Responsive image
博碩士論文 etd-0702118-175102 詳細資訊
Title page for etd-0702118-175102
論文名稱
Title
探討不同冷軋量及後續退火對鋁鎂合金之集合組織與微結構的影響
Investigation of annealing texture evolutions in an aluminum-magnesium alloy deformed by different cold-rolling reductions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
154
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-08-06
關鍵字
Keywords
5052鋁鎂合金、電子背向散射繞射、再結晶、集合組織、冷軋量
electron backscatter diffraction, recrystallization, rolling reduction, 5052 aluminum-magnesium alloy, texture
統計
Statistics
本論文已被瀏覽 5663 次,被下載 1
The thesis/dissertation has been browsed 5663 times, has been downloaded 1 times.
中文摘要
本研究將5052鋁鎂合金之熱軋板,施予不同之冷軋製程,冷軋裁減量分別為70%及90%(以下簡稱CR 70與CR 90),再進行退火處理,藉此觀察不同冷軋量以及後續退火處理對集合組織與微結構的影響。
以X光繞射儀分析試片表層與中心層之集合組織,並計算出結晶方位分佈函數(orientation distribution function, ODF)。熱軋板以Cube方位為最高強度,經過軋延後,CR 70仍以Cube方位為主導,而CR 90試片之集合組織以β-fiber為主。將CR 70試片進行不同溫度(280 ℃到300 ℃)退火處理一小時後,發現Cube、Cu、S、Brass以及Goss方位等五種集合組織的強度與體積分率隨著退火溫度上升而下降,但Cube方位仍保持最高強度。將CR 90試片進行不同溫度(270 ℃及280 ℃)退火處理一小時,發現β-fiber集合組織的強度與體積分率隨著退火溫度上升而下降,而Cube及Goss方位則隨著退火溫度上升而提高。
由EBSD分析試片之微觀集合組織,以ex-situ實驗方法觀察冷軋結構經退火處理後的變化,將不同冷軋量試片經不同溫度退火處理後,發現再結晶之方位與冷軋結構之方位相關。其中對Cube方位的發展較感興趣,從實驗結果可歸納出三種Cube方位發展的方式,分別為(i) 冷軋結構中之Cube band集合組織經過退火處理後容易往ND方向成長出Cube方位,(ii) 存在於冷軋結構中S與Cu方位間的碎片狀之Cube方位經過退火處理後容易成核及成長,(iii) Cube方位被周圍生長速率較快之集合組織所併吞而消失。
Abstract
In this study, the hot rolled plates of 5052 aluminum-magnesium alloy were subjected to different cold rolling processes, which are cold rolling reductions of 70% and 90% (referred as CR 70 and CR 90) hereafter. The CR specimens were subsequent annealed at different temperatures. Thus, the effects of different cold rolling reductions and subsequent annealing treatments on the texture and microstructure changes were observed.
The textures of the surface layer and the central area of the CR and annealed specimens were analyzed by X-ray diffraction (XRD), and then the orientation distribution functions (ODFs) were obtained. The hot rolled plates were analyzed to have a strong intensity of Cube orientation. After rolling, it can be found that Cube orientation dominates in the CR 70 sample and β-fiber is the main texture in the CR 90 specimen. The CR 70 specimens were annealed at different temperatures (280 ℃ to 300 ℃) for one hour. The results show that the strength of textures decreased with increasing annealing temperature, but the Cube orientation intensity remained the highest. The CR 90 specimens were annealed at 270 ℃ and 280 ℃ for one hour. The results show that the intensity of the β-fiber decreased with increasing annealing temperature, but Cube and Goss orientations increased with annealing temperature.
Ex-situ experiments were conducted on the specimens by electron backscatter diffraction (EBSD). The cold rolled specimens were analyzed and the same areas were then re-analyzed after annealing. The results of specimens subjected to different cold rolling reductions and annealing treatments show that the orientations of recrystallization are related to the orientation of the cold-rolled structure. From the experimental results, three ways of developing the Cube orientations can be summarized. (i) The Cube band in the cold-rolled structure can easily grow in the ND direction after annealing, (ii) The fragment Cube orientation between the S and Cu orientations in the cold-rolled structure can easily nucleate and grow after annealing, (iii) Cube orientation disappeared when other textures have faster growth rates than Cube orientation.
目次 Table of Contents
摘要 i
Abstract ii
總目錄 iv
表目錄 viii
圖目錄 ix
第一章、 前言 1
第二章、 文獻回顧 2
2-1 鋁鎂合金 2
2-2 軋延(Rolling) 2
2-3 集合組織(Texture) 2
2-3-1 FCC材料之集合組織 3
2-3-2 影響集合組織之因素 4
2-3-2-1 軋延溫度 4
2-3-2-2 軋延量 4
2-4 Cube方位之帶狀區域(Cube band) 5
2-5 剪切帶(Shear band) 6
2-5-1 剪切帶對軋延集合組織發展的影響 6
2-5-2 剪切帶對再結晶集合組織發展的影響 7
2-6 退火(Annealing) 8
2-6-1 回復(Recovery) 8
2-6-2 再結晶(Recrystallization) 9
2-6-3 晶粒成長(Grain Growth) 10
2-7 X光繞射儀(X-ray diffraction, XRD) 11
2-8 極圖(Pole figure) 11
2-9 結晶方位分佈函數(Orientation Distribution Function, ODF) 11
2-10 電子背向散射繞射(Electron Backscatter Diffraction, EBSD) 12
第三章、 研究目的 13
第四章、 實驗方法及步驟 14
4-1 實驗材料 14
4-2 試片製備 14
4-3 退火處理 14
4-4 微硬度量測 14
4-5 X光繞射儀(X-ray diffraction, XRD) 15
4-6 電子背向散射繞射(Electron Backscatter Diffraction, EBSD) 16
第五章、 實驗結果 17
5-1 熱軋後集合組織分析 17
5-1-1 XRD巨觀集合組織分析 17
5-1-2 EBSD微觀集合組織分析 17
5-2冷軋後集合組織分析 18
5-2-1 冷軋裁減量70% ( CR 70 )試片 18
5-2-1-1 XRD巨觀集合組織分析 18
5-2-1-2 EBSD微觀集合組織分析 18
5-2-2 冷軋裁減量90% ( CR 90 )試片 19
5-2-2-1 XRD巨觀集合組織分析 19
5-2-2-2 EBSD微觀集合組織分析 19
5-3 微硬度與冷軋後退火溫度之軟化曲線 20
5-4 冷軋裁減量70% ( CR 70 )試片經不同退火溫度之熱處理 20
5-4-1 XRD巨觀集合組織分析 20
5-4-1-1 ODF圖 20
5-4-1-2 退火溫度對集合組織的影響 22
5-4-2 EBSD微觀集合組織分析 22
5-4-2-1 冷軋微結構與相同區域退火後微結構比較 (ex-situ) 22
5-4-2-2 退火集合組織的演化 24
5-5 冷軋裁減量90% ( CR 90 )試片經不同退火溫度之熱處理 25
5-5-1 XRD巨觀集合組織分析 25
5-5-1-1 ODF圖 25
5-5-1-2 退火溫度對集合組織的影響 26
5-5-2 EBSD微觀集合組織分析 27
5-5-2-1 冷軋微結構與相同區域退火後微結構比較 (ex-situ) 27
5-5-2-2 退火集合組織的演化 28
5-6 其它方位之集合組織 29
5-6-1 XRD巨觀集合組織分析 29
5-6-1-1 冷軋裁減量70% (CR 70)試片經不同退火溫度之熱處理 29
5-6-1-2 冷軋裁減量90% (CR 90)試片經不同退火溫度之熱處理 30
第六章、 討論 32
6-1 不同冷軋裁減量的影響 32
6-1-1 XRD巨觀集合組織 32
6-1-2 EBSD微觀集合組織 32
6-1-3 微硬度與退火溫度之軟化曲線 33
6-2 不同冷軋裁減量經過後續退火處理的影響 33
6-2-1 XRD巨觀集合組織 33
6-2-2 EBSD微觀集合組織 33
6-3 Cube方位的發展 34
6-4 其它方位之集合組織 35
第七章、 結論 37
第八章、 參考文獻 38
第九章、 附錄 120
參考文獻 References
[1] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, "Physical Metallurgy Principles 4th edition," 2010.
[2] J. R. Gatti and P. P. Bhattacharjee, "Annealing textures of severely cold and warm-rolled Al–2.5wt.%Mg alloy," Journal of Alloys and Compounds, vol. 615, pp. 950-961, 2014.
[3] X. F. Wang, M. X. Guo, L. Y. Cao, F. Wang, J. S. Zhang, and L. Z. Zhuang, "Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al-Mg-Si alloys," International Journal of Minerals, Metallurgy and Materials, vol. 22, no. 7, pp. 738-747, 2015.
[4] F. J. Humphreys and M. Hatherly, "Recrystallization and related annealing phenomena second edition," 2004.
[5] Q. Zhao, Z. Liu, S. Li, T. Huang, P. Xia, and L. Lu, "Evolution of the Brass texture in an Al-Cu-Mg alloy during hot rolling," Journal of Alloys and Compounds, vol. 691, pp. 786-799, 2017.
[6] R. Madhavan, R. Kalsar, R. K. Ray, and S. Suwas, "Role of stacking fault energy on texture evolution revisited," Materials Science and Engineering, vol. 82, 2015.
[7] T. C. Schulthess, P. E. A. Turchi, A. Gonis, and T. G. Nieh, "Systematic study of stacking fault energies of random Al-based alloys," Acta Mater, vol. 46, pp. 2215-2221, 1998.
[8] 洪志弦, "探討冷軋前集合組織對純鋁經冷軋及最終退火集合組織的影響," 國立中山大學材料與光電科學學系 碩士論文, 2017.
[9] W. C. Liu, J. Li, H. Yuan, and Q. X. Yang, "Effect of recovery on the recrystallization texture of an Al–Mg alloy," Scripta Materialia, vol. 57, no. 9, pp. 833-836, 2007.
[10] W. C. Liu, T. Zhai, C.-S. Man, and J. G. Morris, "Quantification of recrystallization texture evolution in cold rolled AA 5182 aluminum alloy," Scripta Materialia, vol. 49, no. 6, pp. 539-545, 2003.
[11] O.Engler, "An EBSD Local Texture Study on the Nucleation of Recrystallization at Shear Bands in the alloy Al-3%Mg," Scripta Materialia, vol. 44, pp. 229-236, 2001.
[12] S. Endou and H. Inagaki, "Effect of Rolling Reduction on the Development of Rolling and Recrystallization Textures in Al-Mg Alloys," Materials Science Forum, vol. 408-412, pp. 1401-1406, 2002.
[13] A. Albou, S. Raveendra, P. Karajagikar, I. Samajdar, C. Maurice, and J. H. Driver, "Direct correlation of deformation microstructures and cube recrystallization nucleation in aluminum," Scripta Materialia, vol. 62, no. 7, pp. 469-472, 2010.
[14] S. Kohara and H. Inagaki, "Rolling texture of Al-Mg alloys," Textures and Microstructures, vol. 14-18, pp. 1209-1214, 1991.
[15] M. Koizumi and H. lnagaki, "Role of Shear Band in Texture Control of Al-Mg Alloys," Metals and Materials, vol. 5, pp. 511~517, 1999.
[16] A. Korbel, J. D. Embury, M. Hatherly, P. L. Martin, and H. W. Erbsloh, "Microstructural aspects of strain localization in AlMg alloys," Acta Metallurgica, vol. 34, no. 10, pp. 1999-2009, 1986.
[17] P. Wagner, O. Engler, and K. Lucke, "Texture Development in Al-3%Mg Influenced by Shear Bands," Texture and Microstructure, vol. 14-18, pp. 927-932, 1991.
[18] K. Matsumoto, T. Shibayanagi, and Y. Umanokoshi, "On the role of grain boundary character distribution in grain growth of Al-Mg alloys," Acta mater, vol. 45, pp. 439-451, 1997.
[19] D. R. Askeland, P. P. Fulay, and W. J. Wright, The Science and Engineering of Materials, SI Edition. Cengage Learning, 2011.
[20] J. R. Gatti and P. P. Bhattacharjee, "Effect of Prior Recovery Treatment on the Evolution of Cube Texture During Annealing of Severely Warm-Rolled Al-2.5 wt pctMg Alloy," Metallurgical and Materials Transactions A, vol. 46, no. 11, pp. 4966-4977, 2015.
[21] K. Kajihara, K. Matsumoto, and K. Matsumoto, "In Situ SEM-EBSP Observations of Recrystallization Texture Formation in Al-3mass%Mg Alloy," Materials Science Forum, vol. 519-521, pp. 1579-1584, 2006.
[22] O. Sukhopar and G. Gottstein, "A study of Cube grain Nucleation in a commercial Al alloy during in situ and discontinuous (ex situ) Aannealing experiments," Materials Science Forum, vol. 794-796, pp. 1245-1250, 2014.
[23] 林麗娟, "X光繞射原理及其應用," 工業材料, vol. 86, pp. 100-109, 1994.
[24] A. J. Schwartz, M. Kumar, B. L.Adams, and D. P. Field, "Electron Backscatter Diffraction in Materials Science Second Edition," Springer, 2009.
[25] 周詩博, "冷軋鋁箔之再結晶組織與機械性質," 國立中山大學材料科學研究所 碩士論文, 2001.
[26] L. Kestens and S. Jacobs, "Texture Control During the Manufacturing of Nonoriented Electrical Steels," Hindawi Publishing Corporation, vol. 2008, 2008.
[27] K. Hamad, H. W. Yang, and Y. G. Ko, "Interpretation of annealing texture changes of severely deformed Al-Mg-Si alloy," Journal of Alloys and Compounds, vol. 687, pp. 300-305, 2016.
[28] S. Suwas and R. K. Ray, "Crystallographic Texture of Materials," Springer, 2014.
[29] O. Engle, "On the influence of orientation pinning on growth selection of recrystallisation," Acta mater, vol. 46, pp. 1555-1568, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 35.175.172.94
論文開放下載的時間是 校外不公開

Your IP address is 35.175.172.94
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code