Responsive image
博碩士論文 etd-0702116-114515 詳細資訊
Title page for etd-0702116-114515
論文名稱
Title
選位鈮摻雜與鈦酸鍶磊晶薄膜導電機制的相關性
Selective Site doping of Niobium and Electric Conduction of SrTiO3 Epitaxial Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-20
繳交日期
Date of Submission
2016-08-03
關鍵字
Keywords
鈮摻雜、摻雜機制、氧缺陷、鈦酸鍶、傳導、磊晶
doping mechanism, oxygen deficient, transport, Nb-doping, SrTiO3, Epitaxy
統計
Statistics
本論文已被瀏覽 5734 次,被下載 0
The thesis/dissertation has been browsed 5734 times, has been downloaded 0 times.
中文摘要
本論文研究不同摻雜濃度(xNb)與不同氧分壓下成長之鈮摻雜鈦酸鍶(Nb:SrTiO3)薄膜,發現氧空缺是主導九個數量級以上導電率變化的關鍵因素,而不是鈮的摻雜濃度。一般而言摻雜五族的鈮被認為會取代四族的鈦,因此貢獻一自由電子。但點缺陷如氧空缺與鈮的反晶格位會同時伴隨產生,因此會產生多重價態的鈮。在薄膜成長過程中些微的氧氣供應都會在NbTi晶格位附近產生Oi與Nbi,這些缺陷會捕捉自由載子進而降低了導電性。電子傳導機制經由能帶間躍遷與變程跳躍導電機制並聯描述,而這是鈮、鍶、與鈦原子之間交互的氧化還原反應集體造成的。
Abstract
The emergence of wide range electrical conductivity (more than 9 orders in magnitude) in SrTiO3 (STO) thin films containing various levels (xNb) of Nb dopants (Nb:STO) due to critical dependence on PO2, rather than xNb, is interpreted as a result of oxometallates formation through route of redox reactions. The dopants are supposed to substitute for Ti to give one free electron, assuming Nb+5 oxidation states, but other point defects, such as oxygen vacancies and Nb antisites, also arise in company, resulting in emergence of various multivalent oxides of Nb. Any presence of oxygen during growth leads to O_i and Nb_i nearby Nb_Ti sites, capturing potential free carriers from Nb3d hindering the electronic conduction. Electrical transport behaviors are described with parallel mechanisms of band conduction and variable-range hopping conduction, responsible by the collective redox reaction of the Nb, Sr and Ti atoms.
目次 Table of Contents
審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 xii
Chapter 1. Introduction 1
Introduction SrTiO3 1
TCO applications via double doping of SrTiO3 3
Interstitial sites and ineffective doping 5
Motivation 7
Chapter 2. Experimental setup 10
2.1 Introduction 10
2.2 Sample growth procedure 10
2.2.1 Sputtering 10
2.2.2 Sample growth procedure 12
2.2.3 Thickness characterization 14
2.2.4 Sample appearance 15
2.3 X-ray diffraction (XRD) 16
2.3.1 Structural analysis by XRD 17
2.4 Chemical quantification 19
2.4.1 xNb of SrTi1-xNbxO3 by calculation of sputtering rate 21
2.5 Transmission electron microscopy and specimens preparation 22
2.6 X-ray photoelectron spectroscopy 23
2.6.1 Detail procedures for XPS valence state analysis 24
2.7 Kröger-Vink notation 25
2.8 Electrical measurement 26
2.8.1 E-beam evaporation 26
2.8.2 Rapid thermal annealing (RTA) 28
2.8.3 I-V measurement 29
2.8.4 Contact resistance measurement 30
2.9 Dielectric measurement 31
Chapter 3. Physical properties 33
3.1 Structural analysis by XRD 33
3.1.1 Omega-2theta scan 33
3.1.2 ϕ(phi)-scans 39
3.1.3 Grazing-incidence XRD (GIXRD) 41
3.1.4 Discussion on XRD structural analysis 42
3.2 Transmission electron microscopy (TEM) 45
3.2.1 Bright field (BF) for C series 47
3.2.2 Diffraction pattern for C series 49
3.2.3 Discussion on the intensity of diffraction spot of (100) and (200) 50
3.3 XPS valence state analysis 61
3.3.2 Fitting for Nb 3d 64
3.3.3 Fitting for Ti 2p 66
3.4 Electrical analysis 71
3.4.1 Resistivity for as-grown samples 71
3.4.2 Resistivity versus temperature (RT) 73
3.4.3 Discussion on the carrier conduction mechanism 82
Chapter 4. Conclusion 85
References 87
Appendix 99
A1 TLM with different annealing temperature 99
A2 XPS valence state for Nb and Ti 103
A3 Valence band 103
A4 Capacity versus frequency (CF) 105
A5 Justification on the formation of Nb metallic clusters 106
A6 Optical transmission 108
A7 Additional TEM results 109
參考文獻 References
(1) Gandy, H. W. Optical Transmission of Heat-Treated Strontium Titanate. Phys. Rev. 1959, 113 (3), 795–800.
(2) Ruddlesden, S. N.; Popper, P. The Compound Sr3Ti2O7 and Its Structure. Acta Crystallogr. 1958, 11 (1), 54–55.
(3) Frederikse, H. P. R.; Thurber, W. R.; Hosler, W. R. Electronic Transport in Strontium Titanate. Phys. Rev. 1964, 134 (2A), 2–5.
(4) Goyal, A.; Norton, D. P.; Budai, J. D.; Paranthaman, M.; Specht, E. D.; Kroeger, D. M.; Christen, D. K.; He, Q.; Saffian, B.; List, F. A.; et al. High Critical Current Density Superconducting Tapes by Epitaxial Deposition of YBa2Cu3Ox Thick Films on Biaxially Textured Metals. Appl. Phys. Lett. 1996, 69 (12), 1795.
(5) Terashima, T.; Bando, Y.; Iijima, K.; Yamamoto, K.; Hirata, K. Epitaxial Growth of YBa2Cu3O7−x Thin Films on (110) SrTiO3 Single Crystals by Activated Reactive Evaporation. Appl. Phys. Lett. 1988, 53 (22), 2232.
(6) McKee, R. A.; Walker, F. J.; Chisholm, M. F. Crystalline Oxides on Silicon: The First Five Monolayers. Phys. Rev. Lett. 1998, 81 (14), 3014–3017.
(7) Yim, C. J.; Kim, S. U.; Kang, Y. S.; Cho, M.-H.; Ko, D.-H. Enhanced Electrical Properties of SrTiO3 Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition. Electrochem. Solid-State Lett. 2011, 14 (10 ), G45–G48.
(8) Findikoglu, A. T.; Jia, Q. X.; Wu, X. D.; Chen, G. J.; Venkatesan, T.; Reagor, D. W. Tunable and Adaptive Bandpass Filter Using a Nonlinear Dielectric Thin Film of SrTiO[sub 3]. Appl. Phys. Lett. 1996, 68 (12), 1651–1653.
(9) Fuchs, D.; Schneider, C. W.; Schneider, R.; Rietschel, H. High Dielectric Constant and Tunability of Epitaxial SrTiO[sub 3] Thin Film Capacitors. J. Appl. Phys. 1999, 85 (10), 7362–7369.
(10) Wang, X.; Helmersson, U.; Madsen, L. D.; Ivanov, I. P.; Munger, P.; Rudner, S.; Hjorvarsson, B.; Sundgren, J. E. Composition, Structure, and Dielectric Tunability of Epitaxial SrTiO3 Thin Films Grown by Radio Frequency Magnetron Sputtering. J. Vac. Sci. Technol. a-Vacuum Surfaces Film. 1999, 17 (2), 564–570.
(11) Amaral, L.; Fernandes, M.; Reaney, I. M.; Harmer, M. P.; Senos, A. M. R.; Vilarinho, P. M. Grain Growth Anomaly and Dielectric Response in Ti-Rich Strontium Titanate Ceramics. J. Phys. Chem. C 2013, 117 (47), 24787–24795.
(12) Yamada, T.; Astafiev, K. F.; Sherman, V. O.; Tagantsev, A. K.; Su, D.; Muralt, P.; Setter, N. Structural and Dielectric Properties of Strain-Controlled Epitaxial SrTiO 3 Thin Films by Two-Step Growth Technique. J. Appl. Phys. 2005, 98 (5).
(13) Kim, J.; Kim, L.; Jung, D.; Kim, I. W.; Je, J. H.; Lee, J. Effect of Oxygen Cooling Environment on the Structural Characteristics and Dielectric Properties of BaTiO 3 and SrTiO 3 Thin Films. Ferroelectrics 2005, 327 (1), 103–109.
(14) Comes, R. B.; Sushko, P. V; Heald, S. M.; Colby, R. J.; Bowden, M. E.; Chambers, S. A. Band-Gap Reduction and Dopant Interaction in Epitaxial La,Cr Co-Doped SrTiO3 Thin Films. Chem. Mater. 2014, 26 (24), 7073–7082.
(15) Ohta, H.; Kim, S.; Mune, Y.; Mizoguchi, T.; Nomura, K.; Ohta, S.; Nomura, T.; Nakanishi, Y.; Ikuhara, Y.; Hirano, M.; et al. Giant Thermoelectric Seebeck Coefficient of a Two-Dimensional Electron Gas in SrTiO3. Nat Mater 2007, 6 (2), 129–134.
(16) Haeni, J. H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y. L.; Choudhury, S.; Tian, W.; Hawley, M. E.; Craigo, B.; et al. Room-Temperature Ferroelectricity in Strained SrTiO3. Nature 2004, 430 (7001), 758–761.
(17) Loetzsch, R.; Lübcke, A.; Uschmann, I.; Förster, E.; Große, V.; Loetzsch, R.; Lübcke, A.; Uschmann, I.; Förster, E.; Große, V.; et al. The Cubic to Tetragonal Phase Transition in SrTiO3 Single Crystals near Its Surface under Internal and External Strains The Cubic to Tetragonal Phase Transition in SrTiO 3 Single Crystals near Its Surface under Internal and External Strains. 2010, 071901, 10–13.
(18) Lin, X.; Bridoux, G.; Gourgout, A.; Seyfarth, G.; Krämer, S.; Nardone, M.; Fauqué, B.; Behnia, K. Critical Doping for the Onset of a Two-Band Superconducting Ground State in SrTiO 3 − δ. 2014, 207002 (May), 1–5.
(19) Cohen, M. L.; Laboratories, B. T.; Hill, M. 17 PHYSICAL REVIEW LETTERS SUPERCONDUCTIVITY IN SEMICONDUCTING SrTiO. 1964, 12 (17), 474–475.
(20) Kamalasanan, M. N.; Deepak Kumar, N.; Chandra, S. Structural, Optical, and Dielectric Properties of Sol-Gel Derived SrTiO3 Thin Films. J. Appl. Phys. 1993, 74 (1), 679–686.
(21) Bao, D.; Yao, X.; Wakiya, N.; Shinozaki, K.; Mizutani, N. Band-Gap Energies of Sol-Gel-Derived SrTiO3 Thin Films. Appl. Phys. Lett. 2001, 79 (23), 3767–3769.
(22) Ravichandran, J.; Siemons, W.; Heijmerikx, H.; Huijben, M.; Majumdar, A.; Ramesh, R. An Epitaxial Transparent Conducting Perovskite Oxide : Double-Doped SrTiO 3. Chem. Mater. 2010, No. 6, 3983–3987.
(23) Perez-Casero, R.; Perrière, J.; Gutierrez-Llorente, A.; Defourneau, D.; Millon, E.; Seiler, W.; Soriano, L. Thin Films of Oxygen-Deficient Perovskite Phases by Pulsed-Laser Ablation of Strontium Titanate. Phys. Rev. B - Condens. Matter Mater. Phys. 2007, 75 (16), 1–7.
(24) Spinelli, A.; Torija, M. A.; Liu, C.; Jan, C.; Leighton, C. Electronic Transport in Doped SrTiO3: Conduction Mechanisms and Potential Applications. Phys. Rev. B 2010, 81 (15), 155110.
(25) Ngai, J. H.; Segal, Y.; Walker, F. J.; Ahn, C. H. Electrostatic Modulation of Anisotropic Magnetotransport in Ar???+-Irradiated SrTiO3: Effects of Boundary Scattering. Phys. Rev. B - Condens. Matter Mater. Phys. 2011, 83 (4), 3–6.
(26) Kan, D.; Terashima, T.; Kanda, R.; Masuno, A.; Tanaka, K.; Chu, S.; Kan, H.; Ishizumi, A.; Kanemitsu, Y.; Shimakawa, Y.; et al. Blue-Light Emission at Room Temperature from Ar+-Irradiated SrTiO3. Nat. Mater. 2005, 4 (11), 816–819.
(27) Ohtomo, A.; Hwang, H. Y. A High-Mobility Electron Gas at the LAO/STO Heterointerface. Nature 2004, 427 (6973), 423–426.
(28) Kozuka, Y.; Hikita, Y.; Bell, C.; Hwang, H. Y. Dramatic Mobility Enhancements in Doped SrTiO3 Thin Films by Defect Management. Appl. Phys. Lett. 2010, 97 (1), 22–25.
(29) Kozuka, Y.; Kim, M.; Ohta, H.; Hikita, Y.; Bell, C.; Hwang, H. Y. Enhancing the Electron Mobility via Delta-Doping in SrTiO3. Appl. Phys. Lett. 2010, 97 (22), 95–98.
(30) Jalan, B.; Allen, S. J.; Beltz, G. E.; Moetakef, P.; Stemmer, S. Enhancing the Electron Mobility of SrTiO3 with Strain. Appl. Phys. Lett. 2011, 98 (13), 6–9.
(31) Kozuka, Y.; Hikita, Y.; Bell, C.; Hwang, H. Y. Dramatic Mobility Enhancements in Doped SrTiO3 Thin Films by Defect Management. Appl. Phys. Lett. 2010, 97 (1), 97–100.
(32) Jeong, J. S.; Ambwani, P.; Jalan, B.; Leighton, C.; Mkhoyan, K. A. Observation of Electrically-Inactive Interstitials in Nb-Doped SrTiO3. ACS Nano 2013, No. 5, 4487–4494.
(33) Lozano, O.; Chen, Q. Y.; Wadekar, P. V.; Seo, H. W.; Chinta, P. V.; Chu, L. H.; Tu, L. W.; Lo, I.; Yeh, S. W.; Ho, N. J.; et al. Factors Limiting the Doping Efficiency of Transparent Conductors: A Case Study of Nb-Doped In2O3 Epitaxial Thin-Films. Sol. Energy Mater. Sol. Cells 2013, 113, 171–178.
(34) Zhao, T.; Lu, H.; Chen, F.; Dai, S.; Yang, G.; Chen, Z. Highly Conductive Nb Doped SrTiO3 Epitaxial Thin Films Grown by Laser Molecular Beam Epitaxy. J. Cryst. Growth 2000, 212 (3-4), 451–455.
(35) Ravichandran, J.; Siemons, W.; Heijmerikx, H.; Huijben, M.; Majumdar, A.; Ramesh, R. An Epitaxial Transparent Conducting Perovskite Oxide: Double-Doped SrTiO3. Chem. Mater. 2010, 22 (13), 3983–3987.
(36) Olaya, D.; Pan, F.; Rogers, C. T.; Price, J. C. Superconductivity in La-Doped Strontium Titanate Thin Films. Appl. Phys. Lett. 2004, 84 (20).
(37) Takahashi, K. S.; Matthey, D.; Jaccard, D.; Triscone, J.-M.; Shibuya, K.; Ohnishi, T.; Lippmaa, M. Electrostatic Modulation of the Electronic Properties of Nb-Doped SrTiO3 Superconducting Films. Appl. Phys. Lett. 2004, 84 (10), 1722–1724.
(38) De Souza, R. A.; Metlenko, V.; Park, D.; Weirich, T. E. Behavior of Oxygen Vacancies in Single-Crystal SrTiO3: Equilibrium Distribution and Diffusion Kinetics. Phys. Rev. B - Condens. Matter Mater. Phys. 2012, 85 (17), 174109.
(39) Choi, M.; Oba, F.; Tanaka, I. Role of Ti Antisitelike Defects in SrTiO3. Phys. Rev. Lett. 2009, 103 (18), 185502.
(40) Tuller, H. L.; Bishop, S. R. Point Defects in Oxides: Tailoring Materials Through Defect Engineering. Annu. Rev. Mater. Res. 2011, 41 (1), 369–398.
(41) Kan, D.; Terashima, T.; Kanda, R.; Masuno, A.; Tanaka, K.; Chu, S.; Kan, H.; Ishizumi, A.; Kanemitsu, Y.; Shimakawa, Y.; et al. Blue-Light Emission at Room Temperature from Ar+-Irradiated SrTiO3. Nat Mater 2005, 4 (11), 816–819.
(42) Mikheev, E.; Hoskins, B. D.; Strukov, D. B.; Stemmer, S. Resistive Switching and Its Suppression in Pt/Nb:SrTiO3 Junctions. Nat Commun 2014, 5.
(43) Mikheev, E.; Hwang, J.; Kajdos, A. P.; Hauser, A. J.; Stemmer, S. Tailoring Resistive Switching in Pt/SrTiO3 Junctions by Stoichiometry Control. Sci. Rep. 2015, 5.
(44) Rice, W. D.; Ambwani, P.; Bombeck, M.; Thompson, J. D.; Haugstad, G.; Leighton, C.; Crooker, S. A. Persistent Optically Induced Magnetism in Oxygen-Deficient Strontium Titanate. Nat Mater 2014, 13 (5), 481–487.
(45) Ravichandran, J.; Siemons, W.; Scullin, M. L.; Mukerjee, S.; Huijben, M.; Moore, J. E.; Majumdar, A.; Ramesh, R. Tuning the Electronic Effective Mass in Double-Doped SrTiO3. Phys. Rev. B 2011, 83 (3), 35101.
(46) Ravichandran, J.; Siemons, W.; Oh, D.; Kardel, J. T.; Chari, A.; Heijmerikx, H.; Scullin, M. L.; Majumdar, A.; Ramesh, R.; Cahill, D. G. High Temperature Thermoelectric Response of Double-Doped SrTiO3 Epitaxial Films. Sci. Technol. 2010, 82 (16), 6.
(47) Ertekin, E.; Srinivasan, V.; Ravichandran, J.; Rossen, P. B.; Siemons, W.; Majumdar, A.; Ramesh, R.; Grossman, J. C. Interplay between Intrinsic Defects, Doping, and Free Carrier Concentration in SrTiO3 Thin Films. Phys. Rev. B 2012, 85 (19), 1–9.
(48) Jeong, J. S.; Ambwani, P.; Jalan, B.; Leighton, C.; Mkhoyan, K. A. Observation of Electrically-Inactive Interstitials in Nb-Doped SrTiO3. ACS Nano 2013, 7 (5), 4487–4494.
(49) Chambers, S. A.; Gao, Y.; Thevuthasan, S.; Liang, Y.; Shivaparan, N. R.; Smith, R. J. Molecular Beam Epitaxial Growth and Characterization of Mixed (Ti,Nb)O2 Rutile Films on TiO2(100). J. Vac. Sci. Technol. A 1996, 14 (3).
(50) Lozano, O.; Chen, Q. Y.; Wadekar, P. V; Seo, H. W.; Chinta, P. V; Chu, L. H.; Tu, L. W.; Lo, I.; Yeh, S. W.; Ho, N. J.; et al. Factors Limiting the Doping Efficiency of Transparent Conductors: A Case Study of Nb-Doped In2O3 Epitaxial Thin-Films. Sol. Energy Mater. Sol. Cells 2013, 113, 171–178.
(51) Yamada, T.; Astafiev, K. F.; Sherman, V. O.; Tagantsev, A. K.; Muralt, P.; Setter, N. Strain Relaxation of Epitaxial SrTiO3 Thin Films on LaAlO3 by Two-Step Growth Technique. Appl. Phys. Lett. 2005, 86 (14), 142904.
(52) Ramadan, W.; Ogale, S. B.; Dhar, S.; Zhang, S. X.; Kundaliya, D. C.; Satoh, I.; Venkatesan, T. Substrate-Induced Strain Effects on the Transport Properties of Pulsed Laser-Deposited Nb-Doped SrTiO3 Films. Appl. Phys. Lett. 2006, 88 (14), 142903.
(53) Kröger, F. A.; Vink, H. J. Relations between the Concentrations of Imperfections in Crystalline Solids. Solid State Phys. 1956, 3, 307–435.
(54) Ohta, S.; Nomura, T.; Ohta, H.; Hirano, M.; Hosono, H.; Koumoto, K. Large Thermoelectric Performance of Heavily Nb-Doped SrTiO3 Epitaxial Film at High Temperature. Appl. Phys. Lett. 2005, 87 (9), 092108/1–092108/3.
(55) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32 (5), 751–767.
(56) Cullity, B. D.; Stock, S. R. Elements of X-Ray Diffraction, 3rd ed.; 2001.
(57) Ren, G.; Ross, a W.; Jr, V. H. S.; Spence, J. C. H.; Steeds, J. W.; Wang, J.; Whelan, M. J.; Zvyagin, B. B. International Tables for Crystallography. 2006, C, 259–429.
(58) Wang, H. H.; Chen, F.; Dai, S. Y.; Zhao, T.; Lu, H. B.; Cui, D. F.; Zhou, Y. L.; Chen, Z. H.; Yang, G. Z. Sb-Doped SrTiO3 Transparent Semiconductor Thin Films. Appl. Phys. Lett. 2001, 78 (12), 1676–1678.
(59) Kittel, C. Introduction to Solid State Physics. In Introduction to Solid State Physics; John Wiley and Sons, 2005; pp 213–214.
(60) Kneiß, M.; Jenderka, M.; Brachwitz, K.; Lorenz, M.; Grundmann, M. Modeling the Electrical Transport in Epitaxial Undoped and Ni-, Cr-, and W-Doped TiO2 Anatase Thin Films. Appl. Phys. Lett. 2014, 105 (6), 062103.
(61) Morán, O.; Hott, R.; Schneider, R.; Halbritter, J. Transport Properties of Ultrathin SrTiO3 Barriers for High-Temperature Superconductor Electronics Applications. J. Appl. Phys. 2003, 94 (10).
(62) Howard F. McMurdie, Marlene C. Morris, J.H. de G. Boris Paretzkin, and C. R. H. and S. J. C. Standard X-Ray Diffraction Powder Patterns; 1954; pp 539, 3, 44.
(63) Howard F. McMurdie, Marlene C. Morris, E. H. E.; Boris Paretzkin, J. H. de G.; Carmel, C. R. H. and S. J. Standard X-Ray Diffraction Powder Patterns; 1984; pp 25, 19, 67.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.171.121
論文開放下載的時間是 校外不公開

Your IP address is 3.137.171.121
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code