Responsive image
博碩士論文 etd-0702118-154946 詳細資訊
Title page for etd-0702118-154946
論文名稱
Title
探討銀/氧化鐵/石墨烯複合材料之光輔助氧氣還原機制
Ag/Fe2O3 nanocomposites on graphene for laser-coupled oxygen reduction reaction mechanism
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-22
繳交日期
Date of Submission
2018-08-02
關鍵字
Keywords
表面電漿共振、氧氣還原反應、銀奈米粒子、還原石墨烯、光輔助氧氣還原反應、氧化鐵
Oxygen reduction reaction, Surface plasmon resonance, Graphene, Silver nanoparticle, Iron oxide, Photodecay, Laser-coupled oxygen reduction reaction
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
根據先前的研究結果,銀奈米粒子/氧化鐵/還原石墨烯(Ag/FNG),三者之界面對氧氣還原反應的活性有很大的幫助。我們更進一步地配合特定波長之雷射(405 nm),發現有抑制中間產物過氧化物的現象,但是對於催化劑進行氧氣還原反應的機制,並沒有詳細的研究,因此我們使用電化學阻抗頻譜法(Electrochemistry Impedance Spectroscopy, EIS)與光電壓衰減法(Potovoltage decay來探討進行氧氣還原反應與光電子之電荷轉移情形。
照射405 nm雷射後,過氧化氫抑制量為7.5%,且光電壓衰減結果顯示Ag/FNG有比較少的陷阱狀態(trap state),對於光/電化學催化有比較好的催化表現。另一方面催化劑之光活性來自於照光時,銀奈米粒子產生表面電漿共振之熱電子與氧化鐵之光電子皆轉移到氧化鐵之導電能帶,使催化劑表面擁有較豐富的電子,推測是造成活性上升的主因,且實驗結果顯示光照使催化劑產生較多的活性點,可以還原較多的氧氣,得到比較大的還原電流,有更好的氧氣還原活性。
Abstract
According to the previous research results, silver nanoparticles/iron oxide/N-doped graphene (Ag/FNG), the interface between each of them are very helpful for improving the oxygen reduction reaction activity. We further coupled with lasers with the specific wavelength (405 nm) and found that there was a phenomenon of suppressing the generation of peroxide. However, there was less study about the mechanism of the oxygen reduction reaction of catalysts, so we used the electrochemistry impedance spectroscopy (EIS) and photovoltage decay to investigate the effect of the oxygen reduction reaction and photoelectron charge transfer.
After irradiated with 405 nm laser, the percentage of hydrogen peroxide inhibition was 7.5%, and the results of photovoltage decay showed that the Ag/FNG had a relatively less trap state and had a better catalytic performance for laser-coupled oxygen reduction reaction. On the other hand, when the photoactivity of the catalyst arises from laser irradiation, the electrons generate by surface plasma resonance of the silver nanoparticles and the photoelectrons of the iron oxide would transfer to the conduction band of the iron oxide, so that the catalyst surface has abundant electrons. The main reason for the increase in activity is that the illumination makes the charge transfer between the catalyst and oxygen faster and the catalyst reacts more easily with oxygen, resulting in a larger reduction current density and better oxygen reduction activity.
目次 Table of Contents
目錄
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章、緒論 1
1.1 研究動機 2
1.2 研究背景 3
1.2.1 氧氣還原反應 3
1.2.2 氧氣親和力 4
1.2.3 氧氣還原反應催化劑 5
1.2.3.1 鉑催化劑 5
1.2.3.2 石墨烯催化劑 6
1.2.3.3 銀奈米粒子複合催化劑 8
1.2.3.4 氧化鐵複合催化劑 9
1.2.4 光催化劑 11
1.2.4.1 半導體 11
1.2.4.2 金屬之表面電漿共振 12
1.2.4.3 碳材料 14
1.2.4.4 光輔助氧氣還原反應 15
1.2.5 光輔助燃料電池 18
1.2.6 先前的研究 21
第二章、實驗樣品合成與測試方法 24
2.1 實驗藥品 24
2.2 合成 25
2.2.1 製備氧化石墨烯 (graphene oxide) 25
2.2.2 合成Ag/FNG(Ag/Fe2O3/N-Graphene) 25
2.2.3 合成FNG, Ag/N-rGO, Fe2O3 25
2.3 電化學量測 26
2.3.1 循環伏安法 (Cyclic voltammetry, CV) 26
2.3.2 旋轉環盤電極 (Rotation ring disk electrode, RRDE) 26
2.4 光輔助氧氣還原反應 27
2.5 電化學阻抗頻譜分析法 29
2.5.1 等效電路阻抗介紹 30
2.6 UV量測 31
2.7 UPS原理 31
2.8 曲線擬合 31
2.9 光電壓量測 32
第三章、研究結果 33
3.1 雷射波長選擇 33
3.2 光輔助氧氣還原反應 35
3.2.1 定電位量測雷射之影響 35
3.2.2 連續光源 38
3.2.3 光源對極限電流之影響 39
3.2.4 曲線擬合極限電流 40
3.2.5 光源對於還原行為之影響 42
3.2.6 不同功率雷射影響 44
3.2.7 未修飾催化劑之玻璃探電極(GCE)測試 45
3.3 電化學交流阻抗頻譜法 47
3.3.1 旋轉電極之催化行為 47
3.3.2 照光對於催化劑阻抗之影響 50
3.3.3 靜止電極之催化行為 52
3.4 光電壓衰減 55
3.4.1 一般條件 55
3.4.2 加入Fe(CN)63-/4-之影響 57
3.4.3 固定電壓差之光電壓衰減 58
第四章、綜合討論 59
4.1 光照機制探討 59
4.2 光輔助氧氣還原反應 60
4.3 在照光後的質傳增強行為 60
4.4 陷阱能態對電化學之影響 60
第五章、結論 62
參考文獻 63
附錄 70

圖目錄
圖 1 1 金屬對氧鍵結能與活性圖。 4
圖 1 2 Pt/C經過長時間的電催化反應會有四種不同降解途徑(A)為實驗前(B)為實驗後,藍色為Pt奈米粒子溶解,橙色為活性碳腐蝕,綠色為奈米粒子凝聚,紅色為奈米粒子從活性碳脫離。 5
圖 1 3 氮原子摻雜碳材料之不同氮類型。 6
圖 1 4 氮摻雜之碳材料氧氣還原反應機制。 7
圖 1 5 縮小銀奈米粒子之氧氣還原活性影響。 8
圖 1 6 氧化鐵與石墨烯複合材料,在ORR與OER之動力學表現。 10
圖 1 7 氧化鐵與石墨烯複合材料,在ORR之動力學表現。 10
圖 1 8 表面電漿共振之金屬,受激發之電子誘導氧分子解離之機制。 13
圖 1 9 多孔碳材料對於光引發氧氣還原電流增強。 14
圖 1 10 於AgPt合金照射光源之電流密度變化與過氧化氫抑制量。 16
圖 1 11 Au-Pd-Pt受光照射後,電流密度的變化。 16
圖 1 12 Au@TiO2對光引發起始電壓、電流密度、電子轉移數、過氧化氫產率變化。 17
圖 1 13 生物燃料電池兩極催化劑示意圖。 18
圖 1 14 燃料電池之半導體高分子之陰極材料,受光激發之電子轉移機制圖。 19
圖 1 15 光輔助氫氧燃料電池裝置圖,在陰極放置石英玻璃並照光。 20
圖 1 16 pTTh陰極催化劑與氧氣反應電荷轉移圖。 20
圖 1 17 催化劑示意圖(a) Ag/FNG、(b) FNG、(c) Ag/N-rGO 22
圖 1 18 各催化劑氧氣還原活性 (a)於1600 rpm動力學上的表現、(b) CV。 23
圖 2 1 空白電極校正(a) 為盤電流(b) 為環電流。 28
圖 2 2 光輔助氧氣還原反應裝置架設示意圖。 28
圖 2 3 左圖為未照光狀態,為電極受淺的(ets)以及深的(etd)表面狀態影響之費米能階的改變;右圖為照光後,產生之光電子電動對之開路電壓變化(∆V1, ∆V2)。 32
圖 3 1紫外光分光儀測試催化劑(Ag/FNG、Ag/N-rGO、FNG、rGO、Fe2O3)之吸收光譜。 34
圖 3 2 雷射照射各催化劑之氧氣還原反應(a) 盤電流密度變化、(b) 環電流變化、(c) 過氧化氫產率變化。 37
圖 3 3 使用連續光源照射催化劑之氧氣還原反應(a) 盤電流密度變化、(b) 環電流變化、(c) 過氧化氫產率變化。 38
圖 3 4 雷射照射Ag/FNG催化劑,電流密度之變化。 39
圖 3 5 Ag/FNG實驗與理論擬合圖譜 41
圖 3 6 照射雷射之CV(a) Ag/FNG、(b) Ag/N-rGO、(c) FNG。 43
圖 3 7 測試不同功率之雷射於Ag/FNG催化劑CV圖。 44
圖 3 8照光後催化劑的活化情形示意圖。 45
圖 3 9 測試未加入催化劑之空白電極,在飽和氧氣之0.1 M KOH中,於照射405 nm雷射5分鐘(a) CV、(b) LSV。 46
圖 3 10本文選用之等效電路圖。 49
圖 3 11各催化劑交流阻抗擬合結果。 49
圖 3 12 各催化劑照光之交流阻抗擬合結果(a) Ag/FNG、(b) Ag/N-rGO、(c) FNG。 51
圖 3 13 各催化劑照光之交流阻抗擬合結果(a) Ag/FNG、(b) Ag/N-rGO、(c) FNG。 54
圖 3 14 光電壓變化(a) 一般條件、(b) 加入Fe(CN)63-/4-。 57
圖 3 15 各催化劑固定電壓差之光電壓衰減。 58
圖 4 1 光輔助氧氣還原反應可能之電子轉移機制。 61

表目錄
表 1 1 各催化劑之ORR活性比較表 21
表 3 1 照射405 nm雷射電流密度變化、過氧化氫抑制量 36
表 3 2 各項係數說明 40
表 3 3 擬合參數結果 41
表 3 4 Ag/FNG、Ag/N-rGO、FNG之阻抗值。 48
表 3 5 照光對旋轉電極之阻抗影響 50
表 3 6 照光下對固定電極阻抗之影響 53
表 3 7 光電壓衰減之生命期計算 56
表 3 8 光電壓變化值 56
表 3 9 各催化劑固定電壓差光電壓衰減生命期之計算。 58
參考文獻 References
參考文獻
1. Song, C.; Zhang, J. Electrocatalytic Oxygen Reduction Reaction. In PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications; Zhang, J., Ed. Springer London: London, 2008.
2. Cheng, F.; Chen, J. Metal-Air Batteries: from Oxygen Reduction Electrochemistry to Cathode Catalysts. Chem. Soc. Rev. 2012, 41, 2172-2192.
3. Damjanovic, A.; Genshaw, M. A.; Bockris, J. O. M. Distinction between Intermediates Produced in Main and Side Electrodic Reactions. J. Chem. Phys. 1966, 45, 4057.
4. Wroblowa, H. S.; Pan, Y. C.; Razumney, G. Electroreduction of Oxygen: A New Mechanistic Criterion. ‎J. Electroanal. Chem. 1976, 69, 195-201.
5. Neburchilov, V.; Wang, H. J.; Martin, J. J.; Qu, W. A Review on Air Cathodes for Zinc–Air Fuel Cells. J. Power Sources 2010, 195, 1271.
6. Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adzic, R. R. Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles. J. Phys. Chem. C 2007, 111, 404-410.
7. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
8. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angew. Chem., Int. Ed. 2005, 44, 2132-2135.
9. Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Kostka, A.; Schüth, F.; Mayrhofer, K. J. J. Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catal. 2012, 2, 832-843.
10. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and Processing of Graphene and 2d Crystals. Mater. Today 2012, 15, 564-589.
11. Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z. Can Boron and Nitrogen Co-doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes. J. Am. Chem. Soc. 2013, 135, 1201-1204.
12. Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-doped Graphene for the Catalysis of Oxygen Reduction. Angew. Chem., Int. Ed. 2013, 52, 11755-11759.
13. Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active Sites of Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Clarified Using Model Catalysts. Science 2016, 351, 361-365.
14. Ensafi, A. A.; Alinajafi, H. A.; Rezaei, B. Pt-Modified Nitrogen Doped Reduced Gaphene Oxide: A Powerful Electrocatalyst for Direct CO2 Reduction to Methanol. J. Electroanal. Chem. 2016, 783, 82-89.
15. Guo, J.; Zhou, J.; Chu, D.; Chen, R. Tuning the Electrochemical Interface of Ag/C Electrodes in Alkaline Media with Metallophthalocyanine Molecules. J. Phys. Chem. C 2013, 117, 4006-4017.
16. Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; Stevenson, K. J. Atomic Ensemble and Electronic Effects in Ag-Rich AgPd Nanoalloy Catalysts for Oxygen Reduction in Alkaline Media. J. Am. Chem. Soc. 2012, 134, 9812-9829.
17. Men, B.; Sun, Y.; Tang, Y.; Zhang, L.; Chen, Y.; Wan, P.; Pan, J. Highly Dispersed Ag-Functionalized Graphene Electrocatalyst for Oxygen Reduction Reaction in Energy-Saving Electrolysis of Sodium Carbonate. Ind. Eng. Chem. Res. 2015, 54, 7415-7422.
18. Lim, E. J.; Choi, S. M.; Seo, M. H.; Kim, Y.; Lee, S.; Kim, W. B. Highly Dispersed Ag Nanoparticles on Nanosheets of Reduced Graphene Oxide for Oxygen Reduction Reaction in Alkaline Media. Electrochem. Commun. 2013, 28, 100-103.
19. Chen, W.-Q.; Chung, M.-C.; Valinton, J. A. A.; Penaloza, D. P.; Chuang, S.-H.; Chen, C.-H. Heterojunctions of Silver-Iron Oxide on Graphene for Laser-Coupled Oxygen Reduction Reactions. Chem. Commun. 2018, 54, 7900-7903.
20. Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefevre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S.; Dodelet, J. P. Structure of the Catalytic Sites in Fe/N/C-Catalysts for O2-Reduction in PEM Fuel Cells. Phys. Chem. Chem. Phys. 2012, 14, 11673-11688.
21. Zhang, C.; Hao, R.; Yin, H.; Liu, F.; Hou, Y. Iron Phthalocyanine and Nitrogen-Doped Graphene Composite as a Novel Non-Precious Catalyst for the Oxygen Reduction reaction. Nanoscale 2012, 4, 7326-73269.
22. Zhou, W.; Ge, L.; Chen, Z.-G.; Liang, F.; Xu, H.-Y.; Motuzas, J.; Julbe, A.; Zhu, Z. Amorphous Iron Oxide Decorated 3D Heterostructured Electrode for Highly Efficient Oxygen Reduction. Chem. Mater. 2011, 23, 4193-4198.
23. Zhao, B.; Zheng, Y.; Ye, F.; Deng, X.; Xu, X.; Liu, M.; Shao, Z. Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 14446-14455.
24. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries. Nat. Chem. 2011, 3, 546-550.
25. Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angew. Chem., Int. Ed. 2014, 53, 102-121.
26. Liu, X.; Hu, W. Iron Oxide/Oxyhydroxide Decorated Graphene Oxides for Oxygen Reduction Reaction Catalysis: a Comparison Study. RSC Adv. 2016, 6, 29848-29854.
27. Joly, A. G.; Williams, J. R.; Chambers, S. A.; Xiong, G.; Hess, W. P.; Laman, D. M. Carrier Dynamics in α‐Fe2O3 (0001) Thin Films and Single Crystals Probed by Femtosecond Tansient Absorption and Reflectivity. J. Appl. Phys. 2006, 99, 053521-053527.
28. Cherepy, N. J.; Liston, D. B.; Lovejoy, J. A.; Deng, H.; Zhang, J. Z. Ultrafast Studies of Photoexcited Electron Dynamics in γ- and α-Fe2O3 Semiconductor Nanoparticles. J. Phys. Chem. B 1998, 102, 770-776.
29. Carbonare, N. D.; Cristino, V.; Berardi, S.; Carli, S.; Argazzi, R.; Caramori, S.; Meda, L.; Tacca, A.; Bignozzi, C. A. Hematite Photoanodes Modified with an Fe(III) Water Oxidation Catalyst. Chemphyschem 2014, 15, 1164-1174.
30. Malara, F.; Minguzzi, A.; Marelli, M.; Morandi, S.; Psaro, R.; Dal Santo, V.; Naldoni, A. α-Fe2O3/NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation. ACS Catal. 2015, 5, 5292-5300.
31. Li, H.; Tao, L.; Huang, F.; Sun, Q.; Zhao, X.; Han, J.; Shen, Y.; Wang, M. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer. ACS Appl. Mater. Interfaces 2017, 9, 38967-38976.
32. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-Induced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015, 10, 25-34.
33. Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc 2012, 134, 15033-15041.
34. Verma, A.; Srivastav, A.; Khan, S. A.; Rani Satsangi, V.; Shrivastav, R.; Kumar Avasthi, D.; Dass, S. Enhanced Photoelectrochemical Response of Plasmonic Au Embedded BiVO4/Fe2O3 Heterojunction. Phys. Chem. Chem. Phys. 2017, 19, 15039-15049.
35. Khan, M. R.; Chuan, T. W.; Yousuf, A.; Chowdhury, M. N. K.; Cheng, C. K. Schottky Barrier and Surface Plasmonic Resonance Phenomena Towards the Photocatalytic Reaction: Study of Their Mechanisms to Enhance Photocatalytic Activity. Catal. Sci. Technol. 2015, 5, 2522-2531.
36. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical Transformations on Plasmonic Metal Nanoparticles. Nat. Mater. 2015, 14, 567-576.
37. Clavero, C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nat. Photonics 2014, 8, 95-103.
38. Liu, G.; Li, P.; Zhao, G.; Wang, X.; Kong, J.; Liu, H.; Zhang, H.; Chang, K.; Meng, X.; Kako, T.; Ye, J. Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. J. Am. Chem. Soc. 2016, 138, 9128-36.
39. Lin, S. C.; Hsu, C. S.; Chiu, S. Y.; Liao, T. Y.; Chen, H. M. Edgeless Ag-Pt Bimetallic Nanocages: In Situ Monitor Plasmon-Induced Suppression of Hydrogen Peroxide Formation. J. Am. Chem. Soc. 2017, 139, 2224-2233.
40. Huang, Y. F.; Zhang, M.; Zhao, L. B.; Feng, J. M.; Wu, D. Y.; Ren, B.; Tian, Z. Q. Activation of Oxygen on Gold and Silver Nanoparticles Assisted by Surface Plasmon Resonances. Angew. Chem., Int. Ed. 2014, 53, 2353-2357.
41. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Lett. 2013, 13, 240-247.
42. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nat. Mater. 2011, 10, 911-921.
43. He, Q.; Zhou, F.; Zhan, S.; Huang, N.; Tian, Y. Photoassisted Oxygen Reduction Reaction On mpg-C3N4 : The Effects of Elements Doping on the Performance of ORR. Appl. Surf. Sci. 2018, 430, 325-334.
44. Zheng, Z.; Xie, W.; Li, M.; Ng, Y. H.; Wang, D.-W.; Dai, Y.; Huang, B.; Amal, R. Platinum Electrocatalysts with Plasmonic Nano-Cores for Photo-Enhanced Oxygen-Reduction. Nano Energy 2017, 41, 233-242.
45. Guo, L.; Liang, K.; Marcus, K.; Li, Z.; Zhou, L.; Mani, P. D.; Chen, H.; Shen, C.; Dong, Y.; Zhai, L.; Coffey, K. R.; Orlovskaya, N.; Sohn, Y. H.; Yang, Y. Enhanced Photoelectrocatalytic Reduction of Oxygen Using Au@TiO2 Plasmonic Film. ACS Appl. Mater. Interfaces 2016, 8, 34970-34977.
46. Zhang, L.; Bai, L.; Xu, M.; Han, L.; Dong, S. High performance ethanol/air biofuel cells with both the visible-light driven anode and cathode. Nano Energy 2015, 11, 48-55.
47. Kolodziejczyk, B.; Winther-Jensen, O.; MacFarlane, D. R.; Winther-Jensen, B. Conducting Polymer Alloys for Photo-Enhanced Electro-Catalytic Oxygen Reduction. J. Mater. Chem. 2012, 22, 10821–10826.
48. Zhang, B.; Wang, S.; Fan, W.; Ma, W.; Liang, Z.; Shi, J.; Liao, S.; Li, C. Photoassisted Oxygen Reduction Reaction in H2-O2 Fuel Cells. Angew. Chem., Int. Ed. 2016, 55, 14748-14751.
49. 陳威銓 合成多樣銀/氧化鐵奈米顆粒之石墨烯複合材料作為鹼性氧氣還原電催化之研究. 2016.
50. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
51. 揚昇晃 微型燃料電池設計、製作與電化學阻抗量測分析. 2005.
52. Yuan, X.-Z.; Song, C.; wang, H.; Zhang, J. Electrochemical Impedance Spectroscopy in PEM Fuel Cells. 2010.
53. McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.
54. Jin, C.; Lu, F.; Cao, X.; Yang, Z.; Yang, R. Facile Synthesis and Excellent Electrochemical Properties of NiCo2O4 Spinel Nanowire Arrays as a Bifunctional Catalyst for the Oxygen Reduction and Evolution Reaction. J. Mater. Chem. A 2013, 1, 12170-12177.
55. 何首毅 具高三重態能量 carbazole 衍生物之 主體材料應用於磷光發光二極體之研究.
56. Mukherjee, B.; Wilson, W.; Subramanian, V. R. TiO2 Nanotube (T_NT) Surface Treatment Revisited: Implications of ZnO, TiCl4, and H2O2 Treatment on the Photoelectrochemical Properties of T_NT and T_NT-CdSe. Nanoscale 2013, 5, 269-274.
57. Pu, Y. C.; Wang, G.; Chang, K. D.; Ling, Y.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X.; Tong, Y.; Zhang, J. Z.; Hsu, Y. J.; Li, Y. Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-Visible Region for Photoelectrochemical Water Splitting. Nano Lett. 2013, 13, 3817-3823.
58. Li, X.; Wang, Z.; Zhang, Z.; Chen, L.; Cheng, J.; Ni, W.; Wang, B.; Xie, E. Light Illuminated Alpha-Fe2O3/Pt Nanoparticles as Water Activation Agent for Photoelectrochemical Water Splitting. Sci. Rep. 2015, 5, 9130-9137.
59. Adegboyega, N. F.; Sharma, V. K.; Siskova, K.; Zbořil, R.; Sohn, M.; Schultz, B. J.; Banerjee, S. Interactions of Aqueous Ag+ with Fulvic Acids: Mechanisms of Silver Nanoparticle Formation and Investigation of Stability. Environ. Sci. Technol. 2013, 47, 757-764.
60. Xu, Z.; Fan, Z.; Shi, Z.; Li, M.; Feng, J.; Pei, L.; Zhou, C.; Zhou, J.; Yang, L.; Li, W.; Xu, G.; Yan, S.; Zou, Z. Interface Manipulation to Improve Plasmon-Coupled Photoelectrochemical Water Splitting on alpha-Fe2O3 Photoanodes. ChemSusChem 2018, 11, 237-244.
61. Peerakiatkhajohn, P.; Yun, J. H.; Chen, H.; Lyu, M.; Butburee, T.; Wang, L. Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting. Adv. Mater. 2016, 28, 6405-64010.
62. Wang, Y.; Lu, X.; Liu, Y.; Deng, Y. Silver Supported on Co3O4 Modified Carbon as Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Electrochem. Commun. 2013, 31, 108-111.
63. Park, S.-A.; Lim, H.; Kim, Y.-T. Enhanced Oxygen Reduction Reaction Activity Due to Electronic Effects between Ag and Mn3O4 in Alkaline Media. ACS Catal. 2015, 5, 3995-4002.
64. Liu, Z.; Hou, W.; Pavaskar, P.; Aykol, M.; Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 2011, 11, 1111-1116.
65. DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887-91.
66. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G. Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
67. Hung, S.-F.; Xiao, F.-X.; Hsu, Y.-Y.; Suen, N.-T.; Yang, H.-B.; Chen, H. M.; Liu, B. Iridium Oxide-Assisted Plasmon-Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers. Adv. Energy Mater. 2016, 6, 1501339-1501339.
68. Xiong, Y.; Ren, M.; Li, D.; Lin, B.; Zou, L.; Wang, Y.; Zheng, H.; Zou, Z.; Zhou, Y.; Ding, Y.; Wang, Z.; Dai, L.; Yang, H. Boosting Electrocatalytic Activities of Plasmonic Metallic Nanostructures by Tuning the Kinetic Pre-Exponential Factor. J. Catal. 2017, 354, 160-168.
69. Song, W.; Ren, Z.; Chen, S. Y.; Meng, Y.; Biswas, S.; Nandi, P.; Elsen, H. A.; Gao, P. X.; Suib, S. L. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 8, 20802-20813.
70. Liao, L.; Wang, S.; Xiao, J.; Bian, X.; Zhang, Y.; Scanlon, M. D.; Hu, X.; Tang, Y.; Liu, B.; Girault, H. H. A Nanoporous Molybdenum Carbide Nanowire as an Electrocatalyst for Hydrogen Evolution Reaction. Energy Environ. Sci. 2014, 7, 387-392.
71. Wang, Q.; Yuan, H.; Feng, H.; Li, J.; Zhao, C.; Liu, J.; Qian, D.; Jiang, J.; Liu, Y. One-Step Solution-Phase Synthesis of Co3O4/RGO/Acetylene Black as a High-Performance Catalyst for Oxygen Reduction Reaction. RSC Adv. 2014, 4.
72. Liu, S.; Qin, X. Preparation of a Ag–MnO2/Graphene Composite for the Oxygen Reduction Reaction in Alkaline Solution. RSC Adv. 2015, 5, 15627-15633.
73. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis. 6th, Ed.
74. Fan, W.; Li, C.; Bai, H.; Zhao, Y.; Luo, B.; Li, Y.; Ge, Y.; Shi, W.; Li, H. An in Situ Photoelectroreduction Approach to Fabricate Bi/BiOCl Heterostructure Photocathodes: Understanding the Role of Bi Metal for Solar Water Splitting. J. Mater. Chem. A 2017, 5, 4894-4903.
75. Yun, G.; Song, G. Y.; Ahn, B.-E.; Lee, S.-K.; Heo, J.; Ahn, K.-S.; Kang, S. H. Beneficial Surface Passivation of Hydrothermally Grown TiO2 Nanowires for Solar Water Oxidation. Appl. Surf. Sci. 2016, 366, 561-566.
76. Amin, H. M. A.; Bondue, C. J.; Eswara, S.; Kaiser, U.; Baltruschat, H. A Carbon-Free Ag–Co3O4 Composite as a Bifunctional Catalyst for Oxygen Reduction and Evolution: Spectroscopic, Microscopic and Electrochemical Characterization. Electrocatalysis 2017, 8, 540-553.
77. Jaksic, J. M.; Labou, D.; Papakonstantinou, G. D.; Siokou, A.; Jaksic, M. M. Novel Spillover Interrelating Reversible Electrocatalysts for Oxygen and Hydrogen Electrode Reactions. J. Phys. Chem. C 2010, 114, 18298-18312.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code