Responsive image
博碩士論文 etd-0703106-021637 詳細資訊
Title page for etd-0703106-021637
論文名稱
Title
尺寸分析熱毛細力在雷射熔化過程之熱流場分佈
Scale Analysis of Thermal & Fluid Flow Induced by Thermocapillary Force During Laser Melting
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-30
繳交日期
Date of Submission
2006-07-03
關鍵字
Keywords
尺寸因次分析、馬里哥尼流、焊接、熔化
Melt, Weld, Scale, Marangoni Flow
統計
Statistics
本論文已被瀏覽 5660 次,被下載 1460
The thesis/dissertation has been browsed 5660 times, has been downloaded 1460 times.
中文摘要
本研究利用尺寸因次分析預測在低功率電子束或雷射焊接過程中受馬里哥尼(熱毛細)流影響的熔區形狀。低功率密度雷射意味著熔池是淺而窄的,也有可能在熔池中產生孔洞。熔化區的強度、微結構和機械性質和熔池的形狀是密切相關的。在此研究裡,隨著相變化在固液介面發生,未知形狀的固液交界面和在自由表面、角落區及邊界層的交會處,都會影響熔區裡複雜的流場。當Pr Number小於1時,熔融金屬的Ma Number和Re Number 則會有 大,適當的質量、動量及能量傳輸的尺寸因次分析可藉由自由表面上黏滯力和表面張力的平
衡。此外,在各個區域裡,不同的熱邊界層、黏滯邊界層有著不同的長度、速度、溫度尺寸因次分析。最後結果發現熔池的形狀、表面速度、溫度分佈與Pe Number、Bi Number、Ma Number、Pr Number、入射能量及固液熱傳導係數比有密切關係。此預測經由我們數據模擬所得証。
Abstract
In this study, shapes of the molten region and transport processes affected by thermocapillary convection in melting or welding pool irradiated by a low-power-density beam are determined from a scale analysis for the first time. A low-power-density-beam heating implies no deep and narrow cavity or keyhole taking place in the pool. A quantitative determination of the fusion zone shape is crucial due to its close relationship with the strength, microstructure, and mechanical properties of the fusion zone. In this work, the complicated flow pattern in the pool is influenced by an unknown shape of solid-liquid interface, and interactions between the free surface layer, corner regions, and boundary layer with phase transition on the solid-liquid interface. Since Prandtl number is much less than unity while Marangoni and Reynolds number can be more than in melting metals, an appropriate scaling mass, momentum, and energy transport subject to a force balance between viscous stress and surface tension gradient on the free surface account for distinct thermal and viscous boundary layers in these regions of different length, velocity, and temperature scales. The results find that shapes of the fusion zone, free surface velocity and temperature profiles are determined by Marangoni, Prandtl, beam power, Peclet, and Biot numbers, and solid-to-liquid thermal conductivity ratio. The predications agree with numerical computations.
目次 Table of Contents
目錄 i
表目錄 iii
圖目錄 iv
符號說明 v
中文摘要 viii
英文摘要 ix
第一章 緒論 1
1-1 相關文獻回顧 1
1-2 研究動機及目的 4
第二章 系統模型 5
2-1 模擬方式 5
2-2 理論分析 7
2-3 尺寸因次分析 11
第三章 結果與討論 16
3-1 模擬結果 16
3-2 尺寸因次分析結果 25
第四章 結論 30
附錄一 31
附錄二 38
參考文獻 43
參考文獻 References
[1]. P. S. Wei, S. C. Wang, and M. S. Lin, 1996, "Transport Phenomena During Resistance Spot-Welding," Journal of Heat Transfer-Transactions of The ASME, vol.118, Iss.3, pp.762-773.
[2]. D. Rosenthal, 1941, "Mathematical Theory of Heat Distribution during Welding and Cutting," Welding J., vol.20, pp.220-234.
[3]. N. Christensen, V. de L. Davies, and K. Gjermundsen, 1965, "Distribution of Temperatures in Arc Welding," British Welding Journal, vol.12, pp.54-75.
[4]. H. C. Carslaw, and J. C. Jaeger, 1959, "Conduction of Heat in Solids, " Clarendon Press., Oxford, Chapter 10.
[5]. H. E. Cline, and T. R. Anthony, 1997, "Heat Treating and Melting Material with a Scanning Laser or Electron Beam," J. Applied Physics, vol.48, pp.3895-3900.
[6]. T. W. Eagar, and N. S. Tsai, 1983, "Temperature Fields Produced by Traveling Distributed Heat Sources," Welding J., vol.62, pp.346-355.
[7]. J. W. Elmer, W. H. Giedt, and T. W. Eagar, 1990, "The Transition from Shallow to Deep Penetration during Electron Beam Welding," Welding J., vol.69, pp.167-176.
[8]. T. Miyazaki, T. Kimura , and W. H. Giedt, 1991, "Temperature Distribution around a Sphere Moving Through an Infinite Solid and Its Application to Plasma Arc Surface Treatment," ASME/JSME Thermal Engineering Proceedings, vol.1, pp.365-372.
[9]. N. Postacioglu, P. Kapadia, and J. Dowden, 1993, "A Mathematical Model of Heat Conduction in a Prolate Spheroidal Coordinate System with Applications to the Theory of Welding," J. Physics D: Applied Physics, vol.26, pp.563-573.
[10]. C. R. Heiple, and J. R. Roper, 1982, "Mechanism for Minor Element Effect on GTA Fusion Zone Geometry," Welding J., vol.61, pp.97-102.
[11]. K. C. Mills, and B. J. Keene, 1990, "Factors Affecting Variable Weld Penetration," International Materials Reviews, vol.35, pp.185-216.
[12]. S. Kou, and Y. H. Wang, 1986, "Weld Pool Convection and Its Effect," Welding J., vol.65, pp.63-70.
[13]. T. Zacharia, S. A. David, J. M. Vitek, and T. DebRoy, 1989, "Weld Pool Development during GTA and Laser Beam Welding of Type 304 Stainless Steel, Part I-Theoretical Analysis," Welding J., vol.68, pp.499-509.
[14]. A. Bejan, 1984, Convection Heat Transfer, Wiley, New York, Chapter 2.
[15]. S. Ostrach, 1982, "Low-Gravity Fluid Flows," Annual Reviews of Fluid Mechanics, vol.14, pp.313-345.
[16]. F. K. Chung, and P. S. Wei, 1999, "Mass, Momentum, and Energy Transport in a Molten Pool When Welding Dissimilar Metals," J. Heat Transfer, vol.121, pp.451-461.
[17]. P. S. Wei, and F. K. Chung, 2000, "Unsteady Marangoni Flow in a Molten Pool When Welding Dissimilar Metals," Metallurgical and Materials Transactions B, vol.31B, pp.1387-1403.
[18]. A. K. Sen, and S. H. Davida, 1982, "Steady Thermocapillary Flows in Two-Dimensional Slots," J. Fluid Mechanics, vol.121, pp.163-186.
[19]. P. S. Wei, and L. R. Chiou, 1988, "Molten-Metal Flow Around the Base of a Cavity During a High-Energy Beam Penetrating Process," Journal of Heat Transfer-Transactions of The ASME, vol.110, Iss.4A, pp.918-923.
[20]. Tatsuya Hashimoto, and Fukuhisa Matsuda, 1965, "Effect of welding variables and materials upon bead shape in electron-beam welding," Transactions of National Research Institute Metals, vol.77, No.3, pp.96-108.
[21]. M. M. Chen, 1987, "Thermocapillary Convection in Materials Processing," Interdisciplinary Issues in Materials Processing and Manufacturing, edited by S. K. Samanta, R. Komanduri, R. McMeeking, M. M. Chen, and A. Tseng, ASME, New York, pp. 541-558.
[22]. K. Mundra, T. Debroy, T. Zacharia, and S. A. David, 1992, "Role of thermophysical properties in weld pool modeling," Welding J., pp.313-320.
[23]. K. Mundra and T. Debroy, 1993, "Toward understanding alloying element vaporization during laser beam welding of stainless steel," Welding J., pp.1-9.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code