casting.....................................................24
3.1.2.2 Thin Films Prepared by Spin Coating ................................................................25
3.2 Characterization of Multiple-Crystalline Block Copolymers.....................................25
3.2.1 Differential Scanning Calorimetry (DSC)..............................................................25
3.2.2 Small-Angle X-ray Scattering (SAXS) and Wide-Angle X-ray Diffraction (WAXD)..........................................................................................................................26
3.2.3 Transmission Electron Microscopy (TEM)............................................................27
Chapter 4. Results and Discussion................................................................................29
4.1 Crystallization Behaviors of PEO-PCL and PEO-PCL-PLLA...................................29
4.1.1 Crystallization Sequence......................................................................................29
4.1.2 Isothermal Crystallization......................................................................................36
4.2 Self-assembled Morphology....................................................................................38
4.3 Melt-Crystallized Morphology in Thin Film...............................................................42
4.3.1 Crystallization of PEO5-PCL3 in Thin Film...........................................................42
4.3.2 Crystallization of PEO5-PCL3-PLLA6 in Thin Film...............................................44
4.4 Solvent-Induced Crystallization in BCP Thin Film....................................................54
4.4.1 As-spun Thin Film Morphologies..........................................................................55
4.4.2 Morphologies after Solvent Annealing by Neutral Solvent for PEO and PCL blocks.............................................................................................................................56
4.4.3 Morphologies after Solvent Annealing by PCL-selective Solvent.........................62
4.4.4 Morphologies after Solvent Annealing by PLLA-selective Solvent.......................66
4.5 Epitaxial Crystallization............................................................................................72
Chapter 5. Conclusions..................................................................................................79
Chapter 6. References...................................................................................................82
參考文獻 References
1. Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
2. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
3. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
7. Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
8. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
9. Loo, Y. L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
10. Ho, R. M.; Lin, F. H.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Hsiao, B. S.; Sics, I. Macromolecules 2004, 37, 5985.
11. Hamley, W.; Castelletto, V.; Castillo, R. V.; Müller, A. J.; Martin, C. M.; Pollet, E.; Dubois, Ph. Macromolecules 2005, 38, 463.
12. Castillo, R. V.; Müller, A. J; Lin, M. C.; Chen, H. L.; Jeng, U. S.; Hillmyer, M. A. Macromolecules 2008, 41, 6154.
13. Keller, A. Philos. Mag. 1957, 2, 1171.
14. Bassett, D.C.; Olley, R.H.; Al Raheil IAM. Polymer 1988, 29, 1539.
15. Reneker, D. H.; Geil, P. H. J. Appl. Phys. 1960, 31, 1916.
16. McMahon, P. E.; McCullough, R. L.; Schlegel, A. A. J. Appl. Phys. 1967, 38, 4123.
17. Petraccone, V.; Corradini, P.; Allegra, L. J. Polym. Sci. 1972, 32, 419.
18. Oyama, T.; Shiokawa, K.; Ishimaru, T. J. J. Macromol. Sci., Phys. 1973, 8, 229.
19. Mazur, J.; Khoury, F.; Fanconi, B. Bull. Am. Phys. Soc. 1982, 27, 289.
20. Balta Calleja, F.J.; Keller, A. J. Polym. Sci. 1964, A2, 2171.
21. Yang, J. P.; Liao, Q.; Zhou, J. J.; Jiang, X.; Wang, X. H.; Zhang, Y.; Jiang, S. D.; Li, L. Macromolecules 2011, 44, 3511.
22. Bittiger, H.; Marchessault, R. H. Acta Crystallogr. 1970, B26, 1923.
23. Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y.; Polymer J 1970, 1:555.
24. Mareau, V.H.; Prud’homme R. E. Macromolecules 2005, 38, 398.
25. Bassett, D. C.; Frank, F. C.; Keller, A. Philos. Mag. 1963, 8, 1753.
26. Iwata, T.; Doi, Y. Polym Int 2002, 51, 852.
27. Iwata, T.; Doi, Y. Macromolecules 1998, 31, 2461.
28. Jacodine, R. Nature (London) 1955, 176, 305.
29. Hocquet, S.; Dosière, M.; Thierry, A.; Lotz, B.; Koch, M. H. J.; Dubreuil, N.; Ivanov, D. A. Macromolecules 2003, 36, 8376.
30. Chen, W. Y. Cheng, S.Z.D. Macromolecules 2004, 37, 5292.
31. Chen, W. Y.; Zheng, J. X.; Cheng, S.Z.D.; Li, C. Y.; Huang, P.; Zhu, L.; Xiong, H.; Ge, Q.; Geo, Y.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L. Phys. Rev. Lett. 2004, 93,028301.
32. Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A. C.; Cheng, S. Z. D. Macromolecules 2006, 39, 641.
33. Yang, J.; Zhao, T.; Zhou, Y.; Liu, L.; Li, G.; Zhou, E.; Chen X. Macromolecules 2007, 40, 2791.
34. Sun, J.; Chen, X.; He, C.; Jing, X. Macromolecules 2006, 39, 3717.
35. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L,; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
36. Van Horn, R. M.; Zheng, J. X.; Sun, H. J.; Hsiao, M. S.; Zhang, W. B.; Dong, X. H.; Xu, J.; Thomas, E. L.; Lotz, B.; Cheng, S. Z. D. Macromolecules 2010, 43, 6113.
37. Xiong, H.; Zheng, J. X.; Van Horn, R. M.; Jeong, K. U.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Brittain, W. J.; Cheng, S. Z. D. Polymer 2007, 48, 3732.
38. Li, J. G.; Chang, Y. H.; Lin, Y. S.; Kuo, S. W. RSC Adv. 2012
39. Hoogsteen, A.; Postema, A. R.; Pennings, A. J.; Brinke, G. T; Zugenmaier, P. Macromolecules 1990, 23, 634.
40. Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y. Polymer J 1970, 1, 555-562.
41. Takahashi, Y.; Tadokoro, H. Macromolecules 1973, 6, 672.
42. Cecchet, F.; Meersman, B. D.; Champagne, S. D.; Nysten, B.; Jonas, A. M. Langmuir 2006, 22, 1173.
43. Nakagawa, S.; Kadena, K. I.; Ishizone, T.; Nojima, S.; Shimizu, T.; Yamaguchi, K.; Nakahama, S. Macromolecules 2012, 45, 1892.
44. Crescenzi, V.; Manzini, G.; Calzilari, G.; Borri, C.; Eur. Polym. J. 1972, 8 449.
45. Hsu, J. Y.; Hsieh, I. F.; Nandan, B.; Chiu, F. C.; Chen, J. H.; Jeng, U. S.; Chen, H. L. Macromolecules 2007, 40, 5014.
46. Lorenzo, A. T.; Muller, A. J.; Lin, M. C.; Chen, H. L; Jeng, U. S.; Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Macromolecules 2009, 42, 8353.
47. Yang, J.; Liang, Y.; Luo, J.; Zhao, C.; Han, C. C. Macromolecules 2012, 45, 4254.
48. Pallandre, A.; Glinel, K.; Jonaas, A. M.; Nysten, B. Nano Lett. 2004, 4, 365.
49. Arys, X.; Laschewsky, A.; Jonas, A. M. Macromolecules 2001, 34, 3318.
Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook, 4th ed. 1999 Wiley-Interscience, New York.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code