Responsive image
博碩士論文 etd-0702116-161607 詳細資訊
Title page for etd-0702116-161607
論文名稱
Title
鉭基金屬玻璃於骨科植入之潛力評估與影響細胞貼附之因素探討
Evaluation of tantalum-based metallic glass potentials for bio-implant applications and their special cell attachment mechanism
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-08-02
關鍵字
Keywords
薄膜、生物相容性、金屬玻璃、抗腐蝕性、模擬人體體液
simulated body fluid, corrosion resistance, metallic glasses, thin film, biocompatibility
統計
Statistics
本論文已被瀏覽 5639 次,被下載 75
The thesis/dissertation has been browsed 5639 times, has been downloaded 75 times.
中文摘要
由於傑出的抗腐蝕能力和良好的機械性質,金屬玻璃的近年來廣泛且快速的發展與研究,且根據先前的研究,金屬鉭具有良好的生物相容性:具有更勝於純鈦的細胞貼附數目且不具有明顯的細胞毒性,然而鉭基金屬玻璃於生物材料領域中的應用仍少見。本研究將評估鉭基金屬玻璃是否為一具有高度發展潛力於生物植入方面應用。藉由以下的分析方法評估:第一部分藉由電化學分析方法,評估鉭基金屬玻璃於模擬人體體液下的腐蝕性質,愈高的抗腐蝕能力,愈能避免材料於長時間植入後失去其功能;第二部分分析其機械性質,藉由楊氏係數與硬度探討其屏蔽效應的影響和抗磨耗能力的優劣,適當的楊氏係數,可避免應力集中於植入物上,若骨頭缺乏刺激會使骨密度降低,而高的抗磨耗能力可避免長時間植入後碎屑的產生,這些碎屑可能誘發免疫和發炎反應;最後藉由細胞活性與細胞貼附評估其生物相容性,更進一步探討影響細胞貼附的因素。
Abstract
Because of the excellent mechanical properties and outstanding corrosion resistance, metallic glasses have been rapidly developed and wide studied. Additionally, according to previous studies, tantalum owns good biocompatibility: the number of cell adhesion is more than pure titanium and has no obvious cytotoxicity. Nonetheless, few Ta-based metallic glasses were designed for biomedical application. This study is devoted to evaluating the potential of Ta-based metallic glasses utilized in bio-implant application by following methods. First, the corrosion properties of Ta-based metallic glasses are estimated by electrochemical analyses. Materials with high corrosion resistance indicate that the little possibility of failure generates after long-term use. Second, the mechanical properties, such as Young’s modulus and hardness, are measured with a view to discussing the influence of shielding effect and wear resistance. Optimize Young’s modulus restrain stress from transferring to implanted materials and the bone mineral density will decrease without stress stimulating. High wear resistance can decrease the debris releasing after long-term use, which brings about stimulating the immune system and inflammatory responses. Last not the least, by cell viability and cell adhesion, the biocompatibility of Ta-based metallic glasses are evaluated. Furthermore, the factors that influence cell adhesion will be discussed.
目次 Table of Contents
論文審定書.................................................................................................................................. i
中文摘要.................................................................................................................................... ii
Abstract .................................................................................................................................... iii
Content ....................................................................................................................................... iv
List of Tables ........................................................................................................................... vii
List of Figures ......................................................................................................................... viii
Chapter 1 Introduction .......................................................................................................... 1
1-1 Bio-implant materials ........................................................................................................ 1
1-2 Amorphous alloys .............................................................................................................. 1
1-3 Development of Ti-based metallic glasses ........................................................................ 2
1-4 Tantalum ............................................................................................................................ 3
1-5 Motivation ......................................................................................................................... 4
Chapter 2 Background and literature review ........................................................................ 6
2-1 The characters of amorphous alloys .................................................................................. 6
2-1-1 Short-range ordered structure ......................................................................................... 6
2-1-2 Supercooled liquid region (SCLR) ................................................................................. 6
2-2 Effect on fabrication of amorphous alloys ........................................................................ 7
2-2-1 Glass-forming ability (GFA) .......................................................................................... 7
2-2-2 Empirical rule for forming requirement of amorphous alloys ....................................... 8
2-3 Sputter deposition .............................................................................................................. 9
2-3-1 Growth of deposited thin film ........................................................................................ 9
2-3-2 Introduction of sputter deposition process ................................................................... 10
2-2-3 DC/RF magnetic sputtering process ............................................................................. 11
2-3-4 Parameters of sputter deposition .................................................................................. 12
2-4 Mechanical properties of amorphous alloys .................................................................... 14
2-5 Corrosion properties of amorphous alloys....................................................................... 14
2-6 Corrosion mechanisms .................................................................................................... 15
2-7 Electrochemical test ......................................................................................................... 16
2-7-1 Polarization curve (Tafel plot) ..................................................................................... 16
2-7-2 Electrochemical impedance spectroscopy (EIS) .......................................................... 19
2-8 Biocompatibility .............................................................................................................. 20
2-8-1 In-vitro test ................................................................................................................... 21
2-8-2 In-vivo test.................................................................................................................... 22
2-9 Bio-implant replacement materials .................................................................................. 23
2-9-1 Polymers ....................................................................................................................... 23
2-9-2 Titanium alloys and cobalt-chromium alloys ............................................................... 24
2-9-3 Tantalum....................................................................................................................... 24
Chapter 3 Experimental procedures .................................................................................... 26
3-1 Sample preparation .......................................................................................................... 26
3-1-1 Materials ....................................................................................................................... 26
3-1-2 Multi-target co-sputtering ............................................................................................ 27
3-2 Property measurements and analyses .............................................................................. 27
3-2-1 X-ray diffraction (XRD)............................................................................................... 27
3-2-2 Electrochemical properties analysis ............................................................................. 28
3-2-3 Mechanical properties analysis .................................................................................... 29
3-2-4 Scanning electron microscopy (SEM).......................................................................... 29
3-2-5 X-ray photoelectron spectroscopy (XPS) ..................................................................... 30
3-2-6 MTS assay .................................................................................................................... 31
3-2-7 Contact angle ................................................................................................................ 31
Chapter 4 Results and discussions ...................................................................................... 33
4-1 The thin film metallic glasses .......................................................................................... 33
4-2 XRD results ..................................................................................................................... 33
4-3 Mechanical property analyses ......................................................................................... 34
4-4 Electrochemical analyses ................................................................................................. 35
4-5 XPS analyses ................................................................................................................... 37
4-6 Cell viability results ......................................................................................................... 38
4-7 Cell attachment ................................................................................................................ 38
4-8 Contact angle ................................................................................................................... 39
Chapter 5 Conclusions ........................................................................................................ 40
References ................................................................................................................................. 42
Tables ........................................................................................................................................ 49
Figures....................................................................................................................................... 62
List of Tables
Table 2-1 Major materials variables that could influence the host response. .................... 49
Table 2-2 Major characteristics of the host response to biomaterials. ............................... 50
Table 2-3 Biocompatible elements and harmful elements. .................................................. 51
Table 2-4 Universal long-term implantable devices. ......................................................... 52
Table 4-1 The parameters of Ta-based thin films metallic glasses deposited by sputtering process and all of the thickness are about 600 nm. ............................................................... 53
Table 4-2 The results of XPS composition analysis of Ta-based metallic glasses. ............. 54
Table 4-3 The Young’s modulus and hardness of pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta. ..................................................................................................... 55
Table 4-4 The depth of pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta after scratch. .................................................................................................................................... 56
Table 4-5 The corrosion properties of pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta immersed in Hank’s solution (simulated body fluid) at 310 K. ........................................ 57
Table 4-6 The cell viability of D1 cells of pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta for 1 day. .................................................................................................................... 58
Table 4-6 The cell viability of D1 cells of pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta for 2 days. .................................................................................................................. 59
Table 4-6 The cell viability of D1 cells of pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta for 3 days. .................................................................................................................. 60
Table 4-7 The water contact angle of pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta. ........................................................................................................................................... 61
List of Figures
Figure 1.1 A scheme of (a) long range ordered structure crystalline metals and (b) short range ordered structure of amorphous metallic alloys. ............................................................. 62
Figure 2.1 X-ray diffraction pattern of amorphous and crystalline materials. ....................... 63
Figure 2-2 Empirical rule for forming amorphous alloys. ..................................................... 64
Figure 2.3 Schematic diagram of (a) sputtering and (b) vacuum evaporation. .................... 65
Figure 2.4 The movement of amorphous metallic alloy atoms under an applied stress. ..... 66
Figure 2.5 Young’s modulus vs. yield strength data for amorphous metals [x] and ductile-phase reinforced amorphous metals [+], shown together with data for stainless steels (green), Co-Cr-based (purple), and Ti-based alloys (blue). .................................................... 67
Figure 2.6 Vickers hardness vs. yield strength data for amorphous metals, shown together with data for stainless steels (green), Co-Cr-based (purple), and Ti-based alloys (green). .... 68
Figure 2.7 Schematic diagram of electrochemical workstation in a three electrodes cell. .... 69
Figure 2.8 Standard polarization curves. ............................................................................. 70
Figure 2.9 A equivalent circuit model for fitting the curve of homogeneous surface. ..... 71
Figure 2.10 The application fields of metal and ceramic biomaterials ................................ 72
Figure 3-1 The flow chart of the experimental procedure in this study ................................. 73 Figure 3-2 MTS assay: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium generates formazan upon interaction with phenazine methosulfate (PMS). ................................................................................................................. 74
Figure 4-1 The heat of mixing for Ta, Ti, Zr and Si .............................................................. 75
Figure 4-2 XRD pattern of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7. ........................................... 76
Figure 4-3 Mechanical properties of pure Ti, Ta57Ti17Zr15Si11, Ta75Ti10Zr8Si7 and pure Ta. 77
Figure 4-4 Depth of pure Ti, Ta57Ti17Zr15Si11, Ta75Ti10Zr8Si7 and pure Ta after scratch with 25 mN........................................................................................................................................ 78
Figure 4-5 The open circuit potential curve and potentiodynamic polarization curve of Ti, Ta57Ti17Zr15Si11, Ta75Ti10Zr8Si7 and pure Ta. ........................................................................... 79
Figure 4-6 Corrosion potential (Ecorr) of pure Ti, Ta57Ti17Zr15Si11, Ta75Ti10Zr8Si7 and pure Ta. ............................................................................................................................................. 80
Figure 4-7 The I-t curve of Ti, Ta57Ti17Zr15Si11, Ta75Ti10Zr8Si7 and pure Ta. ...................... 81
Figure 4-8 The Ta2O5 XPS spectra of pure Ti, Ta57Ti17Zr15Si11, Ta75Ti10Zr8Si7 and pure Ta surface. ...................................................................................................................................... 82
Figure 4-9 The TiO2 XPS spectra of pure Ti, Ta57Ti17Zr15Si11, and Ta75Ti10Zr8Si7 surface. 83
Figure 4-10 The ZrO2 XPS spectra of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 surface. ............. 84
Figure 4-11 The SiO2 XPS spectra of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 surface. ............. 85
Figure 4-12 The results of D1 cells viability for pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta after 1 day culture. ................................................................................................ 86
Figure 4-13 The results of D1 cells viability for pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta after 2 days culture. ............................................................................................... 87
Figure 4-14 The results of D1 cells viability for pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta after 3 days culture. ............................................................................................... 88
Figure 4-15 The O.D. value of D1 cells for pure Ti, Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 and pure Ta from 1 to 3 days culture. .............................................................................................. 89
Figure 4-16 Cell attachment on the surface of Ti, Ta57Ti17Zr15Si11, Ta75Ti10Zr8Si7 and Ta. . 90
Figure 4-17 The SEM images showing the surface of cell attachment on pure Ti surface after immersing in cell medium 8 hours. .................................................................................. 91
Figure 4-18 The SEM images showing the surface of cell attachment on Ta57Ti17Zr15Si11 surface after immersing in cell medium 8 hours. ...................................................................... 92
Figure 4-19 The SEM images showing the surface of cell attachment on Ta72Ti10Zr8Si7 surface after immersing in cell medium 8 hours. ...................................................................... 93
Figure 4-20 The SEM images showing the surface of cell attachment on pure Ta surface after immersing in cell medium 8 hours. .................................................................................. 94
Figure 4-21 The SEM images showing the surface of cell attachment on pure Ti surface after immersing in cell medium 16 hours. ................................................................................ 95
Figure 4-22 The SEM images showing the surface of cell attachment on Ta57Ti17Zr15Si11 surface after immersing in cell medium 16 hours. .................................................................... 96
Figure 4-23 The SEM images showing the surface of cell attachment on Ta75Ti10Zr8Si7 surface after immersing in cell medium 16 hours. .................................................................... 97
Figure 4-24 The SEM images showing the surface of cell attachment on pure Ta surface after immersing in cell medium 16 hours. ................................................................................ 98
Figure 4-25 The SEM images showing the surface of cell attachment on pure Ti surface after immersing in cell medium 24 hours. ................................................................................ 99
Figure 4-26 The SEM images showing the surface of cell attachment on Ta57Ti17Zr15Si1 surface after immersing in cell medium 24 hours. .................................................................. 100
Figure 4-27 The SEM images showing the surface of cell attachment on Ta75Ti10Zr8Si7 surface after immersing in cell medium 24 hours. .................................................................. 101
Figure 4-28 The SEM images showing the surface of cell attachment on pure Ta surface after immersing in cell medium 24 hours. .............................................................................. 102
Figure 4-29 The contact angle of water on pure Ti surface. ................................................ 103
Figure 4-30 The contact angle of water on Ta57Ti17Zr15Si11 surface. .................................. 104
Figure 4-31 The contact angle of water on Ta75Ti10Zr8Si7 surface. ..................................... 105
Figure 4-32 The contact angle of water on pure Ta surface. ............................................... 106
Figure 4-33 Contact angle of pure Ti, Ta57Ti17Zr15Si11, Ta75Ti10Zr8Si7 and pure Ta. ......... 107
參考文獻 References
[1] U.K. Mudali, T.M. Sridhar, B. Raj, Sadhana Academy Proceeding in Engineering Science, 28 (2003) 601-637.
[2] S.R. Paital, N.B. Dahotre, Materials Science and Engineering R, 66 (2009) 1-70.
[3] M. Long, H.J. Rack, Biomaterails, 19 (1998) 1621-1639.
[4] S.S. Hakki, S.B. Bozkurt, E.E. Hakki, P. Korkusuz, N. Purali, N. Koc, M. Timucin, A. Ozturk, F. Korkusuz, Biomedical Materials, 7 (2012) 045006.
[5] Y. Tsutsumi, S. Bartakova, P. Prachar, Suyalatu, S. Migita, H. Doi, N. Nomura and T. Hanawa, Journal of The Electrochemistry Society, 159 (2012) C435-C440.
[6] S. Pang, Y. Liu, H. Li, L. Sun, Y. Lin, T. Zhang, Journal of Alloys and Compounds, 625 (2015) 323-327.
[7] M. Calin, A. Gebert, A.C Ghinea, P.F Gostin, S. Abdi, C. Mickel, J. Eckert, Materials Science and Engineering C, 33 (2013) 875-883.
[8] A.C. Lund, C.A. Schuh, Journal of Applied Physics, 95 (2004) 4815-4822.
[9] A. Inoue, T. Zhang, T. Masumoto, Materials Transactions, JIM, 36 (1995) 391-398.
[10] A. Inoue, Materials Transactions, JIM, 36 (1995) 866-875.
[11] D.P. Wang, S.L. Wang, J.Q. Wang, Corrosion Science, 59 (2012) 88-95.
[12] C. Li, D. Chen, W. Chen, L. Wang, D. Luo, Corrosion Science, 84 (2014) 96-102.
[13] Y.B. Wang, H.F Li, Y.F. Zheng, M. Li, Materials Science and Engineering C, 32 (2012) 599-606.
[14] H.C. Lin, P.H. Tsai, J.H. Ke, J.B. Li, J.S.C. Jang, C.H. Huang, C.H. Huang, Intermetallic, 55 (2014) 22-27.
[15] H.H. Huang, Y.S. Sun, Y.S. Wu, C.P. Liu, P.K. Liaw, K. Wu, Intermetallic, 30 (2012) 139-143.
[16] L. Liu, C.L. Qiu, Q. Chen, K.C. Chan, S.M. Zhang, Journal of Biomedical Materials Research Part A 86 (2008) 160–169.
[17] A. Inoue, Acta Materialia 48 (2000) 279–306.
[18] B. Zberg, P.J. Uggowitzer, J.F. Löffler, Nature Materials 8 (2009) 887–891.
[19] J.R. Scully, A. Gebert, J.H., Journal of Materials Research 22 (2007) 302–313.
[20]J. Li, L.L. Shi, Z.D. Zhu, Q. He, H.J. Ai, J. Xu, Materials Science and Engineering C 33 (2013) 2113–2121.
[21] Y.Y. Chu, Y.S. Lin, C.M. Chang, J.K. Liu, C.H. Chen, J.C. Huang, Materials Science and Engineering C 36 (2014) 221-225.
[22] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Japanese Journal of Applied Physics, 40 (2001) 82-88.
[23] W. Klement, R.H. Williams, P. Duwez, Nature, 187 (1960) 869-870.
[24] H.S. Chen, D. Turnbull, Acta Metallurgica, 17 (1969) 1021-1031.
[25] R.B. Schwarz, W.L. Johnson, Physic Review Letters, 51 (1983) 415-418.
[26] E.J. Cotts, W.J. Meng, W.L. Johnson, Physic Review Letters, 57 (1986) 2295-2298.
[27] H.S. Chou, J.C. Huang, T.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Neih, Journal of Alloys and Compounds, 483 (2009) 341-345.
[28] T. Zhang, A. Inoue, T. Masumoto, Materials Science and Engineering A, 182 (1994) 1423-1426.
[29] K. Amiva, N. Nishiyama, A. Inoue, T. Masumoto, Materials Science and Engineering A, 179 (1994) 692-696.
[30] Y.C. Kim, W.T. Kim, D.H. Kim, Materials Science and Engineering A, 375 (2004) 127-135.
[31] F.X. Qin, M. Yoshimura, X.M. Wang, S.L. Zhu, A. Kawashima, K. Asami, A. Inoue, Materials Transactions, JIM, 48 (2007) 1855-1858.
[32] J.J. Oak, A. Inoue, Materials Science and Engineering A, 449 (2007) 220-224.
[33] M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, J. Eckert, Materials Science and Engineering C, 33 (2013) 875-883.
[34] J.L. Ke, C.H. Huang, Y.H. Chen, W.Y. Tsai, Applied Surface Science, 346 (2015) 291-301.
[35] C.H. Huang, Y.S. Huang, Y.S. Lin, C.H. Lin, J.C. Huang, C.H. Chen, J.B. Li, Y.H. Chen, J.S.C. Jang, Materials Science and Engineering C, 43 (2014) 343-349.
[36] C.H. Huang, J.J. Lai, T.Y. Wei, Y.H. Chen, X. Wang, J.C. Huang, S.Y. Kuan, Materials Science and Engineering C, 52 (2015) 144-150
[37] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials, 22 (2001) 1253-1262.
[38] D.M. Findlay, K. Welldon, G.J. Atkins, D.W. Howie, A.C. Zannettino, D. Bobyn, Biomaterials, 25 (2004) 2215-2227.
[39] C. Mas-Moruno, B. Garrido, D. Rodriquez, E. Ruperez, F.J. Gil, Journal of Materials Science: Materials in Medicine, 26 (2015) 109.
[40] M. Stiehler, M. Lind, T. Mygin, A. Baatrup, A. Dolatshahi-Pirouz, H Li, M. Foss, F. Besenbacher, M. Kassem, C. Bünger, Journal of Biomedical Materials Research A, 86 (2008) 448-458.
[41] H.S. Chou, J.C. Huang, L.W. Chang, Surface and Coating Technology, 205 (2010) 587-590.
[42] C.H. Lin, C.H. Huang, J.F. Chuang, J.C Huang, J.S.C. Jang, C.H. Chen, , Materials Science and Engineering C, 33 (2013) 4520-4526.
[43] 吳學陞, 工業材料, 149 (1999) 1.
[44] D. Turnbull, J.C. Fisher, The Journal of Chemical Physics, 17 (1949) 71.
[45] Z.P. Lu, C.T. Liu, Acta Materialia, 50 (2002) 3501-3512.
[46] X.H. Du, J.C. Huang, C.T. Liu, Z.P. Lu, Journal of Applied Physics, 101 (2007) 086108.
[47] A. Inoue, Materials Science and Engineering A, 226-228 (1997) 357-363.
[48] A. Inoue, A. Takeuchi, T. Zhang, Metallurgical and Materials Transaction A, 29
(1998) 1779-1793.
[49] R.E. Reed-Hill, Physical Metallurgy Principle, PWS, Boston, USA, (1994).
[50] M. Copel, M.C. Reuter, E. Kaxiras, RM. Tromp, Physical Review Letters, 63 (1989) 632-635.
[51] K. Wasa, S. Hayakawa, Handbook of Sputter Deposition Technology, Noyes Publications, Park Ridge, NJ, (1991).
[52] K. Seshan, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, Westwood (1998).
[53] F.X. Liu, P.K. Liaw, G.Y. Wang, C.L. Chiang, D.A. Smith, P.D. Rack, J.P. Chu, R.A. Buchanan, Intermetallics, 14 (2006) 1014-1018.
[54] K.B. Sundaram, A. Khan, Thin Solid Films, 295 (1997) 87-91.
[55] J.A. Thornton, Journal of Vacuum Science & Technology, 4 (1986) 3059-3065.
[56] C. Wang, P. Brault, C. Zaepffel, J. Thiault, A. Pineau, T. Sauvage, Journal of Physics D: Applied Physics, 36 (2003) 2709-2713.
[57] R. Wuhrer, W.Y. Yeung, Scripta Materialia, 49 (2003) 199-205.
[58] 鄭振東, 非晶質金屬漫談,建宏出版社,Taipei,Taiwan, (1990).
[59] M.D. Demetriou, A. Wiest, D.C. Hofmann, W.L. Johnson, B. Han, N. Wolfson, G.Y. Wang, P.K. Liaw, JOM, 62 (2010) 83-91.
[60] H.J. Flitt, D.P. Schweinsberg, Corrosion Science, 47 (2005) 2125-2156.
[61] E.L. Liening, in: B.J. Moniz, W.I. Pollock (Eds.), Process Industries Corrosion, NACE, (1986) 85.
[62] 熊楚強, 王月, 電化學, 文京圖書有限公司, (2006).
[63] Y. Tan and R. Winston Revie, Heterogeneous Electrode Processes and Localized Corrosion, WILEY, (2012).
[64] Y.B. Wang, Y.F. Zheng, S.C. Wei, M. Li, Journal of Biomedical Materials Research B, 96B (2011) 34-46.
[65] L. Huang, D. Qiao, B.A. Green, P.K. Liaw, J. Wang, S. Pang, T. Zhang, Intermetallics 17 (2009) 195-199.
[66] C.H. Huang, J.C. Huang, J.B. Li, J.S.C. Jang, Materials Science and Engineering C, 33 (2013) 4183-4187.
[67] M.R.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, Solid State Ionics, 180 (2009) 922-927.
[68] D.F. Williams, Biomaterials, 29 (2008) 2941-2953.
[69] D. Yang, X. Lü, Y. Hong, T. Xi, D. Zhang, Biomaterials, 34 (2013) 5747-5758.
[70] C.L. Qiu, Q. Chen, L. Liu, K.C. Chan, J.X. Zhou, P.P. Chen, S.M. Zhang, Scripta Materialia, 55 (2006) 605-608.
[71] L. Liu, C.L. Qiu, Q. Chen, K.C. Chan, S.M. Zhang, Journal of Biomedical Materials Research A, 86A (2008) 160-169.
[72] L. Liu, C.L. Qiu, C.Y. Huang, Y. Yu, H. Huang, S.M. Zhang, Intermetallics, 17 (2009) 235-240.
[73] J. Schroers, G. Kumar, T.M. Hodges, S. Chan, T.R. Kyriakides, Jom, 61 (2009) 21-28.
[74] E. Ingham, J. Fisher, Biomaterials, 26 (2005) 1271-1286.
[75] R. Huiskes, H. Weinans, B. van Rietberqen, Clinical Orthopaedics and Related Research, 274 (1992) 124-134.
[76] Y.Noyama, T. Miura, T. Ishimoto, T. Itaya, M. Niinomi, T. Nakano, Materials Transactions, 53 (2012) 565-570.
[77] D.R. Summer, Journal of Biomechanics, 48 (2015) 797-800.
[78] T. Lu, J. Wen, S. Qian, H Cao, C. Ning, X. Pan, X. Jiang, X. Liu, P.K. Chu, Biomaterials, 51 (2015) 173-183.
[79] N.J. Hallab, S. Anderson, T. Stafford, T. Glant, J.J. Jacobs, Journal of Orthopadaedic Research, 23 (2005) 384-391.
[80] M. Popa, E. Vasilescu, P. Drob, D. Raducanu, J.M.C. Moreno, S. Ivanescu, C. Vasilescu, S.I. Drob, Metals and Materials International,18 (2012) 639-645.
[81] E. Bertrand, T. Gloriant, D.M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, Journal of The Mechanical Behavior of Biomedical Materials, 3 (2010) 559-564.
[82] S. Guo, Q. Meng, X. Cheng, X. Zhao, Materials Letters, 133 (2014) 236-239.
[83] B.R.Levine, S. Sporer, R.A. Poggie, C.J.D. Valle, J.J. Jacobs, Biomaterials, 27 (2006) 4671-4681.
[84] M. Kiuru, E. Alakoski, V.M. Tiainen, R. Lappalainen, A. Anttila, Journal of Biomedical Materials Research B, 66 (2003) 425-428.
[85] C. Balagna, M.G. Faga, S. Spriano, Materials Science and Engineering C, 32 (2012) 887-895.
[86] J. Cui, R. Tanaka, H. Taguchi, A. Sano, E. Ito, K. Fukushima, K. Takeo, S. Yoshida, K. Nishimura, M. Miyaji, Journal of Medical and Veterinary Mycology, 35 (1997) 347-353.
[87] C.H. Chen, Y.S. Lin, Y.C. Fu, C.K. Wang, S.C. Wu, G.J. Wang, R. Eswaramoorthy, Y.H. Wang, Y.S. Lin, C.Z. Wang, Y.H Wang, J.K. Chang, M.L. Ho, Journal of Applied Physiology, 114 (2013) 647-655.
[88] L.C. Xu, A. C.A. Siedlecki, Biomaterials, 28 (2007) 3273-3283.
[89] M.E. Bahroloom, R. Sani, Surface and Coating Technology, 192 (2005) 154-163.
[90] J.D. Bressan, D.P. Daros, A. Sokolowski, R.A. Mesquita, C.A. Barbosa, Journal of Materials Processing Technology, 205 (2008) 353-359.
[91] F. L. Nie, Y. F. Zheng, Y. Wang, J. T. Wang, Journal of Biomedical Materials Research B, 102 (2014) 221-230
[92] M. Karthega, V. Raman, N. Rajendran, Acta Biomaterialia 3 (2007) 1019-1023
[93] Arne Biesiekierski, Jixing Lin, Yuncang Li, Dehai Ping, Yoko Yamabe-Mitarai, Cuie Wen, Acta Biomaterialia 32 (2016) 336–347
[94] M.F. Lo´pez, A. Gutie´rrez, J.A. Jime´nez, Electrochimica Acta 47 (2002) 1359–1364
[95] S´ergio Luiz de Assis a, Stephan Wolynec b, Isolda Costa, Electrochimica Acta 51 (2006) 1815–1819
[96] Y. Arima, H. Iwata, Biomaterials, 28 (2007) 3074-3082
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code