Responsive image
博碩士論文 etd-0702118-173626 詳細資訊
Title page for etd-0702118-173626
論文名稱
Title
探討初始熱軋結構經過不同冷軋量及應變模式改變對非方向性電磁鋼片縱深方向集合組織之影響
Influences of Cold Rolling Reductions and Strain Mode Changes on the through-thickness Texture Evolutions of a Hot-Rolled Non-oriented Electrical Steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
273
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-05
關鍵字
Keywords
背向散射電子繞射分析、集合組織、再結晶、應變模式、冷軋量、熱軋結構、非方向性電磁鋼片
recrystallization, strain mode, electron backscatter diffraction, texture, cold rolling reductions, hot-rolled macrostructures, non-oriented electrical steels
統計
Statistics
本論文已被瀏覽 5641 次,被下載 0
The thesis/dissertation has been browsed 5641 times, has been downloaded 0 times.
中文摘要
本研究使用經過熱軋延與連續退火處理(annealing and pickling line, APL) 之非方向性高矽電磁鋼片,將研磨處理後不同型式之熱軋板,經過不同冷軋量及應變模式改變,獲得五種不同型式之試片(S-S、SS-S、C-S、SS-C、C-C),其中S代表試片之表層、SS為試片之次表層、C則為試片之中心層位置。利用不同退火溫度進行熱處理,再依據所量測到之微硬度值建立退火軟化曲線,接著利用X光繞射分析儀量測極圖,觀察其巨觀集合組織之結果。
根據X光繞射極圖分析之實驗結果,不同型式之五個分層的冷軋試片皆可以觀察到明顯的α-fiber與γ-fiber訊號,其中α-fiber訊號強度則隨著冷軋量上升而提高,而受到冷軋平面應變作用之試片位置,具有較高之{111}<110>訊號強度,由於不同冷軋量所受到應變模式改變之影響不同,經過不同溫度退火處理後,於高冷軋量試片中,觀察相較於受到冷軋平面應變作用之試片,受到冷軋剪切應變作用之試片較有利於Goss集合組織發展。
利用掃描式電子顯微鏡之背向散射電子繞射分析實驗,觀察其微區集合組織之結果,由於初始熱軋結構不同,比較原始熱軋板為表層至中心層(Type Ⅰ)、原始熱軋板為次表層至次表層(Type Ⅱ)經不同冷軋量之集合組織演化。於低冷軋量試片中,Type Ⅰ 試片出現些許較密集之剪變帶分佈,Type Ⅱ 試片則是以層狀分佈之平滑晶粒為主,而表層(C-S)之變形晶粒明顯較表層(S-S)變形晶粒細長;於高冷軋量試片中,試片之結構差異則不明顯。觀察不同冷軋量之冷軋試片集合組織,Type Ⅰ 試片具有較高比例之Goss集合組織,Type Ⅱ 試片則具有較高比例之Rotated cube、{112}<110>與Cube集合組織,經過不同溫度退火處理後,冷軋裁減率為78%之試片較有利於Goss集合組織發展。
Abstract
In this study, non-oriented electrical steel (NOES) which was hot-rolled and APL (annealing and pickling line) treated was used as the starting material. Two types of hot band annealed specimens were prepared and they were either ground on one side of the normal plane to remove half of the original thickness (Type Ⅰ) or on both sides of the normal plane to remove quarters of the original thickness (Type Ⅱ). These two materials were then cold rolled to different rolling reductions (50% and 78%). Depending on the different locations of the specimens, different deformation modes dominate. Therefore, five different types of specimens were obtained (S-S, SS-S, C-S, SS-C, C-C), where S stands for the surface layer of the specimen, SS stands for the sub-surface layer of the specimen, and C stands for the center layer of the specimen. The specimens were then heat treated at different annealing temperatures to obtain the early, middle and late stages of RX process, according to the measured micro-hardness value variations as a function of annealing temperature. Macrotextures were obtained by using X-ray diffractometer (XRD) to measure the pole figures.
The results of the macrotexture show that α-fiber and γ-fiber intensities are observed in the CR state in the five specimens. It is also observed that α-fiber intensity increases with rolling reduction. The specimen underwent plane strain deformation is found to have the highest {111} <110> intensity. The effect of deformation mode changes is observed to be affected by rolling reductions. After the specimens were annealed at different temperatures, it is observed that the one deformed by shear deformation results in the highest intensity of Goss texture in the 78% CR specimen.
Electron backscatter diffraction (EBSD) was used to observe the microstructures and microtextures. It is observed that different microstructures exist at the hot band annealed specimens and therefore Type Ⅰ and Type Ⅱ CR microstructures are compared carefully. There are more shear bands in Type Ⅰ specimen, while smooth grains with laminar morphology dominates in Type Ⅱ specimen for the 50% CR condition. Moreover, the deformed grains in C-S specimen are more elongated than those in S-S specimen. On the contrary, the microstructure difference is not obvious in the 78% CR specimens. By observing the results of the microtexture in different cold rolling reduction specimens, there are higher fractions of Goss texture in Type Ⅰ specimens, while Type Ⅱ specimens have a higher fractions of Rotated cube, {112} <110>, and Cube textures. After annealing treatments, it is observed that the 78% CR specimens are more favorable to the development of Goss texture.
目次 Table of Contents
論文審定書 i
中文摘要 ii
英文摘要 iii
第一章 前言 1
第二章 文獻回顧 3
2-1 電磁鋼片之特性及用途 3
2-2 電磁鋼片之電磁性能 3
2-2-1 基本定義 4
2-2-2 晶粒尺寸對電磁特性之影響 4
2-2-3 集合組織與電磁特性之間的關係 5
2-3 熱軋 6
2-3-1 熱軋對初始結構之影響 6
2-4 冷軋 7
2-4-1 冷軋對初始熱軋結構之影響 7
2-4-2 不同冷軋裁減率對變形組織之影響 9
2-5 退火(annealing) 10
2-5-1 冷加工之儲存能(stored energy of cold work) 10
2-5-2 回復(recovery) 10
2-5-3 再結晶(recrystallization) 11
2-6 集合組織(texture) 11
2-6-1 基本定義 11
2-6-2 尤拉空間(Euler space)與方位分佈函數(orientation distribution function, ODF) 12
2-6-3 電子背向散射繞射(EBSD)之原理 13
2-6-4 熱軋對集合組織之影響 13
2-6-5 初始熱軋結構對最終集合組織之影響 14
2-6-6 冷軋對集合組織之影響 15
2-6-7 退火對集合組織之影響 18
第三章 研究目的 21
第四章 實驗方法及步驟 23
4-1實驗材料 23
4-2實驗方法 24
4-2-1試片退火處理 24
4-2-2試片研磨處理 25
4-3實驗分析 26
4-3-1微硬度量測 26
4-3-2 X光繞射分析 26
4-3-3 X光繞射極圖量測與ODF計算 27
4-3-4 集合組織統計 28
4-3-5 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)觀察 28
4-3-6 掃描式電子顯微鏡之背向散射電子繞射分析 29
4-3-6-1 反極圖地圖計算 30
4-3-6-2 集合組織分析 30
4-3-6-3 再結晶分析及比例計算 30
第五章 實驗結果 31
5-1 熱軋退火 31
5-1-1 巨觀集合組織 (XRD) 31
5-1-2 微區結構與集合組織 (EBSD) 32
5-2 冷軋階段 (XRD分析) 33
5-2-1 冷軋裁減率50% 33
5-2-1-1 不同熱軋板分層受到相同冷軋剪切應變作用之試片巨觀集合組織 33
5-2-1-2 不同熱軋板分層受到相同冷軋平面應變作用之試片巨觀集合組織 35
5-2-1-3 相同熱軋板分層受到不相同冷軋應變作用之試片巨觀集合組織 36
5-2-2 冷軋裁減率78% 38
5-2-2-1 不同熱軋板分層受到相同冷軋剪切應變作用之試片巨觀集合組織 38
5-2-2-2 不同熱軋板分層受到相同冷軋平面應變作用之試片巨觀集合組織 40
5-2-2-3 相同熱軋板分層受到不相同冷軋應變作用之試片巨觀集合組織 41
5-3 冷軋階段 (EBSD分析) 43
5-3-1 冷軋裁減率50% 43
5-3-1-1原始熱軋板為表層至中心層(Type Ⅰ)試片經冷軋之微區結構與集合組織 43
5-3-1-2 原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋之微區結構與集合組織 45
5-3-2 冷軋裁減率78% 46
5-3-2-1原始熱軋板為表層至中心層(Type Ⅰ)試片經冷軋之微區結構與集合組織 46
5-3-2-2原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋之微區結構與集合組織 47
5-4 微硬度量測 48
5-4-1 冷軋裁減率50% 48
5-4-2 冷軋裁減率78% 49
5-5 退火處理-再結晶階段 (XRD分析) 50
5-5-1 冷軋裁減率50% 50
5-5-1-1 不同熱軋板分層受到相同冷軋剪切應變作用之試片巨觀集合組織 50
5-5-1-2 不同熱軋板分層受到相同冷軋平面應變作用之試片巨觀集合組織 53
5-5-1-3 相同熱軋板分層受到不相同冷軋應變作用之試片巨觀集合組織 56
5-5-2冷軋裁減率78% 61
5-5-2-1 不同熱軋板分層受到相同冷軋剪切應變作用之試片巨觀集合組織 61
5-5-2-2 不同熱軋板分層受到相同冷軋平面應變作用之試片巨觀集合組織 65
5-5-2-3 相同熱軋板分層受到不相同冷軋應變作用之試片巨觀集合組織 67
5-6 退火處理-再結晶階段 (EBSD分析) 73
5-6-1 冷軋裁減率50% 73
5-6-1-1 原始熱軋板為表層至中心層(Type Ⅰ)試片經冷軋及退火處理之初期再結晶實驗結果 73
5-6-1-2 原始熱軋板為表層至中心層(Type Ⅰ)試片經冷軋及退火處理之中期再結晶實驗結果 74
5-6-1-3 原始熱軋板為表層至中心層(Type Ⅰ)試片經冷軋及退火處理之末期再結晶實驗結果 76
5-6-1-4 原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋及退火處理之初期再結晶實驗結果 77
5-6-1-5 原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋及退火處理之中期再結晶實驗結果 78
5-6-1-6 原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋及退火處理之末期再結晶實驗結果 79
5-6-1-7 原始熱軋板為表層至中心層(Type Ⅰ)試片與原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋及不同溫度退火處理之再結晶集合組織分佈差異 80
5-6-2 冷軋裁減率78% 82
5-6-2-1 原始熱軋板為表層至中心層(Type Ⅰ)試片經冷軋及退火處理之初期再結晶實驗結果 82
5-6-2-2 原始熱軋板為表層至中心層(Type Ⅰ)試片經冷軋及退火處理之中期再結晶實驗結果 83
5-6-2-3 原始熱軋板為表層至中心層(Type Ⅰ)試片經冷軋及退火處理之末期再結晶實驗結果 85
5-6-2-4 原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋及退火處理之初期再結晶實驗結果 86
5-6-2-5 原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋及退火處理之中期再結晶實驗結果 87
5-6-2-6 原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋及退火處理之末期再結晶實驗結果 88
5-6-2-7 原始熱軋板為表層至中心層(Type Ⅰ)試片與原始熱軋板為次表層至次表層(Type Ⅱ)試片經冷軋及不同溫度退火處理之再結晶集合組織分佈差異 89
第六章 討論 92
6-1 熱軋退火試片 92
6-2 退火軟化曲線 92
6-3 冷軋裁減率50% (XRD分析) 93
6-4 冷軋裁減率78% (XRD分析) 96
6-5 不同冷軋裁減率之集合組織體積百分率比較 (XRD分析) 99
6-6 冷軋階段之實驗結果差異 (EBSD分析) 101
6-7 不同再結晶階段之實驗結果差異 (EBSD分析) 103
6-8 不同冷軋裁減率之集合組織演化差異 (EBSD分析) 105
6-9 不同試片位置對Goss集合組織分佈之影響 (EBSD分析) 106
6-10 不同冷軋裁減率之集合組織比較 (EBSD分析) 107
第七章 結論 111
參考文獻 113
參考文獻 References
[1] 蕭一清, "綠色鋼材-電磁鋼片的發展與應用," 中鋼永續產業發展季刊, vol. 60, pp. 69-76, 2012.
[2] J. Salinas-Beltrán, A. Salinas-Rodríguez, E. Gutiérrez-Castañeda, and R. Deaquino Lara, "Effects of processing conditions on the final microstructure and magnetic properties in non-oriented electrical steels," Journal of Magnetism and Magnetic Materials, vol. 406, pp. 159-165, 2016.
[3] B. D. Cullity and C. D. Graham, Introduction to magnetic materials: John Wiley & Sons, 2011.
[4] W. F. Smith and J. Hashemi, Foundations of materials science and engineering: McGraw-Hill, 2011.
[5] K. M. Lee, S. Y. Park, M. Y. Huh, J. S. Kim, and O. Engler, "Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15% Si," Journal of Magnetism and Magnetic Materials, vol. 354, pp. 324-332, 2014.
[6] H. Mun, S. Lee, and Y. M. Koo, "In-situ Heating EBSD Study of Effects of Cold Reduction Ratio on Recrystallization and Grain Growth Behaviors in 3% Si Electrical Steels," ISIJ International, vol. 57, pp. 1241-1245, 2017.
[7] H. T. Liu, H. L. Li, H. Wang, Y. Liu, F. Gao, L. Z. An, et al., "Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel," Journal of Magnetism and Magnetic Materials, vol. 406, pp. 149-158, 2016.
[8] P. Rodriguez-Calvillo, N. Salazar, J. Schneider, and Y. Houbaert, "Microstructure characterization by EBSD of hot rolled high-silicon steel," in Defect and Diffusion Forum, vol. 273-276, pp. 69-74, 2008.
[9] J. T. Park and J. A. Szpunar, "Effect of initial grain size on texture evolution and magnetic properties in nonoriented electrical steels," Journal of Magnetism and Magnetic Materials, vol. 321, pp. 1928-1932, 2009.
[10] S. Chen, J. Butler, and S. Melzer, "Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel," Journal of Magnetism and Magnetic Materials, vol. 368, pp. 342-352, 2014.
[11] Y. Shimizu, Y. Ito, and Y. Iida, "Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling," Metallurgical Transactions A, vol. 17, pp. 1323-1334, 1986.
[12] O. Engler, C. Tomé, and M. Y. Huh, "A study of through-thickness texture gradients in rolled sheets," Metallurgical and Materials Transactions A, vol. 31, pp. 2299-2315, 2000.
[13] S. S. F. De Dafe, S. da Costa Paolinelli, and A. B. Cota, "Influence of thermomechanical processing on shear bands formation and magnetic properties of a 3% Si non-oriented electrical steel," Journal of Magnetism and Magnetic Materials, vol. 323, pp. 3234-3238, 2011.
[14] J. T. Park and J. A. Szpunar, "Evolution of recrystallization texture in nonoriented electrical steels," Acta Materialia, vol. 51, pp. 3037-3051, 2003.
[15] B. Li, A. Godfrey, Q. Meng, Q. Liu, and N. Hansen, "Microstructural evolution of IF-steel during cold rolling," Acta Materialia, vol. 52, pp. 1069-1081, 2004.
[16] W. Hsu, P. Sun, P. Kao, and L. Chang, "Correlation between the deformation microstructure after rolling and the recrystallization nucleation of a non-oriented electrical steel," in IOP Conference Series: Materials Science and Engineering, vol. 89, 2015.
[17] 徐瑋志, "極低碳鋼變形組織非均勻性與再結晶集合組織演化之研究," 博士論文, 材料與光電科學學系, 國立中山大學, 2016.
[18] A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and related annealing phenomena: Elsevier, 2004.
[19] R. Abbaschian and R. E. Reed-Hill, Physical metallurgy principles: Cengage Learning, 2008.
[20] O. Engler and V. Randle, "Introduction to texture analysis," CRC Press, Taylor & Francis Group, FL, 2010.
[21] L. Kestens and S. Jacobs, "Texture control during the manufacturing of nonoriented electrical steels," Texture, Stress, and Microstructure, vol. 2008, pp. 1-9, 2008.
[22] M. Y. Huh, J. H. Lee, S. H. Park, O. Engler, and D. Raabe, "Effect of Through‐Thickness Macro and Micro‐Texture Gradients on Ridging of 17% Cr Ferritic Stainless Steel Sheet," steel research international, vol. 76, pp. 797-806, 2005.
[23] M. Y. Huh, H. C. Kim, J. J. Park, and O. Engler, "Evolution of through-thickness texture gradients in various steel sheets," Metals and Materials, vol. 5, pp. 437-443, 1999.
[24] A. Böttcher and K. Lücke, "Influence of subsurface layers on texture and microstructure development in RGO electrical steel," Acta metallurgica et materialia, vol. 41, pp. 2503-2514, 1993.
[25] K. M. Lee, M. Y. Huh, H. J. Lee, J. T. Park, J. S. Kim, E. J. Shin, et al., "Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet," Journal of Magnetism and Magnetic Materials, vol. 396, pp. 53-64, 2015.
[26] Y. Hu, V. Randle, and T. Irons, "Macrotexture and microtexture evolution in cold rolled non-oriented electrical steel sheets during annealing," Materials Science and Technology, vol. 22, pp. 1333-1337, 2006.
[27] J. K. Kim, D. N. Lee, and Y. M. Koo, "The evolution of the Goss and Cube textures in electrical steel," Materials Letters, vol. 122, pp. 110-113, 2014.
[28] H. Inagaki, "Fundamental aspect of texture formation in low carbon steel," ISIJ international, vol. 34, pp. 313-321, 1994.
[29] H. Inagaki and T. Suda, "The development of rolling textures in low-carbon steels," Texture, Stress, and Microstructure, vol. 1, pp. 129-140, 1972.
[30] H. Inagaki, "Nucleation of a {111} recrystallized grain at the grain boundary of cold rolled polycrystalline iron," Transactions of the Japan institute of metals, vol. 28, pp. 251-263, 1987.
[31] 林冠豪, "1.24 wt.%矽與2.54 wt.%矽非方向性電磁鋼片之冷軋與退火集合組織及磁性質研究," 碩士論文, 材料與光電科學學系, 國立中山大學, 2017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.154.123
論文開放下載的時間是 校外不公開

Your IP address is 18.118.154.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code