Responsive image
博碩士論文 etd-0702118-143707 詳細資訊
Title page for etd-0702118-143707
論文名稱
Title
探討鋅缺乏影響胚胎血管發育的分子機制
The molecular mechanisms of vascular malformation caused by zinc deficiency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-31
繳交日期
Date of Submission
2018-08-02
關鍵字
Keywords
斑馬魚、鋅缺乏、抗氧化基因、血管發育、區間血管、尾部靜脈血管叢、氧化壓力
caudal vein plexus, zinc deficiency, oxidative stress, zebrafish, vascular development, antioxidant gene, intersegmental vessels
統計
Statistics
本論文已被瀏覽 5627 次,被下載 0
The thesis/dissertation has been browsed 5627 times, has been downloaded 0 times.
中文摘要
鋅是生物體中重要的元素之一因為它扮演著許多蛋白質所需的催化及結構上輔助因子。鋅的缺乏是形成癌症的危險因子之一,因為它會導致生物體內的氧化壓力 (oxidative stress)、DNA 損害和基因突變。有學者在酵母菌的研究中發現鋅缺乏導致氧化壓力,其他在大鼠及細胞實驗中的研究亦指出鋅缺乏會提升氧化壓力。生物體在正常有氧代謝下會產生活性氧分子 (reactive oxygen species, ROS),內生性抗氧化酵素可消除而不至於傷害生物體。若超過抗氧化酵素之負荷則會產生氧化壓力。許多研究指出氧化壓力之增加與心血管疾病有很大的關聯,因為氧化壓力增加,會導致內皮功能之異常而發生血管病變。然而許多實驗是在細胞層次或是病理下的成體動物中的研究,對胚胎血管發育影響的研究卻很少,主要是因為缺乏適當的實驗動物。此外,最近的研究指出在斑馬魚中鋅轉送子 LIV1 (zinc transporter LIV1, Zip6) 對於胚胎發育過程中 epithelial- mesenchymal transition (EMT) 階段是不可或缺的,其中涉及到信號傳導及轉錄激活蛋白3 (signal transducer and activator of transcription 3, STAT3)/Snail 訊息傳遞路徑。然而有關”鋅缺乏”對胚胎發育的分子機制探討卻很少,對血管發育的研究則是完全沒有。在研究中,我們以斑馬魚為模式生物探討鋅缺乏、氧化壓力與血管發育的關係。我們初步的研究顯示鋅缺乏會對血管發育造成影響,主要在斑馬魚區間血管及尾部靜脈血管叢部位,推測是鋅缺乏抑制血管內皮細胞之血管生成作用 (angiogenesis)。此外,血管專一基因的表現在鋅缺乏的胚胎中顯示較低量或異位的表現。另外,我們也發現胚胎在氧化壓力下血管發育也出現生長缺陷。最後,我們測試了鋅缺乏影響血管發育的分子機制是因為氧化壓力升高的關係。瞭解此機制,在新生兒預防醫學上可以避免因鋅代謝失調所造成的胎兒畸形或血管相關疾病。例如:腸病變性肢端皮膚炎 (acrodermatitis enteropathica )、嬰兒血管瘤 (infantile hemangioma) 等;也有助應用於抑制異常血管生成的相關疾病,如癌症。
Abstract
Zinc is an essential nutrient for all organisms because it is required as a structural and catalytic cofactor by hundreds of proteins. Zinc deficiency is associated with increased levels of lipid and protein oxidation. In addition, the oxidative stress associated with zinc deficiency leads to increased levels of DNA damage. One previous study showed zinc deficiency can cause oxidative stress in yeast. Similar studies in animal and mammalian cells also showed that zinc limitation leads to increased oxidative stress. Many studies have been shown the connection between oxidative stress and vascular diseases. However, most studies have done in adult animals under pathological conditions, and very limited information about oxidative stress and vascular development during embryogenesis. Zinc is important in several biological processes including growth and development. Recent study showed zinc transporter LIV1 (Zip6) is important for Epithelial-mesenchymal transition (EMT) during the development mediated by STAT3/Snail signalings. However, it has limited knowledge regarding to the molecular mechanism on the impact of zinc deficiency in the developing embryo due to a lack of suitable experimental models, and no report has been shown the effect of zinc deficiency in vascular development yet.
Our preliminary data showed that zinc deficiency results in the defect in vascular development at intersegmental vessels (ISVs) and caudal vein plexus (CVP). In addition, vascular specific markers showed reduced or ectopic expression, suggested the impacts of zinc deficiency in vascular development. Understanding the effects of zinc deficiency in the developmental process will help us to prevent the prenatal zinc-related symptoms that might cause severe developmental malformation, such as acrodermatitis enteropathica (AE), infantile hemangioma. In addition, zinc depletion might serve as a new therapy for anti-angiogenesis related disease, such as cancer.
目次 Table of Contents
目錄
論文審定書..................................................................................................................... i
摘要................................................................................................................................ ii
Abstract ........................................................................................................................ iii
圖目錄........................................................................................................................... vi
表次及附件.................................................................................................................. vii
第壹章 前言................................................................................................................ 1
1.1 心血管疾病 .................................................................................................................... 1
1.2 鋅的重要性 .................................................................................................................... 5
1.3 斑馬魚的血管發育 ........................................................................................................ 7
1.4 利用斑馬魚為模式生物研究血管生成 ...................................................................... 10
第貳章 材料和方法.................................................................................................... 19
2.1 斑馬魚的繁殖,胚胎收集與培養 .............................................................................. 19
2.2 Morpholino 抑制基因表現 .......................................................................................... 19
2.3 顯微注射 (Morpholino microinjection) ...................................................................... 22
2.4 Total RNA萃取純化 ..................................................................................................... 22
2.5 cDNA 製作................................................................................................................... 23
2.6探針製作 ........................................................................................................................ 23
2.7原位組織染色(In situ hybridization) ............................................................................. 23
2.8 TUNEL Assay ............................................................................................................... 24
2.9 Quantitative PCR (Q-PCR) ........................................................................................... 25
2.10斑馬魚胚胎內ROS含量分析 ...................................................................................... 27
第參章 研究計畫目標與實驗流程圖........................................................................ 28
第肆章 實驗結果........................................................................................................ 30
4.1 鋅的特定螯合劑 TPEN 對斑馬魚的毒性 ................................................................ 30
4.2 TPEN 處理造成鋅缺乏會抑制斑馬魚的血管發育 ................................................... 30
4.3 TPEN 處理會降低或改變斑馬魚動靜脈基因 marker 的表現 ................................ 31
4.4 抑制 Zip4 基因表現造成鋅缺乏對斑馬魚的血管發育的影響 .............................. 31
4.5 抑制 Zip4 基因表現對斑馬魚的血管發育影響的專一性測試 .............................. 31
4.6 抑制 Zip4 基因表現 (Zip4 MO) 造成胚胎中鋅缺乏環境 ..................................... 32
v
4.7 鋅缺乏造成血管發育缺陷的分子機制 ...................................................................... 32
4.8 鋅缺乏造成氧化壓力進而導致血管缺陷 .................................................................. 33
4.8.1 氧化壓力導致斑馬魚 CVP 血管缺陷 ............................................................... 33
4.8.2 prdx1 knockdown 引起之氧化壓力會導致斑馬魚血管缺陷 ............................. 33
4.8.3 斑馬魚中鋅缺乏造成氧化壓力 ........................................................................... 34
5.1 鋅缺乏在血管生成和內皮細胞血管增生造成的影響 .............................................. 36
5.2 氧化壓力在血管和內皮細胞產生的影響 .................................................................. 36
5.3 鋅缺乏是引起氧化壓力的原因 .................................................................................. 36
5.4 鋅缺乏抗氧化基因和血管基因如何重建其基因表現的生物機制 .......................... 37
5.5 鋅在心血管疾病所扮演的角色 .................................................................................. 37
第陸章 結論................................................................................................................ 40
圖.................................................................................................................................. 41
Reference ..................................................................................................................... 60
參考文獻 References
Reference
Ananthan J, Goldberg AL and Voellmy R (1986). Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522-24.
Andrews GK (2001). Cellular zinc sensors: MTF-1 regulation of gene expression Biometals 14, 223-37
Au K, Singh MK, Bodukam V and Bae S et al. (2011) Atherosclerosis in systemic sclero- sis- a systematic review and meta analysis. Arthritis Rheum 63(7)2078-90
Bird AJ, McCall K, Kramer M and Blankman E et al. (2003). Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function. EMBO J. 22:5137-46.
Blum Y, Belting HG, Ellertsdottir E and Herwig L et al. (2008). Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316, 312-22.
Burhans WC, Weinberger M, Marchetti MA and Ramachandran L et al, (2003). Apoptosis-like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532:227-43.
Childs S, Chen JN, Garrity D and Fishman M (2002). Patterning of angiogenesis in the zebrafish embryo. Development 129(4), 973-82.
Choi J, Dong L, Ahn J and Dao D et al. (2007). FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol 304, 735-44.
Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. (1998). A common precursor for hematopoietic and endothelial cells. Development 125, 725-32.
Costello, LC, Liu Y, Franklin RB and Kennedy MC (1997). Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J. Biol. Chem. 272:28875-81.
Cousins RJ, Blanchard RK, Popp MP and Liu L et al.(2003) A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci USA. Jun 10;100(12):6952-7.
Cousins RJ, Liuzzi JP, Lichten LA(2006). Mammalian zinc transport, trafficking, and signals. J Biol Chem. Aug 25;281(34):24085-9.
Dalton TP, Li Q, Bittel D, Liang L, Andrews GK (1996). Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem. Oct 18;271(42): 26233-41.
Davidson JF, Whyte B, Bissinger PH and Schiestl RH (1996). Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A 93:5116-21.
Davis S and Cousins RJ (2000). Metallothionein expression in animals: A physiological perspective on function. J Nutr 130, 1085-88
Demasi AP, Pereira GA and Netto LE (2001). Cytosolic thioredoxin peroxidase I is essential for the antioxidant defense of yeast with dysfunctional mitochondria. FEBS Lett. 509:430-34.
Deshpande1 JD, Joshi2 MM, Giri1 PA (2013) Zinc: the trace element of major importance in human nutrition and health.: Int J Med Sci Public Health 2:1-6.
Eide DJ (1998). The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18:441-69.:441-69.
Eide DJ. (2004). The SLC39 family of metal ion transporters. Pflugers Arch 447: 796-800.
Ellis C, Wang F, MacDiarmid CW, Clark S, Lyons T and. Eide DJ (2004). Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J. Cell Biol. 166:325-35.
Finkel T and Holbrook NJ (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408:239-47.
Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239-47
Fraker PJ (2005). Roles for cell death in zinc deficiency. J. Nutr. 135:359-62.
Fukada T, Yamasaki S, Nishida K and Murakami M et al. (2011). Zinc homeostasis and signaling in health and diseases. JBIC (16)7: 1123–34
Gaither, LA and. Eide DJ (2001). Eukaryotic zinc transporters and their regulation. Biometals 14:251-70.
Gerhardt H, Golding M, Fruttiger M and Ruhrberg C et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161, 1163-77.
Geudens I and Gerhardt H (2011). Coordinating cell behaviour during blood vessel formation. Development, 138:4569-83
Godon C, Lagniel G, Lee J,. Buhler JM and Kieffer S et al. (1998). The H2O2 stimulation in Saccharomyces cerevisiae. J. Biol. Chem. 273:22480-89.
Hamik A, Wang B, Jain MK (2006). Transcriptional regulators of angiogenesis. Arterioscler Thromb Vasc Biol. 26(9):1936-47.
Hardy S, Legagneux V, Audic Yann and Paillard L (2010). Reverse genetics in eukaryotes. Biol Cell. 102:561-80.
Heasman J (2002). Morpholino oligos: making sense of antisense? Dev Biol 243, 209-14.
Higashi Y, Noma K, Yoshzumi M, Kihara Y (2009). Endothelial function and oxidative stress in cardiovascular disease. Circ J 73(3):411-18
Hirano T, Murakami M, Fukada T and Nishida K et al. (2008). Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule Adv Immunol 97:149-76. Review
Ho E (2004). Zinc deficiency, DNA damage and cancer risk. J. Nutr. Biochem. 15:572-78.
Ho E, Courtemanche C, and Ames BN (2003). Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J. Nutr. 133:2543-48.
Ikner A and Shiozaki K (2005). Yeast signaling pathways in the oxidative stress response. Mutat. Res. 569:13-27.
Isogai S, Horiguchi M and Weinstein BM (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230(2):P.278-301
Jin SW, Beis D, Mitchell T, Chen JN and Stainier DY (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199-209.
Kambe T, Suzuki T, Nagao M (2006). Sequence similarity and functional relationship among eukaryotic ZIP and CDF transporters. Genomics, Proteomics & Bioinformalics 4:1-9
Kamei M, Saunders WB, Bayless KJ and Dye L et al. (2006). Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442, 453-6.
Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease.The Framingham study. JAMA. 1979;241:2035–38
Kawakami K, Shima A and Kawakami K (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97, 11403-8.
Klaunig JE and Kamendulis LM (2004). The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44:239-67.
Kume T. (2010). Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol. 25(5):637-46.
Kury S, Dreno B, Bezieau S and Giraude S et al. (2002). Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239-40.
Kwan KM, Fujimoto E, Grabher C and Mangum BD et al. (2007). The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236, 3088-99.
Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000). The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem. Nov 3;275(44):34803-9.
Lawson N and Weinstein B (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. Aug 15:248(2), 307-18.
Lennicke C, Rahn J, Lichtenfels R and Ludger A (2015) Hydrogen peroxide – production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling 13:39-57
Liuzzi JP, Blanchard RK, and Cousins RJ (2001). Differential reglation of zinc transporter 1,2 and 4 mRNA expression by dietary zinc in rats. J Nutr 131, 46-52
Luscher TF (1990) Imbalance of endothelium-derived relaxing and contracting factors: a new concept in hypertension? Am J Hypertens:3(4)317-30
Marija K, James CR, Manja Z and Jasmina DK (2016). An initial evalution of newly proposed biomarker of zinc status in humans-linoleic acid:dihomo-gamma -linolenic acid (LA:DGLA) ratio. Clinical Nutrition 15, 85-92.
Meng A, Tang H, Yuan B and Ong BA et al. (1999). Positive and negative cis-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood 93, 500-8.
Neumann CA, Krause DS, Carman CV and Das S et al. (2003). Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defense and tumor suppression. Nature 424:561-65.
Oteiza PI, Olin KL, Fraga CG and. Keen CL (1995). Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J. Nutr. 125:823-29.
Pardanaud L, Yassine F, Dieterlen-Lievre F (1989). Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105, 473-85.
Patterson C. (2009). Torturing a blood vessel. Nat Med 15, 137-8.
Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, et al. (1997). Zinc is a potent inhi- bitor of the apoptotic protease, caspase-3. A novel target of zinc in the inhibition of apoptosis. J Biol Chem 272:18530–33
Peter JL, Runa B, Abel EM and Irina K (2010). Zinc and cardiovascular disease. Nutrition 26:1050-57
Plum LM, Rink L, Haase H (2010). The essential toxin: Impact of zinc on human health. Int J Environ Res Public Health 7(4):1342-65
Prasad AS and Kucuk O (2002). Zinc in cancer prevention. Cancer Metastasis Rev. 21:291-95.
Revencu N and Vikkula M (2006). Cerebral cavernous malformation: new molecular and clinical insights. J Med Genet 43, 716-21.
Ridgway J, Zhang G, Wu Y and Stawicki S et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083-7.
Risau W and Flamme I. (1995). Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73-91.
Risau W. (1997). Mechanisms of angiogenesis. Nature 386, 671-674.
Roman BL, Pham VN, Lawson ND and Kulik M et al. (2002). Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129, 3009-19.
Sato M, Yanagisawa H, Nojima Y, Tamura J et al. (2002) Zn deficiency aggravates hypertension in spontaneously hypertensive rats: possible role of Cu/Zn- superoxide dismutase. Clin Exp Hypertens. 2002 Jul;24(5):355-70.
Scuermann A, Helker CS and Herzog W (2014). Angiogenesis in zebrafish. Semin Cell Dev Biol, 31:P.106-14
Soinio M., Marniemi J and Laakso M (2007). Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 30:523-28
Song YC,Wu BJ, Chiu CC and Chen CL (2017). Coral-derived natural marine compound GB9 impairs vascular development in zebrafish. Int. J. Mol. Sci. 18(8):1696-1709
Spenser R, Xia Q, Rinat RR and James TB (2014). Dietary zinc deficiency affect blood linoleic acid:dihomo-gamma -linolenic acid (LA:DGLA) ratio; a sensitive physiological marker of zinc status in vivo (Gallus gallus). Nutrients 6:1164-80.
Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8(11)1211-17
Sugamura K, Keaney JF (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51(5):978-92
Swift MR and Weinstein BM (2009). Arterial-venous specification during development. Circ Res. 13;104(5):576-88.
Tarkin JM, Dweck MR, Evans NR, Richard A.P. Takx et al. (2016) Imaging atherosc- lerosis. Circulation Research. 118:750-69
Tomat AL, Juriol LV and Gobetto MN (2013). Morphological and functional effects on cardiac tissue induced by moderate zinc deficiency during prenatal and postnatal life in male and female rats. Am J Physiol Heart Circ Physiol 305: H1574 - H1583
Tomat, A.L., Weisstaub, A.R. and Jauregui, A (2005) Moderate zinc deficiency influ-
ences arterial blood pressure and vascular nitric oxide pathway in growing rats.
Pediatric Research 58:672-76
Vogeli KM, Jin SW., Martin GR and Stainier DY (2006). A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443, 337-9.
Wiley DM, Kim JD, Hao J and Hong CC et al. (2011). Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol. 2011 Jun;13(6):686-92.
Wu BJ, Chiu CC, Wang WD and Chen CL (2014). Nuclear Receptor Subfamily 2 Group F Member 1a (nr2fIa) is Required for Vascular Development in zebrafish. PLoS ONE.9:P.1-12
Yamashita S, Miyagi C, Fukada T, Kagara N et al.(2004). Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature. 20;429(6989):298-302.
Zhong T, Childs S, Liu JP and Fishman MC. (2001). Gridlock signaling pathway fashions the first embryonic artery. Nature 414, 216-20.
王志強等人, 內科學誌. 卷期:15:6 民93.12. 274-279頁 鋅缺乏:個案報告
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.113.30
論文開放下載的時間是 校外不公開

Your IP address is 3.144.113.30
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code