Responsive image
博碩士論文 etd-0703103-110949 詳細資訊
Title page for etd-0703103-110949
論文名稱
Title
分子束沉積CuInSe2薄膜的研究
Study on the Molecular Beam Deposition of CuInSe2 Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-24
繳交日期
Date of Submission
2003-07-03
關鍵字
Keywords
太陽電池、二矽化銅銦、分子束磊晶
MBE, CuInSE2, Saolar Cell
統計
Statistics
本論文已被瀏覽 5641 次,被下載 0
The thesis/dissertation has been browsed 5641 times, has been downloaded 0 times.
中文摘要
本研究是因應國內能源科技,研究發展製造低成本、大面積、高轉換效率太陽電池的新材料CuInSe2。由薄膜組成之控制,進而控制其電性及光學特性,使太陽電池達到高轉換效率之目的。
經由許多研究的實驗發現,對CuInSe2的電學特性,是由本質缺陷主導,而造成這些缺陷,是起源於組成上的偏差。由於本質缺陷的特性,使CuInSe2可以呈現n型或p型的導電性質,基本上,在成長或褪火製程中,組成的偏差的微小值,都會使CuInSe2中載子濃度有數個數量級的變化。本質化學缺陷模型理論的建立與應用,來描述CuInSe2的導電型式,初步上已獲得相當成功的結果,但是經由實驗數據的結果顯示很多與模型預示不符合的現象。
依照缺陷模型模擬的結果,顯示對DX<0時,&frac12;DY&frac12;值相當大時,會呈現n-type電導性,而DX>0、DY>0時為p-type型式,另外當DX>0、DY<0時會有n和p型電導性出現,再者,當DX<0,而DY<0值甚小時,此時,經由本缺陷模型的計算顯示,組成偏差造成的主要本質缺陷對是VCu和InCu,其濃度大小隨著DY值的變化;當DY更負時,形成[VCu]>[ InCu],使得CuInSe2薄膜電導特性由n-type轉變成p-type。這些都是理論模型與實驗結果符合的證據
分子束磊晶成長模型是探討磊晶成長的反應機構,在500℃,分子束磊晶成長CuInSe2薄膜,其中In和Cu的BEP是在5×10-8 torr~5×10-7 torr之間,而Se-BEP變化,並非只是單純增加了Se的組成含量。由於Se BEP的變化,使得CIS薄膜組成(△X 和△Y) 隨之改變。當Se的BEP上升到10-6 torr的order (數量級) 時,其相對的主要缺陷濃度,亦下降約3個order。因此,Se BEP的增加最大的影響,是移動度顯著的增加而促使晶膜的電導度變好。
整體而言,本研究經由模擬分子束沈積的機制,以控制成長的薄膜組成,再由缺陷結構模型得到各薄膜的電學特性,由此,在太陽電池的設計中,所需要的CuInSe2吸收層特性,可經由模擬得到成長時的條件,在設計製作上完成連接,將可促進未來太陽電池的發展。
Abstract
The objective of this proposed study is to develop the new material CuInSe2 for large area, low cost and high efficiency commercial CuInSe2 based solar cell for the solar resource in Taiwan. The compositions of CuInSe2 films are modulated precisely to obtain an ideal electrical and optical characteristics resulting in high conversion efficiency for commercial solar cell applications.
Numerous experimental investigations have shown the electrical properties of undoped CuInSe2 are dominated by various types of electrically active intrinsic defects caused by the deviations from the ideal stoichiometry. Without any intentional doping CuInSe2 can be made n-type and p-type conducting with carrier concentrations varying over many orders of magnitude either by slightly changing the composition of the material during growth or by appropriate post-growth annealing procedures. Several attempts have been made successfully by the crucial construction and application of intrinsic defect chemistry model to investigate the trend in the conductivity of CuInSe2, however, there investigation still remain no clear evidence to directly correlate composition and electrical properties reported by several authors, and the results of experimental data shows in contradiction to the intrinsic defect model.
According to the point defect model, that samples with DX<0 and larger values of |DY| are always n-type conducting, and sample with DX>0 and DY>0 are always p-type conducting. In addition, as DX<0 and DY<0, the dominant defect pair calculated from the point defect model is VCu and InCu, their concentrations varies as a function of DY. Once DY is relatively more negative, [VCu] increase and that forms [VCu]>[InCu]. Therefore, the electrical conductivity of CuInSe2 changed from n-type to p-type.
The Growth model of MBE is considered to investigate the reactive mechanism of epitaxial growth. At 500℃, the BEP of In and Cu molecular beam fluxes supplied were 5×10-8~5×10-7 torr for the MBE growth of CuInSe2 films. The change of Se molecular beam flux not only affect the composition of CuInSe2 films, but also the deviation from molecularity DX and the deviation from valence stoichiometry. As Se molecular beam flux increase to 10-6 torr, the concentrations of dominant defects show to decrease about three orders. Thus, the increase of Se BEP results in increasing the mobility as well as the conductivity.
On the whole, this study is based on the simulation to investigate the mechanism of MBE. It could be used to control precisely the composition of CuInSe2 films leading to obtain the electrical characteristics for solar cell design.
目次 Table of Contents
目 錄
目錄
附表目錄......................................................................I
附圖目錄.....................................................................II
第一章 簡介.................................................................1
1-1太陽電池的發展.......................................................1
1-2太陽電池之材料.......................................................1
1-3 CuInSe2晶體結構與材料特性.....................................2
1-3-1晶體結構..........................................................2
1-3-2材料的性..........................................................3
1-4以MBE成長CuInSe2薄膜.........................................4
第二章 實驗與步驟....................................................6
2-1分子束磊晶成長設備................................................6
2-2分子束磊晶成長實驗步驟.........................................7
2-3 X-Ray繞射分析...................................................10
第三章CuInSe2之缺陷結構與特性..............................12
3-1缺陷能階的種類.....................................................12
3-2化學組成與缺陷結構的關係....................................12
3-3摻雜對缺陷結構的影響...........................................16
3-4缺陷結構對光電特性的影響.....................................18
3-4-1改變晶體的導電率.............................................18
3-4-2改變光感應靈敏度.............................................19
3-4-3改變元件的反應速率...........................................20
3-4-4增加元件的吸收光譜...........................................20
3-5載子解離率與移動率..............................................20
3-5-1載子解離率......................................................20
3-5-2載子移動率......................................................22
3-5-3移動率模擬......................................................27
3-6結果與討論...........................................................27
第四章CuInSe2之理論模型.........................................30
4-1分子束磊晶成長CuInSe2化學反應模型......................30
4-1-1基本關係式......................................................30
4-1-2將模型應用在CuInSe2.........................................35
4-3結果與討論...........................................................38
第五章 結論...............................................................42
參考文獻....................................................................80
參考文獻 References
[1] K. W. Mitchell, C. Eberspacher, J. H. Ermer, K. L. Pauls, D. Pier and D. Janner : Proceedings of 20th Institute of Electrical and Electronics Engineers Phtovoltaic Specialists Conference,Las Vegas.September 26-30,1988 (Institute of Electical and Electronics Engineers,New York,1988)p.1384
[2] A. Rockett and B. W. Birkmire, J. of Appl. Phys. 70 (1991),R81.
[3] L. I. Berger and V.D.Prochukhan, " Ternary Diamond-Like Semiconductor ". Consultants Bureau, New York (1969).
[4] B. Tell and H. M. Kasper , J. Appl. Phys. 43 2469 (1972).
[5] J. Parkes , R. D. Tomlinson , and M. J. Hampshire, J. Appl. Cryst. 6 (1973) 414.
[6] L. S. Palatnik and E. J. Rogacheva, Sov. Phys. Dokl. (Engl. Transl.) 12 (1967) 503.
[7] J. L.Shay and J. H. Wernick, "Ternary Chalcopyrite Semiconductors : Growth Electronic Properties and Applications. " Pergamon, New York ,1975.
[8] Deb S. K. 1994 "Future Opportunities for Photovoltaic Materials and Devices Reserch", Conference Proceedings 306, ed.R.Noufi and H.Ullal p.53.
[9] F. R. White, A. H. dark, M. C. Graf and L. L. Kazmerski, J. Vac. Sci. and Technol 16 (1979)287.
[10] S. P. Grindle, A. H. dark, S. Rezaie-Serej, E. Falconer, J. Me. Neil and L. L. Kazmerski, J. Appl. Phys. 51 (1980)5464.
[11] C. Y. Huang, S. M. Morse, A. H. dark and L. L. Kazmerski, Solar Cells, 6(1982)191.
[12] Rincon and S. M. Wasim,MRS Symp. TMC (1986)443.
[13] A. Groenink and P.H.Janse,Z. Phys. Chem. 110 (1978)17.
[14] H.Neumann and R. D. Tomlinson, Solar Cells 28(1990)301.
[15] H. Brooks, Adv. Electronics and Electron. Phys.7 (1955)85.
[16] S. M. Wasim, G. Sanchez Porras and R. D. Tomlinson, Phys. Status Solidi A 71 (1982)523.
[17] Wiley J. D. and DiDomenico M. Jr., Phys. Rev. B2 (1970)427.
[18] C. Rincon, J. Gonzalez, and G. Sanchez Perez, J .Appl. Phys. 54 (1983)6634.
[19] Sclar N., Phys. Rev.104(1956)1559.
[20] A. D. Boardman, Proc. Phys. Soc.85, (1965)141.
[21] H. Y. Ueng, Cryst. Res. Technol. 31 (1996) 181-184.
[22] Taizo Irie, Endo and Shigeo Kimura, Jpn. J. Appl. Physics. 18 (1979)1303.
[23] S. M. Wasim, Solar Cells 16(1986)289.
[24] Mikihiko Nishitani, Takayuki Negami, Masaharu Terauchi and Taskasi Hirao, Jpn. J. Phys.31(1992)192.
[25] S. P. Grindle, A. H. Clark, S. Rezaie-Serej and J. Meneily, J. Appl. Phys, 51(1980)5464.
[26] L. L. Kazmerski: Int. Mater. Rev. 34 (1989) 185.
[27] R. Burgess, W. Chen, D. Dyle, N. Kirn and B. Stanbary: Proc. 20th IEEE Photovoltaic Specialists Conf. (New York, 1988) p.909.
[28] K. Mitchell, C. Eberspacher, J. Ermer, K. Pauls, D. Pier and D. Tanner: Proc. 4th Int. PV Science and Engineering Conf. (Sydoney, 1989) p.14.
[29] B. M. Basol and V. K. Kapur: IEEE Trans. Electron Devices 37 (1990)418.
[30] S. P. Grindle, A. H. dark, S. Rezaie-Serej, J. McNeily and L. L. Kazmerski: J. Appl.Phys. 51(1980)5464.
[31] J. A. Thomton and T. C. Lommasson: Sol. Cell 16 (1986)165.
[32] Thomton, J. A., D. G. Cemeg, R. B. Hall, S. P. Shea, and J. D. Meakin, J. Vac. Sci. Tech., A2(2), 307 (1984).
[33] Michelsen, R. A., and W. S. Chen, Appl. Phs. Lett., 36, 371 (1980).
[34] Birkmire, R. W., R. B. Hall, and J.E. Phillips, 17th IEEE PV Specialists Conf.Orlando, 882 (1984).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.156.80
論文開放下載的時間是 校外不公開

Your IP address is 18.190.156.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code