Responsive image
博碩士論文 etd-0702114-013814 詳細資訊
Title page for etd-0702114-013814
論文名稱
Title
斑馬魚CoupTF1b 對血管生成的作用
CoupTF1b functions in vascular development in zebrafish
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-17
繳交日期
Date of Submission
2014-08-02
關鍵字
Keywords
斑馬魚血管生成、體節間血管、CoupTF1b
intersegmental vessels, CoupTF1b, angiogenesis, zebrafish
統計
Statistics
本論文已被瀏覽 5704 次,被下載 1271
The thesis/dissertation has been browsed 5704 times, has been downloaded 1271 times.
中文摘要
血管的生長和形成網狀脈絡需要許多基因及訊息傳遞路徑來調控,然而,較少研究闡述關於轉錄因子 (transcription factor) 如何調控靜脈生成及體節間血管(intersegmental vessels, ISV) 脈絡生成的分子機轉。研究指出CoupTFII (COUP transcription factor 2) 在小鼠中對靜脈分化有正向調節作用。而此論文中,我們發現CoupTF1b 對靜脈細胞和尖端細胞的分化生長有重要的影響。
比較不同物種中的CoupTF 家族的胺基酸序列發現CoupTF1b 在不同脊椎動物中的表現有高度的保守性,因此,我推測CoupTF1b 在斑馬魚中可能扮演於相似於小鼠CoupTFII 在血管發育的功能。
利用原位組織染色,我發現CoupTF1b 的mRNA 表現早期15s 時期在腹部側中胚層處,24 hpf 時表現在動靜脈,符合血管發育的時間及脈絡。利用反義核甘酸morpholino 抑制CoupTF1b 的結果中,不論靜脈螢光信號和靜脈專一性標的基因flt4 和mrc1 的表達都有下降的趨勢,證實CoupTF1b 促進靜脈的分化與生成。此外,我們也發現抑制CoupTF1b,會阻礙ISV 生長。為了證明morpholino抑制的專一性,利用CoupTF1b splicing 及CoupTF1b ATG morpholino 得到相似
的血管缺陷型態。為了瞭解抑制CoupTF1b 造成的血管缺陷,是否是因為細胞凋亡所引起,我使用吖啶橙染色 (acridine orange staining) 與TUNEL 分析,我們發現,注射CoupTF1b morpholino 後非特異性細胞凋亡異常增加,有可能是血管表型缺陷原因。
我們進一步測試CoupTF1b 與其他血管生長調控因子, VEGF、Notch 訊息傳遞路徑的相互關係。我們的結果顯示CoupTF1b 對於血管發育斑馬魚扮演不可缺少的角色。
Abstract
Genetic programs and signaling pathways are required for proper growth and patterning of blood vessels, however, little known about the transcription factors functioning in vein identity and intersegmental vessels (ISV) patterning in zebrafish.
The orphan nuclear receptor Chicken ovalbumin upstream promoter transcription factor II (CoupTFII) positively regulates vein identity in mice. Here we show that the CoupTF1b is important for vein and tip cell identity. Comparison of amino acids sequence and phylogenetic analysis of CoupTF1b orthologs in different species suggesting the CoupTF1b is conserved among vertebrates. CoupTF1b mRNA has a spatiotemporal expression pattern in ventral lateral mesoderm consistent with a role in early vascular specification. Morpholino
knockdown of coupTFIb results in a decrease in both venous fluorescent signals and expression of the vein specific marker flt4 and mrc1. These data suggest that CoupTF1b has novel role in promoting vein identity. In addition, we show loss of CoupTF1b impairs ISV growth, suggesting that CoupTF1b also has an important role in controlling ISV growth. We have confirmed those vascular defects are CoupTF1b specific by using two different types of morpholinos knockdown strategies (ATG and splicing morpholinos). To address whether the decrease in vein signals and the growth defect in ISV result from cell death, we performed TUNEL assay. We showed that an increase in non-specific cell death after morpholino injection is possible cause of the observed vascular phenotype. We further test CoupTF1b likely interact with the Notch signaling pathway to control vascular development. Together, we show CoupTF1b plays an indispensable role for vascular development in zebrafish.
目次 Table of Contents
目 錄
論文審定書.....................................................................................................i
致謝 ..............................................................................................................ii
摘要 .............................................................................................................iii
Abstract........................................................................................................iv
一、緒 論......................................................................................................1
1.1脈管生成作用及血管新生成......................................................................1
1.2血管的發育...............................................................................................2
1.3 Notch訊息傳遞........................................................................................4
1.4 VEGF訊息傳遞........................................................................................6
1.5 CoupTF1b轉錄因子................................................................................7
1.6斑馬魚胚胎的時期與發育.........................................................................8
二、實驗材料與方法...................................................................................10
2.1 實驗藥品...............................................................................................10
2.2斑馬魚飼育及胚胎培養...........................................................................10
2.3 野生株及基因轉殖螢光之斑馬魚魚種.....................................................11
2.4聚合酶連鎖反應......................................................................................11
2.5原位組織染色探針合成...........................................................................11
2.6 原位組織雜交........................................................................................13
2.7 Morpholino...........................................................................................14
2.8 Morpholino效能....................................................................................15
2.9 細胞凋亡分析........................................................................................16
2.10 ISV定量方式、成像及統計分析...........................................................17
2.11 冷凍切片.............................................................................................18
2.12 Tol2轉座子系統...................................................................................18
2.13 西方點墨轉漬......................................................................................19
三、實驗結果..............................................................................................20
3.1. CoupTF1b在脊椎動物中具有高度保守性.............................................20
3.2 CoupTF1b表現位置與斑馬魚脈管生成位置相符...................................20
3.3 不同時期CoupTF1b在斑馬魚胚胎的表現脈..........................................21
3.4 確認Coup TF1b morpholino抑制其基因表現的程.................................21
3.5抑制Coup TF1b表現導致斑馬魚血管缺.................................................22
3.6抑制CoupTF1b導致斑馬魚出現心膜腫大、及循環缺陷.........................22
3.7抑造成的血管缺失可藉過度表現CoupTF1b回復,且不同設計的
CoupTF1b morpholino皆可抑制體節間血管生成....................................23
3.8 注射morpholino導致細胞凋亡..............................................................24
3.9 缺少Coup TF1b導致靜脈標的基因表現量下降,但對動脈標的表現量無
明顯影響.................................................................................................25
3.10 過度表現CoupTF1b促進血管新生成..................................................25
3.11 Notch 信號傳遞及 VEGF會調控 CoupTF1b的表現............................26
3.12 Isl2與Coup TF1b的交互作用.............................................................27
3.13 CoupTF1b訊息傳遞調控示意圖.........................................................27
四、總結...................................................................................................28
五、討論...................................................................................................31
5.1人類CoupTF1與斑馬魚CoupTF1b有相異功能性..................................31
5.2 抑制CoupTF1b導致新血管生成缺失的途徑.........................................31
5.3 CoupTF1b 與血管生成的關係.............................................................32
5.3.1 CoupTF1b下游的調控基因對血管生成的影響..................................32
5.3.2. CoupTF1b訊息傳遞調控機制..........................................................33
5.3.3 CoupTFII與CoupTF1b是否同樣在癌症生成的病理過程扮演重要的
角色......................................................................................................34
5.4. CoupTF1b與isl2直接交互作用的關係................................................35
5.5表皮細胞凋亡引起血管新生成缺失.......................................................35
六、參考文獻............................................................................................37
七、口試委員提問.....................................................................................59

圖目錄

圖 1-1 斑馬魚血管脈絡………………………………………………………..…… 2
圖 1-2 (A)不同時期的血管發育過程 (B) Notch調控血管血球生長的分化過程.....4
圖 1-3 Notch 訊息傳遞………………………………………………………...…....5
圖 1-4血管內皮生長因子家族成員及其受體…………………………………...….7
圖 1-5斑馬魚胚胎發育階段………………………………………………………....9
圖3-1 Sequence alignment CoupTF1b family in zebrafish and its ortholog...44
圖3-2 CoupTF1b is expressed in the zebrafish developing vessels。 45
圖3-3 Expression pattern in wt zebrafish。 46
圖3-4 Knockdown efficiency of CoupTF1b Morpholino. 47
圖3-5 Knockdown CoupTF1b results in vascular defects. 48
圖3-6 Loss of CoupTF1b results in pericardial edema, absent parachordal vessels,
subintestinal vessels (SIV) mispattern and circulation defects 50
圖3-7 Knockdown of CoupTF1b causes defects in zebrafish vascular development. 51
圖3-8 An increase in cell death after morpholino injection is the cause of the observed
vascular phenotype. 52
圖3-9 Loss of Coup TF1b causes the decreased expression of vein marker flt4、mrc1
and dab2, but not artery marker ephrin B2 、notch3 and arteriovenous marker
stabilin2 . 53
圖3-10 Coup TF1b is modulated by Notch signal and VEGF . 54
圖3-11 Overexpression of CoupTF1b under the fli promoter increases the number of
venous cells and endothelial cells per ISV. 55
圖3-12 CoupTF1b is modulated by isl2. 57
圖3-13 Schematic representation of the coupTF1b signaling pathway. 58
圖 7-1動靜脈特化發展的過……………………………………………………….60
圖 7-2 Notch配體對脈管生成的分化功能………………………………………..66
圖 7-3 Notch的調控尖端細胞及柄細胞數量的平衡……………………….…….67
參考文獻 References
1. Zhong, Tao P., et al. "Gridlock signalling pathway fashions the first embryonic
artery." Nature 414.6860 (2001): 216-220.
2. Childs, Sarah, et al. "Patterning of angiogenesis in the zebrafish embryo."
Development 129.4 (2002): 973-982.
3. Torres-Vázquez, Jesús, et al. "Semaphorin-plexin signaling guides patterning of the
developing vasculature." Developmental cell 7.1 (2004): 117-123.
4. Liu, Jing, et al. "A βPix–Pak2a signaling pathway regulates cerebral vascular
stability in zebrafish." Proceedings of the National Academy of Sciences 104.35
(2007): 13990-13995.
5. Christie, Tara L., et al. "Syk and Zap-70 function redundantly to promote
angioblast migration." Developmental biology 340.1 (2010): 22-29.
6. Lamont, Ryan E., Erica J. Lamont, and Sarah J. Childs. "Antagonistic interactions
among Plexins regulate the timing of intersegmental vessel formation."
Developmental biology 331.2 (2009): 199-209.
7. Patterson, Cam. "Torturing a blood vessel." Nature medicine 15.2 (2009): 137-138.
8. Revencu, Nicole, and Miikka Vikkula. "Cerebral cavernous malformation: new
molecular and clinical insights." Journal of medical genetics 43.9 (2006):
716-721.
9. Choi, Kyunghee, et al. "A common precursor for hematopoietic and endothelial
cells." Development 125.4 (1998): 725-732.
10. Blum, Yannick, et al. "Complex cell rearrangements during intersegmental vessel
sprouting and vessel fusion in the zebrafish embryo." Developmental biology
316.2 (2008): 312-322.
38
11. Gerhardt, Holger, et al. "VEGF guides angiogenic sprouting utilizing endothelial
tip cell filopodia." The Journal of cell biology 161.6 (2003): 1163-1177.
12. Jin, Suk-Won, et al. "Cellular and molecular analyses of vascular tube and lumen
formation in zebrafish." Development 132.23 (2005): 5199-5209.
13. Kamei, Makoto, et al. "Endothelial tubes assemble from intracellular vacuoles in
vivo." Nature 442.7101 (2006): 453-456.
14. Ridgway, John, et al. "Inhibition of Dll4 signalling inhibits tumour growth by
deregulating angiogenesis." Nature 444.7122 (2006): 1083-1087.
15. Noguera-Troise, Irene, et al. "Blockade of Dll4 inhibits tumour growth by
promoting non-productive angiogenesis." Nature 444.7122 (2006): 1032-1037.
16. Childs, Sarah, et al. "Zebrafish< i> dracula</i> encodes ferrochelatase and its
mutation provides a model for erythropoietic protoporphyria." Current Biology
10.16 (2000): 1001-1004.
17. Kageyama, Ryoichiro, et al. "Dynamic Notch signaling in neural progenitor cells
and a revised view of lateral inhibition." Nature neuroscience 11.11 (2008):
1247-1251.
18. Siekmann, Arndt F., and Nathan D. Lawson. "Notch signalling limits angiogenic
cell behaviour in developing zebrafish arteries." Nature 445.7129 (2007):
781-784.
19. Sato, Yasufumi, et al. "Properties of Two VEGF Receptors, Flt‐1 and KDR, in
Signal Transductiona." Annals of the New York Academy of Sciences 902.1
(2000): 201-207.
20. Ruiz de Almodovar, Carmen, et al. "VEGF mediates commissural axon
chemoattraction through its receptor Flk1." Neuron 70.5 (2011): 966-978.
21. Martin, Daniel F., et al. "Ranibizumab and bevacizumab for treatment of
39
neovascular age-related macular degeneration: two-year results." Ophthalmology
119.7 (2012): 1388-1398.
22. Tugues, Sònia, et al. "Vascular endothelial growth factors and receptors:
anti-angiogenic therapy in the treatment of cancer." Molecular aspects of
medicine 32.2 (2011): 88-111.
23. Leslie, Jonathan D., et al. "Endothelial signalling by the Notch ligand Delta-like 4
restricts angiogenesis." Development 134.5 (2007): 839-844.
24. Hellström, Mats, et al. "Dll4 signalling through Notch1 regulates formation of tip
cells during angiogenesis." Nature 445.7129 (2007): 776-780.
25. Kimmel, Charles B., et al. "Stages of embryonic development of the zebrafish."
Developmental dynamics 203.3 (1995): 253-310.
26. Choi, Jayoung, et al. "FoxH1 negatively modulates< i> flk1</i> gene expression
and vascular formation in zebrafish." Developmental biology 304.2 (2007):
735-744.
27. Lawson, Nathan D., and Brant M. Weinstein. " In Vivo Imaging of Embryonic
Vascular Development Using Transgenic Zebrafish." Developmental biology
248.2 (2002): 307-318.
28. Roman, Beth L., et al. "Disruption of acvrl1 increases endothelial cell number in
zebrafish cranial vessels." Development 129.12 (2002): 3009-3019.
29. Wang, Ying, et al. "Moesin1 and Ve-cadherin are required in endothelial cells
during in vivo tubulogenesis." Development 137.18 (2010): 3119-3128.
30. Heasman, Janet. "Morpholino oligos: making sense of antisense?." Developmental
biology 243.2 (2002): 209-214.
31. Kawakami, Koichi, Akihiro Shima, and Noriko Kawakami. "Identification of a
functional transposase of the Tol2 element, an Ac-like element from the Japanese
40
medaka fish, and its transposition in the zebrafish germ lineage." Proceedings of
the National Academy of Sciences 97.21 (2000): 11403-11408.
32. Kwan, Kristen M., et al. "The Tol2kit: a multisite gateway‐based construction kit
for Tol2 transposon transgenesis constructs." Developmental Dynamics 236.11
(2007): 3088-3099.
33. Cornell, Robert A., and Judith S. Eisen. "Delta/Notch signaling promotes
formation of zebrafish neural crest by repressing Neurogenin 1 function."
Development 129.11 (2002): 2639-2648.
34. Huggins, Gordon S., et al. "Friend of GATA 2 physically interacts with chicken
ovalbumin upstream promoter-TF2 (COUP-TF2) and COUP-TF3 and represses
COUP-TF2-dependent activation of the atrial natriuretic factor promoter."
Journal of Biological Chemistry 276.30 (2001): 28029-28036.
35. Liu, Qing, Noelle D. Dwyer, and Dennis DM O'Leary. "Differential expression of
COUP-TFI, CHL1, and two novel genes in developing neocortex identified by
differential display PCR." The Journal of Neuroscience 20.20 (2000):
7682-7690.
36.Zhou, Cheng, Sophia Y. Tsai, and Ming-Jer Tsai. "COUP-TFI: an intrinsic factor
for early regionalization of the neocortex." Genes & development 15.16 (2001):
2054-2059.
37. Gauchat, Dominique, et al. "The orphan COUP-TF nuclear receptors are markers
for neurogenesis from cnidarians to vertebrates." Developmental biology 275.1
(2004): 104-123.
38. Mack, Christopher P., et al. "Smooth muscle differentiation marker gene
expression is regulated by RhoA-mediated actin polymerization." Journal of
Biological Chemistry 276.1 (2001): 341-347.
41
39.Li, Li, et al. "SM22α, a marker of adult smooth muscle, is expressed in multiple
myogenic lineages during embryogenesis." Circulation research 78.2 (1996):
188-195.
40. Stahlhut, Carlos, et al. "miR-1 and miR-206 regulate angiogenesis by modulating
VegfA expression in zebrafish." Development 139.23 (2012): 4356-4365
41. Litchfield, Lacey M., and Carolyn M. Klinge. "Multiple roles of COUP-TFII in
cancer initiation and progression." Journal of molecular endocrinology 49.3
(2012): R135-R148.
42 Stanišić, Vladimir, David M. Lonard, and Bert W. O’Malley. "Modulation of
steroid hormone receptor activity." Progress in brain research 181 (2010):
153-176.
43. Ahmad, Nihal, and Raj Kumar. "Steroid hormone receptors in cancer development:
a target for cancer therapeutics." Cancer letters 300.1 (2011): 1-9.
44. Sagami, I. K. U. K. O., et al. "Identification of two factors required for
transcription of the ovalbumin gene." Molecular and cellular biology 6.12 (1986):
4259-4267.
45. Gidoni, David, William S. Dynan, and Robert Tjian. "Multiple specific contacts
between a mammalian transcription factor and its cognate promoters." Nature
312.5993 (1984): 409-413.
46. Pereira, Fred A., et al. "The orphan nuclear receptor COUP-TFII is required for
angiogenesis and heart development." Genes & development 13.8 (1999):
1037-1049.
47. Hanahan, Douglas, and Robert A. Weinberg. "Hallmarks of cancer: the next
generation." Cell 144.5 (2011): 646-674.
48. Qin, Jun, et al. "COUP-TFII regulates tumor growth and metastasis by modulating
42
tumor angiogenesis." Proceedings of the National Academy of Sciences 107.8
(2010): 3687-3692.
49. Navab, Roya, et al. "Expression of chicken ovalbumin upstream
promoter-transcription factor II enhances invasiveness of human lung carcinoma
cells." Cancer research 64.15 (2004): 5097-5105.
50. Gay, Frédérique, et al. "The LIM/homeodomain protein islet-1 modulates
estrogen receptor functions." Molecular Endocrinology 14.10 (2000):
1627-1648.
51. Nicoli, Stefania, Giulia De Sena, and Marco Presta. "Fibroblast growth factor 2‐
induced angiogenesis in zebrafish: the zebrafish yolk membrane (ZFYM)
angiogenesis assay." Journal of cellular and molecular medicine 13.8b (2009):
2061-2068.
52. Wiley, David M., et al. "Distinct signalling pathways regulate sprouting
angiogenesis from the dorsal aorta and the axial vein." Nature cell biology 13.6
(2011): 686-692.
53. Heinke, Jennifer, et al. "BMPER is an endothelial cell regulator and controls bone
morphogenetic protein-4–dependent angiogenesis." Circulation research 103.8
(2008): 804-812.
54. Zhong, Tao P., et al. "Gridlock signalling pathway fashions the first embryonic
artery." Nature 414.6860 (2001): 216-220.
55. Wullimann, M. F., L. Puelles, and H. Wicht. "Early postembryonic neural
development in the zebrafish: a 3-D reconstruction of forebrain proliferation
zones shows their relation to prosomeres." European journal of morphology
37.2-3 (1999): 117-121.
56. Ryu, Soojin, et al. "Depletion of minichromosome maintenance protein 5 in the
43
zebrafish retina causes cell-cycle defect and apoptosis." Proceedings of the
National Academy of Sciences of the United States of America 102.51 (2005):
18467-18472.
57. Streit, Andrea, et al. "Initiation of neural induction by FGF signalling before
gastrulation." Nature 406.6791 (2000): 74-78.
58. Wilson, Sara, et al. "The status of Wnt signalling regulates neural and epidermal
fates in the chick embryo." Nature 411.6835 (2001): 325-330.
59. Chow, Elly Suk Hen, and Shuk Han Cheng. "Cadmium affects muscle type
development and axon growth in zebrafish embryonic somitogenesis."
Toxicological Sciences 73.1 (2003): 149-159.
60. Kume, Tsutomu. "Journal of Angiogenesis Research." Journal of angiogenesis
research 1 (2009): 8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code